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Abstract. The stochastic stability of a gyro-pendulum system parametrically excited by a real noise is investi-
gated by the moment Lyapunov exponent in the paper. Using the spherical polar and non-singular linear stochas-
tic transformations and combining these with Khasminskii’s method, the diffusion process and the eigenvalue
problem of the moment Lyapunov exponent are obtained. Then, applying the perturbation method and Fourier
cosine series expansion, we derive an infinite-order matrix whose leading eigenvalue is the second-order ex-
pansion g2(p) of the moment Lyapunov exponent. Thus, an infinite sequence for g2(p) is constructed, and its
convergence is numerically verified. Finally, the influences of the system and noise parameters on stochastic
stability are given such that the stochastic stability is strengthened with the increased drift coefficient and the dif-
fusion coefficient has the opposite effect; among the system parameters, only the increase in k andA0 strengthens
moment stability.

1 Introduction

There are many definitions of stochastic stability, among
which the pth moment stability has attracted a lot of atten-
tion. The stability is usually described by the moment Lya-
punov exponent, which was first presented in 1984 (Arnold,
1984). Then the moment Lyapunov exponent of the linear
systems driven by the real and white noises was given, and
the stochastic moment stability of linear system was com-
pletely resolved (Arnold et al., 1986a).

However, it is extremely difficult to obtain the analytic ex-
pression of the moment Lyapunov exponent for an actual
dynamical system according to Arnold’s results due to the
complexity of the noise and system. So far, almost all the
results about moment Lyapunov exponents were published
through the approximate analytical methods. The asymptotic
expansions of the moment Lyapunov exponents on a weak
noise and a small value of p were first applied to analyse the
stability of a two-dimensional stochastic system (Arnold et
al., 1997). In a similar manner, Namachchivaya et al. (1996)
studied the moment Lyapunov exponent for a system with
two coupled oscillators excited by a real noise. For a lin-

ear conservative system with a white noise, Khasminskii and
Moshchuk (1998) proved that both the moment Lyapunov
exponent with the finite p and the stability index can only be
regarded as the asymptotic expansions of small noise inten-
sity. Referring to the results in a previous paper, for the same
system and random excitation as Arnold et al. (1997), the
asymptotic expansion of the finite pth moment Lyapunov ex-
ponent was also presented (Namachchivaya, 2001). For sev-
eral two-dimensional systems with the real or bounded noise
excitations, Xie (2001a, b, 2003) researched the weak noise
expansions of the finite pth moment Lyapunov exponent, the
maximal Lyapunov exponent, and the stability index through
a similar procedure. The stability properties of a Van der Pol–
Duffing oscillator excited by a real noise were investigated
(Liu and Liew, 2005). Due to the complexity of approximate
analytical methods, Higham et al. (2007) gave the numeri-
cal simulation of the moment Lyapunov exponent in stochas-
tic differential equations. Then, the moment Lyapunov ex-
ponent and stochastic stability of a double-beam system un-
der the compressive axial loading and moving narrow bands
were discussed (Kozic et al., 2010). S. H. Li and X. B. Liu
(2012, 2013) studied the moment Lyapunov exponent for a
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three-dimensional stochastic system based on the perturba-
tion method. Hu et al. (2012, 2017) and X. Li and X. B.
Liu (2013, 2014) obtained the moment Lyapunov exponent
for a binary airfoil system under coloured noise excitation,
which indicates stochastic dynamical theory has extended to
the aviation field.

Gyro-pendulums are usually used to stabilise the firing of
guns on warships or tanks or to navigate cars and aircraft,
and the stability of the gyro-pendulum is a classical topic
in dynamics and control, which made some researchers in-
terested in it. The mean square and almost sure stability of
a gyro-pendulum under random vertical support and white-
noise excitation were researched through the stochastic aver-
aging method (Namachchivaya, 1987; Asokanthan and Ari-
aratnam, 2000). Recently, the stochastic stability of a planner
gyro-pendulum system excited by white noises has been pre-
sented (Li and Xu, 2019). However, as we know, the ideal
white noise has infinite bandwidth and is difficult to achieve
in practice. Therefore, we choose a bound noise to discuss
the stochastic stability of a gyro-pendulum system paramet-
rically driven by the bounded noise in this paper. In Sect. 2,
the mathematical model is given. Applying a perturbation
method, the eigenvalue problem of the moment Lyapunov
exponent is obtained in Sect. 3 and solved via a Fourier co-
sine series expansion in Sect. 4. The numerical results are
given in Sect. 5. In Sect. 6, the conclusions are presented.

