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Abstract. Harvesting energy from human body motion to supply electricity for wearable devices is focused on
in this paper. Based on the fact that the frequency of human body motion is lower and the motions of different
human body parts are variable, a piezoelectric energy harvester subjected to two different transversal recipro-
cating excitations is studied in this paper. Each excitation is treated as a transverse rheonomic constraint. The
dynamics equation of the beam is established using the Hamiltonian principle. Expressing the transverse rheo-
nomic constraint as a periodic function, closed-form solutions of the dynamics equation are obtained. And the
characteristics of energy harvesters are investigated based on the closed-form solutions. The results show that the
difference between the two excitations will certainly cause the energy harvester to generate more output power
at lower frequencies of excitations, and the larger the difference, the more the output power will be generated.
This unusual characteristic at the lower frequency enables the proposed harvester to be quite suitable to harvest
energy from the motions of the human body.

1 Introduction

The market for wearable devices, such as pacemakers, hear-
ing aids, and so on, has been rapidly growing for 3 decades.
However, the energy density of batteries for these devices
limits their usability, which forces the user to carry more bat-
tery packs or recharge their devices on a power grid some-
where. Among the various methods, harvesting energy from
human movements may be a convenient solution to the prob-
lem.

Compared with other ambient mechanical vibrations, hu-
man movements have two features. One is that the frequency
of human movement is much lower. It has been acknowl-
edged that the frequency of human motion is less than 10 Hz
(Green et al., 2013) and that of human upper limbs is 0.5–
3 Hz (George et al., 2020). The other is that at different points
in the human body, the motions are variable in amplitude, fre-
quency, or even in regularity (Hallal and Pratt, 2020; Ren et
al., 2020).

One efficient way to convert human movements into elec-
tronic energy is by using piezoelectric materials for the rea-
son that piezoelectric ceramics have large power densities,
ease of application, and feasibility of fabrication (Roundy
and Wright, 2004; Sodano et al., 2004; Maamer et al., 2019;
Blad and Tolou, 2019).

A normal piezoelectric energy harvester is a cantilever
metallic beam attached to piezoelectric ceramics layers. The
vibrating host structure that the metallic beam is fixed on
is named an excitation or a vibrator (Sodano et al., 2020;
Maamer et al., 2019). The operating principle of the nor-
mal piezoelectric energy harvester is based on the resonant
interaction between the excitation and the cantilever beam.
Therefore, only when the model frequency of the beam is
equal, or very close, to the frequency of the excitation can
the normal piezoelectric energy harvester generate maximum
energy transduction.

Thus, for the vibration of a frequency lower than 30 Hz,
the performance of the normal piezoelectric energy har-
vester is not as good as expected. Therefore, a large vari-
ety of configurations to modify the normal piezoelectric en-
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Figure 1. Schematic diagram of a piezoelectric energy harvester for
human body motion subjected to two excitations.

ergy harvester have been proposed (Blad and Tolou, 2019).
Liu et al. (2012) designed an S-shaped piezoelectric PZT
(PbZrxTi(1−x)O3) cantilever for harvesting vibration energy
at lower than 30 Hz. Dechant et al. (2017) utilized me-
chanical impacts on two mechanical stoppers to convert
low-frequency mechanical vibrations, the best at 7–25 Hz,
into high-frequency resonance oscillations of the transducer.
Leadenham and Erturk (2015) developed an M-shaped piezo-
electric energy harvester configuration that exhibits a nonlin-
ear frequency response under very low vibration levels. The
secondary resonance of their harvester is as low as 4.5 Hz.
Halim and Park (2014) used a low-frequency flexible beam
with an extended tip mass driven by the vibrator to hit two
high-frequency rigid piezoelectric generating beams. The
best-performing bandwidth of this harvester is 7–14.5 Hz.