2 Gyro-pendulum system excited by a bound noise

A typical gyro-pendulum system in the vertical configuration
shown in Fig. 1 is considered, and its motion equations with
a stochastic excitation f (t) are written as (Namachchivaya,
1987)

B0θ̈1+Cnθ̇2+
[
k+ k1f (t)

]
θ1 = 0,

A0θ̈2−Cnθ̇1+
[
k+ k1f (t)

]
θ2 = 0,

(1)

where θ1 and θ2 are the motion of the outer gimbal about
an inertial co-ordinate system OXYZ and the motion of the
inner frame with respect to the y axis of the outer one, re-
spectively. A0 = A+B

′, B0 = A+A
′
+A′′, A, and C are the

inertial moment of the gyro about the rotation axis and any
axis perpendicular to Oz. A′ and B ′ are the inertial moments
of the inner gimbal about the rotor principal axes Ox and Oy,
respectively, and A′′ represents the inertial moment of the
outer frame about the axis OX. k =mgl denotes the pendu-
lous stiffness, l is the pendulosity of the gyroscope, and n is
the spin speed. k1 is the stiffness of the excitation f (t).

For the noise excitation, we introduce a bound noise
cos[ξ (t)] because of its rather universal sense in engineering
(Li and Wu, 2015; Li and Liu, 2012). Meanwhile, consider-

Figure 1. A gyro-pendulum system in vertical configuration.

ing the system, damping the system Eq. (1) is rewritten as

θ̈1+ω
2
1θ1+ ε

2 (a11θ̇1+ a12θ̇2
)
+ ε (b11θ1+ b12θ2)cos[ξ (t)] = 0,

θ̈2+ω
2
2θ2+ ε

2 (a21θ̇1+ a22θ̇2
)
+ ε (b21θ1+ b22θ2)cos[ξ (t)] = 0,

dξ (t)= µdt + σ ◦ dW (t),
(2)

where 0< ε� 1 is a very small number. ω2
1 = k

/
B0 ,

ω2
2 = k

/
A0 , a11 = d2

/
B0 , a12 = Cn

/
B0 , a21 =−Cn

/
A0 ,

a22 = d1
/
A0 , d1, and d2 are damping coefficients. b11 =

b12 = k1
/
B0 ; b21 = b22 = k1

/
A0 . The symbol “◦” repre-

sents that Eq. (2) is a Stratonovich stochastic differential
equation, µ is drift coefficient, σ is diffusion coefficient, and
both are any real constants; W (t) is a unit Wiener process.

Letting θ1 = x1, θ̇1 = ω1x2, θ2 = x3, and θ̇2 = ω2x4,
Eq. (2) is changed into a vector-matrix equation:{

ẋ =
(
A0+ ε

2A1
)
x+ ε cos(ξ (t))Bx

dξ (t)= µdt + σ ◦ dW (t).
(3)

where

A0 =


0 ω1 0 0
−ω1 0 0 0

0 0 0 ω2
0 0 −ω2 0

 ,

A1 =


0 0 0 0
0 −a11 0 −

ω2a12
ω1

0 0 0 0
0 −

ω1a21
ω2

0 −a22

 ,

B=


0 0 0 0
−
b11
ω1

0 −
b12
ω1

0
0 0 0 0
−
b21
ω2

0 −
b22
ω2

0

 .
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Through applying the spherical polar transformation

x1 = ρ cosϕ1 cosθ,x2 =−ρ sinϕ1 cosθ,

x3 =−ρ cosϕ2 sinθ,x4 =−ρ sinϕ2 sinθ,
P = ‖X‖p = ρp,ϕ1,ϕ2 ∈ [0, 2π ] ,θ ∈

[
−π

/
2 ,π

/
2
]
,

and substituting them into Eq. (3), the equations for norm
process P and phase processes θ , φ1, and φ2 can be obtained
according to Itô’s lemma:

Ṗ = εpρ1P cos[ξ (t)] + ε2pρ2P,

θ̇ = εθ1 cos[ξ (t)] + ε2θ2,

ϕ̇1 = ω1+ εϕ11 cos[ξ (t)] + ε2ϕ12,

ϕ̇2 = ω2+ εϕ21 cos[ξ (t)] + ε2ϕ22,

dξ (t)= µdt + σdW (t),

(4)

where

ρ1 =
1

2ω1

[
b11 sin(2ϕ1)cos2(θ )+ b12 sin(ϕ1)cos(ϕ2) sin(2θ )

]
,

+
1

2ω2

[
b21 sin(ϕ2)cos(ϕ1) sin(2θ )+ b22 sin(2ϕ2)sin2(θ )

]
,

ρ2 =−
[
a11sin2(ϕ1)cos2(θ )+ a22sin2(ϕ2)sin2(θ )

]
,

−
1
2

(
ω2a12

ω1
+
ω1a21

ω2

)
sin(ϕ1)cos(ϕ2) sin(2θ ),

θ1 =
1
4

[
b22

ω2
sin(2ϕ2)−

b11

ω1
sin(2ϕ1)

]
sin(2θ ),

+
b21

ω2
sin(ϕ2)cos(ϕ1)cos2(θ )−

b12

ω1
sin(ϕ1)cos(ϕ2)sin2(θ ),

θ2 =
1
2

[
a11sin2(ϕ1)− a22sin2(ϕ2)

]
sin(2θ ),

+

[
ω2a12

ω1
sin2(θ )−

ω1a21

ω2
cos2(θ )

]
sin(ϕ1) sin(ϕ2),

ϕ11 =
1
ω1

[
b11cos2(ϕ1)+ b12 cos(ϕ1)cos(ϕ2) tan(θ )

]
,

ϕ12 =−

[
a11

2
sin(2ϕ1)+

ω2a12

ω1
sin(ϕ2)cos(ϕ1) tan(θ )

]
,

ϕ21 =
1
ω2

[
b21 cos(ϕ1)cos(ϕ2)cot(θ )+ b22cos2(ϕ2)

]
,

ϕ22 =−

[
a11

2
sin(2ϕ2)+

ω1a21

ω2
sin(ϕ1)cos(ϕ2)cot(θ )

]
.

For the norm process P , a non-singular linear stochastic
transformation is introduced, i.e.

S = T (θ,ϕ1,ϕ2,ξ )P, P = T −1 (θ,ϕ1,ϕ2,ξ )S,

0≤ θ ≤ π/2, 0≤ ϕ1,ϕ2,ξ ≤ 2π, (5)

where the function T (θ,ϕ1,ϕ2,ξ ) is a scalar function of the
phase processes (θ,ϕ1,ϕ2,ξ ). Thus, Itô’s stochastic equation
for the new norm process S is derived by Itô’s lemma:

dS = P
[
µ
∂

∂ξ
+

1
2
σ 2 ∂

2

∂ξ2 +ω1
∂

∂ϕ1
+ω2

∂

∂ϕ2

+ ε

(
pρ1+ θ1

∂

∂θ
+ϕ11

∂

∂ϕ1
+ϕ21

∂

∂ϕ2

)
cos(ξ )

+ ε2
(
pρ2+ θ2

∂

∂θ
+ϕ12

∂

∂ϕ1
+ϕ22

∂

∂ϕ2

)]
T dt

+ σ
∂

∂ξ
T PdW. (6)

Since T (θ,ϕ1,ϕ2,ξ ) is reversible and bounded, both P and
S have the same stability. Therefore, a selection is made such
that the drift term of Eq. (6) is independent of the phase pro-
cesses θ , ϕ1, ϕ2 and the noise process ξ ; i.e.

dS = g(p)Sdt + σ
∂T

∂ξ
T −1 (θ,ϕ,ξ )SdW. (7)

Comparing Eqs. (6) and (7), a result yields that
T (θ,ϕ1,ϕ2,ξ ) is described by the following equation:

g(p)T =
[
µ
∂

∂ξ
+

1
2
σ 2 ∂

2

∂ξ2 +ω1
∂

∂ϕ1
+ω2

∂

∂ϕ2

+ ε

(
pρ1+ θ1

∂

∂θ
+ϕ11

∂

∂ϕ1
+ϕ21

∂

∂ϕ2

)
cos(ξ )

+ ε2
(
pρ2+ θ2

∂

∂θ
+ϕ12

∂

∂ϕ1
+ϕ22

∂

∂ϕ2

)]
T . (8)

The above equation can be written as

Lε(p)T (θ,ϕ1,ϕ2,ξ )= g(p)T (θ,ϕ1,ϕ2,ξ ) , (9)

where

Lε(p)= L0(p)+ εL1(p)+ ε2L2(p),

L0(p)= µ ∂
∂ξ
+
σ 2

2
∂2

∂ξ2 +ω1
∂
∂ϕ1
+ω2

∂
∂ϕ2
,

L1(p)=
[
θ1
∂

∂θ
+ϕ11

∂

∂ϕ1
+ϕ21

∂

∂ϕ2
+pρ1

]
cos(ξ ),

L2(p)= θ2
∂

∂θ
+ϕ12

∂

∂ϕ1
+ϕ22

∂

∂ϕ2
+pρ2,

(10)

and its corresponding adjoint operator is

L∗ε (p)= L∗0(p)+ εL∗1(p)+ ε2L∗2(p),
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L∗0(p)=−µ ∂
∂ξ
+
σ 2

2
∂2

∂ξ2 −ω1
∂
∂ϕ1
−ω2

∂
∂ϕ2
,

L∗1(p)=−
[
∂

∂θ
θ1+

∂

∂ϕ1
ϕ11+

∂

∂ϕ2
ϕ21+pρ1

]
cos(ξ ),

L∗2(p)=−
[
∂

∂θ
θ2+

∂

∂ϕ1
ϕ12+

∂

∂ϕ2
ϕ22+pρ2

]
.

(11)

It can be seen from Eqs. (8)–(10) that an eigenvalue prob-
lem with the second-order differential operator is defined,
where an eigenvalue is just the pth moment Lyapunov ex-
ponent g(p) of the system Eq. (4) and T (θ,ϕ1,ϕ2,ξ ) is its
corresponding eigenfunction.

Furthermore, according to the conclusions presented
(Arnold et al., 1986b), g(p) is an isolated simple eigen-
value of Lε(p); T (θ,ϕ1,ϕ2,ξ ) is its non-negative eigen-
function and satisfies ‖T (θ,ϕ1,ϕ2,ξ )‖ = 1. For its ad-
joint operator L∗ε (p), T ∗ (θ,ϕ1,ϕ2,ξ ) is the unique eigen-
function corresponding to g(p) with the property of
〈T (θ,ϕ1,ϕ2,ξ ) ,T ∗ (θ,ϕ1,ϕ2,ξ )〉 = 1; i.e.

Lε(p)T (θ,ϕ1,ϕ2,ξ )= g(p)T (θ,ϕ1,ϕ2,ξ ) ,

L∗ε (p)T ∗ (θ,ϕ1,ϕ2,ξ )= g(p)T ∗ (θ,ϕ1,ϕ2,ξ ) ,〈
T (θ,ϕ1,ϕ2,ξ ) ,T ∗ (θ,ϕ1,ϕ2,ξ )

〉
= 1, ∀p ∈ R. (12)

3 Asymptotic analysis of the moment Lyapunov
exponent

Generally, by solving Eq. (12), the moment Lyapunov ex-
ponent can be obtained. However, it is impossible so far
since the second-order operators are so complicated and
T (θ,ϕ1,ϕ2,ξ ) is a quaternion function. Therefore, the per-
turbation method is applied, the asymptotic expressions of
g(p) and T (θ,ϕ1,ϕ2,ξ ) about ε are given in advance; i.e.

g(p) = g0(p)+ εg1(p)+ ε2g2(p)+ . . .+ εngn(p)

+ . . .T (θ,ϕ1,ϕ2,ξ )= T0 (θ,ϕ1,ϕ2,ξ )

+ εT1 (θ,ϕ1,ϕ2,ξ )+ ε2T2 (θ,ϕ1,ϕ2,ξ )+ . . .