In this paper, we propose a piezoelectric energy harvester
for human body motion. In contrast with the harvester whose
configuration is changed from a normal piezoelectric energy
harvester with one end of a metallic beam fixed on the ex-
citation, the metallic beam of the harvester proposed is con-
nected to the human body at two points, acting as two vibra-
tors (see Fig. 1). Its proposition utilizes the feature that the
motions of the two human body points are distinct. Its config-
uration is simpler than existing configurations of piezoelec-
tric energy harvesters for lower-frequency vibration; conse-
quently, the cost of fabrication may be reduced greatly but
at the expense of losing a little comfort. The excitations
are treated as transverse rheonomic constraints acting on the
beam for the derivation of the dynamics equation of the en-
ergy harvester. Based on the analysis of dynamics equations,
we find such a piezoelectric energy harvester performs very
well, especially at frequencies lower than 30 Hz. We are in-
spired by the fact that a metallic beam of an energy harvester
subjected to two different transversals reciprocating is quite
suitable for harvesting energy from human body motions.

The rest of the paper is organized as follows. In Sect. 2,
the dynamics equation of the harvester with two excitations
is derived, and its closed-form solution is obtained in the case
when the excitations can be expressed as periodic functions.

Figure 2. Physical model of the piezoelectric energy harvester for
human body motion subjected to two excitations.

In Sect. 3, the performance of the energy harvester is ana-
lyzed when the two vibrators are with the same frequency
but different amplitudes and/or phases, to illustrate the abil-
ities of the harvester, especially at low frequencies. And in
Sect. 4, the conclusions are presented.

2 Modeling of the harvester for human body motion
subjected to two excitations

Figure 1 is a schematic diagram of the piezoelectric energy
harvester for human body motion. The beam is connected at
two points of the human body, which are referred as vibra-
tor 1 and vibrator 2, respectively. As shown in Fig. 1, one end
of the beam is clamped on vibrator 1, i.e., the back of the hu-
man body, and the other end of the beam is free, while vibra-
tor 2, i.e., the arm, excites the beam at the middle part of the
beam. It can be observed that the motion of vibrator 1 will be
dissimilar than the motion of vibrator 2 when a human being
is walking, jogging, or conducting other movements. Under
this circumstance, we develop the piezoelectric energy har-
vester. Of course, the two vibrators may be on other parts of
the human body, provided that the motions of the two vibra-
tors are different. Otherwise, the beam will vibrate under ex-
citation of its inertia force, similar to the normal piezoelectric
energy harvester, which will also be discussed for compari-
son.

2.1 Derivation of the electromechanical model

The physical model and the simplified model for analysis of
the harvester are presented in Figs. 2 and 3, respectively.

In Fig. 2, the beam is clamped onto vibrator 1. For conve-
nience, the effects of the clamping on the beam in Fig. 2 are
represented by two elements in Fig. 3; one is a sliding con-
straint and the other one is a transverse rheonomic constraint,
P1(t) at a1l. The former implies that the bending deformation
of the beam at the clamping end is neglected, the end is tol-
erated to move in the direction of w, and the latter allows
us to consider a more general case to establish the dynam-
ics equation. In this paper, a1 will be set to zero. Vibrator 2
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Figure 3. Simplified model for analysis.

is also a transverse rheonomic constraint, P2(t) acting at a2l

(0≤ a2 ≤ 1).
We assume the beam is an Euler–Bernoulli beam; both

transverse displacements, P1(t) and P2(t), can be represented
by modal coordinates. We ignore the inherent piezoelectric
nonlinearities of the harvester for the reason that the accel-
eration is very small (Erturk and Inman, 2011; Wagner and
Hagedorn, 2002).

Let the transverse displacement of the beam be w(x, t).
Then, vibrators 1 and 2 can be expressed as a constraint equa-
tion as follows:

p̃h(t)= w (ahl, t)−ph(t)= 0 (h= 1,2). (1)

Let the rth order modal function be φr (x) and the modal co-
ordinate be qr (t); the transverse displacement of the beam
is

w (x, t)=
∞∑
r=1

φr (x)qr (t). (2)

With the constraints depicted in Fig. 3, the bound-
ary conditions of the beam is φ′(0)= 0,φ′′′(0)= 0,φ′′(l)=
0,andφ′′′(l)= 0. Thus, the rth normalized model function is

φr (x)=


√

2
ml

cos
(
λr
l
x
)
+

cos(λr )
cosh(λr ) cosh

(
λr
l
x
)