+ εnTn (θ,ϕ1,ϕ2,ξ )+ . . .. (13)

Substituting Eq. (13) into Eq. (12) and equating the terms of
the equal powers of ε, the following recursion equations are
obtained:

ε0 L0(p)T0 (θ,ϕ1,ϕ2,ξ )= g0(p)T0 (θ,ϕ1,ϕ2,ξ ) ,

ε1 L0(p)T1 (θ,ϕ1,ϕ2,ξ )+L1(p)T0 (θ,ϕ1,ϕ2,ξ )
= g0(p)T1 (θ,ϕ1,ϕ2,ξ )+ g1(p)T0 (θ,ϕ1,ϕ2,ξ ) ,

ε2 L0(p)T2 (θ,ϕ1,ϕ2,ξ )+L1(p)T1(θ,ϕ1,ϕ2,ξ )
+L2(p)T0(θ,ϕ1,ϕ2,ξ )= g0(p)T2(θ,ϕ1,ϕ2,ξ )
+ g1(p)T1(θ,ϕ1,ϕ2,ξ )+ g2(p)T0(θ,ϕ1,ϕ2,ξ )
. . .. (14)

3.1 Solution of zero-order perturbation

According to the first expression of Eq. (14), the zero-order
perturbation equation becomes[
σ 2

2
∂2

∂ξ2 +µ
∂

∂ξ
+ω1

∂

∂ϕ1
+ω2

∂

∂ϕ2

]
T0 = g0(p)T0. (15)

Because of the property of the moment Lyapunov exponent
g(0)= 0, we know from Eq. (12) that g0(0)= 0. Further-
more, since the left-hand side of Eq. (15) does not contain
the variable p, the right side does. Thus, g0(0)= 0 yields
g0(p)= 0; Eq. (15) simplified as[
σ 2

2
∂2

∂ξ2 +µ
∂

∂ξ
+ω1

∂

∂ϕ1
+ω2

∂

∂ϕ2

]
T0 = 0. (16)

In order to make the problem solvable, it is supposed that
θ , ϕ1, ϕ2, and ξ are mutually independent. Thus, the measure
is assumed that T0 (θ,ϕ1,ϕ2,ξ )= F0(θ )81(ϕ1)82(ϕ2)ψ0(ξ ),
and substituting it into Eq. (16), we get

8̇1

81
= c1,

8̇2

82
= c2,

σ 2

2
ψ0(ξ )
ψ0(ξ )

+µ
ψ̇0(ξ )
ψ0(ξ )

=− (c1ω1+ c2ω2) . (17)

Solving the above equation yields 81,2(ϕ)= k1,2e
−
c1,2
ω
ϕ ,

where k1,2 and c1,2 are real constants. Since 81(ϕ1) and
82(ϕ2) are periodic function of ϕ1 and ϕ2, respectively,
c1,2 = 0 is obtained, and 81(ϕ1) and 82(ϕ2) can be chosen
as 1. Hence the differential equation for ψ0(ξ ) becomes

σ 2

2
ψ0(ξ )
ψ0(ξ )

+µ
ψ̇0(ξ )
ψ0(ξ )

= 0. (18)

Solving the above equation, the solution is

ψ0(ξ )= C0+C1 exp
(
−2µ/σ 2

)
. (19)

Since ψ0(ξ ) is bounded and periodic, C1 = 0. So ψ0(ξ ) is a
constant; we let ψ0(ξ )= 1. Therefore, the final expression of
the measure T0 (θ,ϕ1,ϕ2,ξ ) is as follows:

T0 (θ,ϕ1,ϕ2,ξ )= F0(θ ),

θ ∈ [0,π/2],ϕ1,ϕ2 ∈ [0,2π ],ξ ∈ [0,2π ]. (20)

It is just the joint probability density function of the phase
processes (θ,ϕ1,ϕ2,ξ ).