√
1+csch(λr )2 sin(λr )2

(r ≥ 2)√
1
ml

(r = 1)
, (3)

where λr can be obtained by solving the following equation:

cosh(λ) sin(λ)+ cos(λ) sinh(λ)= 0. (4)

The kinetic energy of the beam can be written as

T =
m

2

l∫
0

ẇ2dx, (5)

where m= b(ρshs + 2ρphp).
The potential energy of the beam can be written as

U =
YI
2

l∫
0

w′′
2dx, (6)

where YI= c11Ip +EIs .
The complementary energy of the beam can be written as

We =−U +

l∫
0

α2ε33bv
2

4hp
−αe31hpcbvw

′′dx, (7)

where hpc = (hs +hp)/2 and α = 2 when the piezoelectric
layers are connected in parallel, and α = 1 when the piezo-
electric layers are connected in series.

The virtual work of air damping and material damping can
be written as

Qs =−

l∫
0

csIbẇ
′′δw′′− caẇδwdx. (8)

As a conservative element, the virtual work of the load
resistance is

QR =−
v

R
δv. (9)

Using κ1(t) and κ2(t) to represent Lagrange multipliers, by
the Hamiltonian principle, the dynamic model can be trans-
formed into a functional extremum problem as follows:

t∫
0

δ

[
T +We+

2∑
i=1

κi(t)p̃i(t)

]
dt +

t∫
0

Qsdt

+

t∫
0

QRdt = 0. (10)

With the procedure of derivation presented in Appendix B,
the governing equations of the energy harvester can be writ-
ten as

q̈r (t)+ 2ζrωr q̇r (t)+ω2
r qr (t)−χrv(t)

=

2∑
i=1
κi(t)

φr (ai l)
m

∞∑
r=1

φr (a1l)qr (t)−p1(t)= 0

∞∑
r=1

φr (a2l)qr (t)−p2(t)= 0

Cpv(t)+ v(t)
R
+

∞∑
r=1

χr q̇r (t)= 0 {r = 1, . . .,∞}

. (11)

It can be seen that Eq. (11) is an infinite-order differen-
tial algebraic equation (DAE). From Eq. (11), we obtain the
undamped natural frequency of the beam ωr as follows:

ωr = λ
2
r

√
YI
ml4

, (12)

and the expressions of χr and Cp as follows:

χr = αe31hpbφ
′
r (x)x=l, (13)
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Cp =
αε33bl

2hp
. (14)

The damping ratio ζr for λr can be determined, according
to the formulas of the damping ratio in Erturk and Inman
(2011), by

ζr =
ζjλ

2
j

(
λ4
i − λ

4
r

)
+ ζiλ

2
i

(
λ4
r − λ

4
j

)
(
λ4
i − λ

4
j

)
λ2
r

. (15)

It should be noted that the subscripts i, j , and r can be
chosen independently in Eq. (15), provided that neither i nor
j is equal to zero.

2.2 Closed-form solution of modeling under a periodical
displacement excitation

When a human being is walking or jogging, the motions of
their back and upper arm are periodic, and the experiment re-
sults of Stansfield et al. (2001) indicate that the frequencies
of both parts of the human body are the same. In this pa-
per, for simplification, we suppose that both transverse rheo-
nomic constraints, i.e., both displacement functions of exci-
tation Ph(t) and h= 1,2 are periodic functions with the same
frequency but different amplitude, so they can be expressed
as

P1(t)= f1e
I$t (16a)

P2(t)= f2e
I$t . (16b)

Then the form of the rth modal coordinates can be written as

qr (t)=HreI$t . (17)

Similarly, the ith Lagrange multiplier can be written as

κi(t)= κieI$t , (18)

and the output voltage of the energy harvester is in the form
of

v(t)= veI$t . (19)

Substituting Eqs. (16) to (19) into Eq. (11), we get

−$ 2Hre
I$t
+ 2I$ζrωrHreI$t

+ω2
rHre

I$t
−χrve

I$t

= κ1
φr (a1l)
m

eI$t + κ2
φr (a2l)
m

eI$t

∞∑
r=1

φr (a1l)HreI$t − f1e
I$t
= 0

∞∑
r=1

φr (a2l)HreI$t − f2e
I$t
= 0(

I$Cp +
1
R

)
veI$t + I$

∞∑
r=1

χrHre
I$t
= 0

{r = 1, . . .,∞}

. (20)

The rth order modal equation in Eq. (20) yields(
ω2
r −$

2
+ I$2ζrωr

)
Hr

=

(
κ1
φr (a1l)
m
+ κ2

φr (a2l)
m
+χrv

)
. (21)

Let 0r = (ω2
r −$

2
+ I$2ζrωr )−1; from Eq. (21), the

modal coordinate can be written as

Hr = 0r (κ1
φr (a1l)
m
+ κ2

φr (a2l)
m
+χrv). (22)

And from Eq. (17), we have

qr (t)= 0r (κ1
φr (a1l)
m
+ κ2

φr (a2l)
m
+χrv)eI$t . (23)

Substituting Eq. (23) into the algebraic equations in
Eq. (20), we get
∞∑
r=1
φr (a1l)0r

(
κ1
φr (a1l)
m
+ κ2

φr (a2l)
m
+χrv

)
eI$t

− f1e
I$t
= 0

∞∑
r=1
φr (a2l)0r

(
κ1
φr (a1l)
m
+ κ2

φr (a2l)
m
+χrv

)
eI$t

− f2e
I$t
= 0. (24)

From Eq. (24), it can be seen that the coefficients of eI$t

in Eq. (24) should satisfy the following equations:

κ1

∞∑
r=1

0r
φr (a1l)2

m
+ κ2

∞∑
r=1

0r
φr (a1l)φr (a2l)

m

+

∞∑
r=1

φr (a1l)0rχrv = f1

κ1

∞∑
r=1

0r
φr (a1l)φr (a2l)

m
+ κ2

∞∑
r=1

0r
φr (a2l)2

m

+

∞∑
r=1

φr (a2l)0rχrv = f2. (25)

Substituting Eq. (23) into the electronic circuit equation in
Eq. (20), we have(
I$Cp +

1
R
+ I$

∞∑
r=1

χ2
r 0r

)
v

+ I$κ1

∞∑
r=1

χr0r
φr (a1l)
m

+ I$κ2

∞∑
r=1

χr0r
φr (a2l)
m
= 0. (26)

Let d = (I$Cp + 1
R
+ I$

∞∑
r=1

χ2
r 0r )

−1, then the formula

to calculate the output voltage is

v =−dI$

(
κ1

∞∑
r=1

χr0r
φr (a1l)
m
+ κ2

∞∑
r=1

χr0r
φr (a2l)
m

)
. (27)
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Substituting Eq. (27) into Eq. (24), we obtain

κ1ξ11+ κ2ξ12 = f1
κ1ξ21+ κ2ξ22 = f2,

(28)

where

ξij =

∞∑
r=1

0rφr (ai l)

[
φr (aj l)
m
−χrdI$

∞∑
i=1

χi0i
φi (aj l)
m

]
, (29)

we have

κ1 =
f2ξ12− f1ξ22

ξ12ξ21− ξ11ξ22
(30a)

κ2 =
f1ξ21− f2ξ11

ξ12ξ21− ξ11ξ22
. (30b)

Substituting Eq. (30) into Eq. (27), we get the formula to
calculate the amplitude of the output voltage as follows:

v =−dI$
f2ξ12− f1ξ22

ξ12ξ21− ξ12ξ22

∞∑
r=1

χr0r
φr (a1l)
m

− dI$
f1ξ21− f2ξ11

ξ12ξ21− ξ11ξ22

∞∑
r=1

χr0r
φr (a2l)
m

. (31)

Furthermore, the output power of the harvester can be ex-
pressed as

Po(t)=
(veI$t )2

R
. (32)

Next, we suppose that both transverse rheonomic con-
straints are quite distinct in amplitude and phase. Let ε =
f2/f1 be the ratio of the amplitudes and β ∈ [0,2π ) be the
phase difference, respectively. Then the two transverse rheo-
nomic constraints can be written as

P2(t)= εeβIP1(t). (33)

The power frequency response function (FRF, Erturk and In-
man, 2009) of the harvester is

P ′o=
Po(t)

(−f1$ 2eI$t )2 (f1 6= 0)

P ′o=
Po(t)(

−f2$ 2eI$t
)2 (f1 = 0).

(34)

3 The performance of the harvester and discussions

In this section, we use the formulas derived in the last sec-
tion to analyze the influence of the main parameters of the
harvester, ε and β, as expressed in Eq. (33), on the harvest-
ing characteristics. In the numerical calculation, we select the
first eight modal functions.

To analyze the performance of the harvester at low fre-
quencies, we expand Eq. (31) into a power series at $ =0;
then, we have

v =$If1R
(
−1+ eIβε

)
·
χ2λ

4
3λ

4
4 [φ2(0)−φ2 (a2l)]+ λ4

2λ
4
4χ3 [φ3(0)−φ3 (a2l)]+ . . .

λ4
3λ

4
4[φ2(0)−φ2 (a2l)]2

+ λ4
2λ

4
4[φ3(0)−φ3 (a2l)]2

+ . . .

+$ 2f1R
(
−1+ eIβε

)
·

l4mRχ2
3λ

4
2λ

4
3[φ2(0)−φ2 (a2l)]2

+ . . .

YIλ4
2λ

4
3
(
λ4

3[φ2(0)−φ2 (a2l)]2
+ λ4

2[φ3(0)−φ3 (a2l)]2)2
+ . . .

+$ 3If1R

·

< l4mYIλ6
2λ

2
3[φ3(0)−φ3 (a2l)]2

·

{
lmχ2λ

4
2λ

4
3[

eiβεφ3(0)−φ3 (a2l)
]

(φ2 (a2l)φ3(0)−φ2(0)φ3 (a2l))
}
>

YI2λ6
2λ

6
3λ

8
3[φ2(0)−φ2 (a2l)]4

+ . . .

+ . . .+$ 3
(
−1+ eIβε

)
(. . .)+O

(
$ 4

)
. (35)

From Eq. (35), it can be found that the output voltage v ap-
proaches zero as the frequency $ approaches zero. But the
decreasing rate is changed with the variation of the param-
eters of ε and β. If the two excitations are different in the
phase β 6= 0 or β = 0 but ε 6= 1, then

(
−1+ eIβε

)
6= 0. The

term O($ ) dominates the changing rate of the output volt-
age, v, of the energy harvester; the term O($ 2) dominates
the changing rate of the output power, Po(t), in Eq. (32);
and further, the term O($−2) dominates the changing rate
of power FRF , P ′o, in Eq. (34), where “−” means that the
value of power FRF will increase as the frequency $ ap-
proaches zero.

If the two excitations are the same, i.e., both β = 0 and
ε = 1, the coefficients of $ and $ 2 in Eq. (35) are equal to
zero, i.e.,

(
−1+ eIβε

)
= 0, while the coefficient of$ 3 is not

equal to zero. Then the term O($ 3) dominates the chang-
ing rate of the output voltage v of the energy harvester, the
term O($ 6) dominates the changing rate of output power
Po(t), and the term O($+2) dominates the changing rate of
power FRF P ′o, where “+” means that the value of power
FRF will decrease as frequency $ approaches zero. There-
fore, the decreasing rate of the power FRF of the harvester
subjected to two different excitations is $ 4 times faster than
that of the harvester subjected to the two same excitations.
In the latter case, the beam vibrates under the excitation of
its inertial force, similar to the case of the normal piezoelec-
tric energy harvester (Erturk and Inman, 2011), in which the
metallic beam is fixed to the vibrator on one point, and its
output voltage can be expanded into power series as

vnormal =−IRf1

 ∞∑
i=1

l4m2χi

YIλ4
i

l∫
0

φi(x)dx

$ 3

+O($ 4). (36)
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Figure 4.
∣∣∣Po(t)/e2I$t

∣∣∣×$−n(n ∈ N) of the three kinds of piezo-
electric energy harvesters.

In Eqs. (35) and (36), the lowest power of $ is 1 and 3,
respectively. As a whole, the characteristic of the harvester
subjected to two different excitations is quite different from
that of the normal piezoelectric energy harvester or that of the
harvester subjected to the two same excitations. To present
intuitive comparisons in the characteristic of the harvesters,
we provide some results of a numerical analysis in which
the parameters of the beam, piezoelectric material, and elec-
tronic circuit are the same as that in the classical experi-
ment of an energy harvester with PZT-5A (Erturk and Inman,
2011).

Figure 4a presents the output power
∣∣Po(t)/e2I$t

∣∣×$−n
n= 1,2,3 generated by the harvester subjected to two dif-
ferent excitations. In this figure, as n= 1,3, the value of∣∣Po(t)/e2I$t

∣∣×$−n decreases or increases, respectively, as
the frequency $ approaches zero. However, as n= 2, the
value of

∣∣Po(t)/e2I$t
∣∣×$−2 is a constant concerning the

variations of frequency $ . It can be inferred that the value
of
∣∣Po(t)/e2I$t

∣∣ is equivalent infinitesimal to $ 2. Similarly,
Fig. 4b and c show that

∣∣Po(t)/e2I$t
∣∣ is equivalent infinites-

imal to $ 6 for the harvester subjected to the two same exci-
tations and the normal harvester, respectively. It is confirmed
that for the three kinds of harvesters, the output powers ap-
proach zero as the frequency $ approaches zero, but the de-
creasing rate of the harvester subjected to the two different
excitations is slower $ 4 times than that of the normal har-
vester and the harvester subjected to the two same excita-
tions. It means that at the low frequency, the output power of
the harvester subjected to the two different excitations is cer-
tainly higher than that of the two other harvesters. In other
words, as the frequency $ approaches zero, the harvester
subjected to the two different excitations performs better than
the two other harvesters.

Undoubtedly, such good performance is influenced by the
parameters of the system.

Figure 5a shows the variations of power FRF P ′o concern-
ing the phase difference β and the frequency $ of the exci-
tations as parameters R = 105�, a2 = 0.5, and ε = 1. From
this figure, it can be seen that the variation trends of the
power FRF for the increasing frequency are variant when β
is changed. Figure 5b shows the curves of the power FRF as
β = 0, β = π/2, and β = π , along with the curve of the nor-
mal piezoelectric energy harvester reproduced from research
work by Erturk and Inman (2011).

In Fig. 5b, the shapes of the curves for the harvesters sub-
jected to the two different excitations are not the same as
that for the normal piezoelectric energy harvesters and those
with the two same excitations. For harvesters subjected to
two different excitations such as β = π/2 or β = π , with
the frequency increasing from 0 to 3000 Hz, the curve firstly
tends downward, then upward to a local maximum around
1400 Hz, and after that downward continually. However, the
curve for the normal piezoelectric energy harvester tends
firstly upward, reaches the global maximum around 500Hz,
then downward continually. The curve for the harvester sub-
jected to the two same excitations tends firstly upward to
one of its local maximums, then downward followed by up-
ward to reach another local maximum, and afterwards it goes
downward continually.

We are interested in the behaviors of the harvesters at low
frequency. As shown in Fig. 5b, in the low-frequency interval
(0–30 Hz), for the harvester subjected to two different exci-
tations, i.e., β = π/2 or β = π , the values of the power FRF
are monotonically decreasing with the frequency increase of
excitation. In other words, the lower the frequency of exci-
tation, the better the performance of the harvester. This in-
deed is an unusual characteristic of the piezoelectric energy
harvester. And the minimum value is 1.4× 10−6 (W g−2) at
30 Hz. While in the same interval, the values of the power
FRF for both the normal piezoelectric energy harvester and
the harvester subjected to the two same excitations are mono-
tonically increasing. And the former is larger than the latter;
at a frequency of 30 Hz, the former is 5.8× 10−11 (W g−2),
much lower than that of the harvester subjected to the two
different excitations.

Now we turn to discuss the effects of the parameter ε on
power FRF at a specific low frequency. We set the frequency
to 2 Hz. Figure 6 shows the variation of the power FRF for
a variation of ε for some phase difference β as R = 105�,
a2 = 0.5, and$ = 2 Hz. It can be seen that for the phase dif-
ferences β > 0.4π , the values of the power FRF will mono-
tonically increase with the increase of ε, while for β < 0.4π ,
with the increase of ε, the values of the power FRF firstly
decrease and then increase. The curve for β = 0 is the lowest
one, and the minimum value, 1.12× 10−14 (W g−2), occurs
when ε = 1, i.e., the harvester subjected to the two same ex-
citations.
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Figure 5. Variation of power FRF for frequency and phase difference (R = 105�, a2 = 0.5, and ε = 1).

Figure 6. Power FRF with respect to the variation of ε (R = 105�,
a2 =0.5, $ = 2 Hz).

It must be noted that “power FRF” is not the actual power.
The analysis of “power FRF” shows the transformation abil-
ity of the harvester and the classic harvester to the excitation
motion. We will use an example to show how this difference
in transformation ability is reflected in the actual power.

To compare the performance of the harvester subjected to
the two different excitations with that of a normal piezoelec-
tric energy harvester, we set f1 = 0.01l, ε = 1, β = 0.3π ,
and a2 = 0.5. The output power Po(t) of the harvester to-
gether with that of the normal piezoelectric energy harvester
are depicted in Fig. 7, and four frequencies at which the com-
parisons are made are listed in Table 1. It should be pointed
out that resistances corresponding to the maximum output
power are not the same according to Eq. (32).

As shown in Table 1, the output power of the harvester
subjected to the two excitations as ε = 1 and β = 0.3π is
much higher than that of the normal piezoelectric energy
harvester: at 30 Hz, the former is ×106 times higher than
the latter; at 10 Hz, it is 8× 106 times; and at 1 Hz, it is
5× 1012 times. In short, at lower frequencies, the energy
harvester subjected to two different excitations will generate
more times power than a normal harvester.

Figure 7. The comparison under low-frequency excitation (a2 =
0.5, ε = 1, and β = 0.3π ).

Table 1. Comparisons of maximum output power at four frequen-
cies.

Frequency With two excitations Normal
(Hz) (a2 = 0.5, ε = 1, β = 0.3π )

30 2.98 mW 2.79× 10−5 mW
10 0.99 mW 1.14× 10−7 mW
5 0.50 mW 2.64× 10−10 mW
1 0.099 mW 1.69× 10−14 mW

Finally, we discuss the influence of the parameter a2 on the
performance of the harvester subjected to the two different
excitations. We set β = {0,0.2π,0.4π,0.6π}, ε = {0.5,1},
R = 105�, and $ = 2 Hz. With Eq. (34), the power FRF
P ′o for the variation of parameters a2 are shown in Fig. 8.
It can be seen from Fig. 8a that the trends of all the curves
for β 6= 0 are almost the same: a smaller a2, in general, re-
sults in greater output power. But there is an exception: the
curve for the case when β = 0 and ε = 1, i.e., the harvester
subjected to the two same excitations, not only for its trend
but for the value of the output power which is lower. How-
ever, in Fig. 8b, for β = 0, these distinctions do not exist.
It also indicates that differences between the two excitations
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Figure 8. Power FRF (R = 105� and $ = 2 Hz).

are crucial for obtaining a better performance of the energy
harvester with two excitations.

4 Conclusion

For harvesting energy from human body motion, it is pro-
posed in this paper to connect two parts of the human body
with different transversal reciprocating excitations using a
metallic beam attached with piezoelectric ceramics layers to
form the energy harvester. In this paper, we emphasize the
analysis of the characteristics of the energy harvester sub-
jected to two different excitations.

Employing the Hamiltonian principle, the governing equa-
tion of the piezoelectric energy harvester is established. As-
suming that both the two excitations are periodic functions,
the closed-form solutions of the dynamics equation are ob-
tained. Utilizing the closed-form solutions, the influences
of the differences in the amplitude and phase difference of
the excitations on the performance of the harvester are ana-
lyzed together with numerical examples.

The results show that as long as there exists some differ-
ences between the two excitations, either in amplitude and/or
in phase difference, the energy harvester can generate more
output power at low frequencies, and the larger the differ-
ences are, the more the output power will be generated. Con-
trasting the normal piezoelectric energy harvester and the
harvester subjected to two of the same excitations, the har-
vester subjected to two different excitations exhibits a char-
acteristic: the output power increases with the decrease of
frequency. This unusual feature enables the proposed har-
vester to be quite suitable to harvest energy from human body
motions.

In this paper, the analysis is based on a mathematical
model. In future research, a prototype device will be built
to validate the results experimentally. Additionally, the same
kind of harvester subjected to more than two excitations with
different excitations will be studied.

Appendix A: Nomenclature

l length of beam
a1, a2 position parameters of vibrator 1 and

vibrator 2
t time
Ph(t) the hth displacement functions
P̃h(t) the hth constraint equation
w(x, t) transverse displacement of the beam
φr (x) the rth order modal function of the beam
qr (t) the rth modal coordinate
I

√
−1

ρs density of the metal layer
ρp density of the piezoelectric layer
hs thickness of the metal layer
hp thickness of the piezoelectric layers
b width of the beam
c11 elastic constant of the piezoelectric layers
E elastic modulus of the metal layer
m the mass per unit length of the beam
YI bending stiffness
Ip, Is , Ib cross-sectional area moment of inertia of

the metal layer, inertia of piezoelectric
layers, the whole beam

ε33 dielectric constant
e31 piezoelectric constant
Qs virtual work of air damping and

material damping
cs average material damping coefficient
ca air damping coefficient
QR virtual work of the load resistance
v(t) voltage
κ(t) Lagrange multiplier
ζr rth order damping ratio
ωr natural frequency of the beam
Po(t) output power
P ′o power FRF
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fr amplitude of the rth vibrators
$ frequency of the vibrators
χr electromechanical coupling coefficient
Cp capacitance
Hr amplitude of rth modal coordinates
κi amplitude of ith Lagrange multipliers
0r grouped term 1
ξij grouped term 2
β phase difference

Appendix B: Derivation of Eq. (11)

Let

L
(
w′′, ẇ,v,κ1,κ2

)
=
m

2
ẇ2
−

YI
2
w′′

2
+
α2ε33bv

2

4hp

−αe31hpcbvw
′′
+ κ1p̃1(t)wδi (x− a1l)

+ κ2p̃2(t)wδi (x− a2l) , (B1)

where δi is the Dirac Dirichlet function. Using Eq. (B1) in
Eq. (10), it becomes

t∫
0

l∫
0

δLdxdt +

t∫
0

Qsdt +

t∫
0

QRdt = 0. (B2)

Integrate Eq. (B2) by parts, and it becomes

t∫
0

l∫
0

δLdxdt +

t∫
0

Qsdt +

t∫
0

QRdt

=

t∫
0

l∫
0

[( d2

dx2
∂L

∂w′′
−

d
dt
∂L

˙∂w
− csIbẇ

′′′′
− caẇ

)
δw

+

(
∂L

∂v

)
δv+

(
∂L

∂κ1

)
δκ1+

(
∂L

∂κ2

)
δκ2

]
dxdt. (B3)

In Eq. (B3), the coefficients of δw, δv, δκ1, and δκ2
equal 0. Notice that v = v [H (x)−H (x− l)], whereH is the
Heaviside function. Using Eq. (B1) in Eq. (B3), we get

mẇ′′+YIw′′′′+ csIbẇ
′′′′
+ caẇ

−χrv
[
δi′(x)− δi′(x− l)

]
=

2∑
i=1

κi(t) (w(x, t)δi (x− ai l)) , (B4)

Cpv(t)+
v(t)
R
+ e31

hp+hs

2
b

l∫
0

ẇ′′dx = 0

{r = 1, . . .,∞} , (B5)

p̃1(t)= p̃2(t)= 0. (B6)

Use Eq. (2) in Eqs. (B4)–(B6) and multiply φr (x) at both
sides of the equations. Integrate equations from 0 to l, and
using

∫ l
0mφs(x)φr (x)= δrs , one can obtain Eq. (11).
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