Applying the above same method, the corresponding ad-
joint differential equation of Eq. (15) is written as[
µ
∂

∂ξ
−
σ 2

2
∂2

∂ξ2 +ω1
∂

∂ϕ1
+ω2

∂

∂ϕ2

]
T0 = 0. (21)

Its solution that T ∗0 (θ,ϕ1,ϕ2,ξ ) represents the joint proba-
bility density function of the independent random variables
(θ,ϕ1,ϕ2,ξ ) is obtained:

T ∗0 (θ,ϕ1,ϕ2,ξ )=
1

4π2F
∗

0 (θ ),

θ ∈
[
0,
π

2

]
,ϕ1,ϕ2,ξ ∈ [0,2π ]. (22)
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3.2 Solution of first-order perturbation

From Eq. (14), the differential equation of the first-order per-
turbation is as follows:

L0(p)T1 (θ,ϕ1,ϕ2,ξ )+L1(p)T0 (θ,ϕ1,ϕ2,ξ )

= g0(p)T1 (θ,ϕ1,ϕ2,ξ )+ g1(p)T0 (θ,ϕ1,ϕ2,ξ ) . (23)

Due to g0(p)= 0, Eq. (24) is simplified as

L0(p)T1 (θ,ϕ1,ϕ2,ξ )= g1(p)T0 (θ,ϕ1,ϕ2,ξ )

−L1(p)T0 (θ,ϕ1,ϕ2,ξ ) . (24)

According to Eq. (24), we will seek g1(p) and
T1 (θ,ϕ1,ϕ2,ξ ). The solvability condition of the above
expression is

〈g1(p)T0 (θ,ϕ1,ϕ2,ξ )−L1(p)T0 (θ,ϕ1,ϕ2,ξ ) ,

T ∗0 (θ,ϕ1,ϕ2,ξ )
〉
= 0, (25)

where T ∗0 (θ,ϕ1,ϕ2,ξ ) is given in Eq. (24), and 〈 ·, · 〉 denotes
the inner product that is defined as

〈S1,S2〉 =

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2

∫ π/2

0
dθ
∫ 2π

0
S1 (θ,ϕ1,ϕ2,ξ )

S2 (θ,ϕ1,ϕ2,ξ )dξ.

Solving Eq. (25), the first-order term of the moment Lya-
punov exponent is acquired:

g1(p)=
〈
L1(p)T0 (θ,ϕ1,ϕ2,ξ ) ,T ∗0 (θ,ϕ1,ϕ2,ξ )

〉
; (26)

and it can be seen from Eq. (20) that T0 (θ,ϕ1,ϕ2,ξ )= F0(θ ),
so by a simple calculation, the following expression is de-
rived such that

L1(p)T0 (θ,ϕ1,ϕ2,ξ )= cos(ξ )
[
θ1F
′

0(θ )+pρ1F0(θ )
]
. (27)

And T ∗0 (θ,ϕ1,ϕ2,ξ )= 1
4π2F

∗

0 (θ ), Eq. (27) is rewritten as

g1(p)=
1

4π2

〈
cos(ξ )

[
θ1F
′

0(θ )+pρ1F0(θ )
]
,F ∗0 (θ )

〉
. (28)

Integrating Eq. (28) for ξ from 0 to 2π , we have g1(p)= 0.
Thus, Eq. (23) is simplified as

L0(p)T1 (θ,ϕ1,ϕ2,ξ )=−L1(p)T0 (θ,ϕ1,ϕ2,ξ ) ; (29)

i.e.[
µ
∂

∂ξ
+
σ 2

2
∂2

∂ξ2 +ω1
∂

∂ϕ1
+ω2

∂

∂ϕ2

]
T1 (θ,ϕ1,ϕ2,ξ )

=−cos(ξ )
[
θ1F
′

0(θ )+pρ1F0(θ )
]
. (30)

For the convenience of writing, we let F (θ,ϕ1,ϕ2)=
θ1F
′

0(θ )+pρ1F0(θ ).

In order to obtain the joint measure T1 (θ,ϕ1,ϕ2,ξ ), an
auxiliary time t ′ is introduced in Eq. (30), and it becomes[
∂

∂t ′
+
σ 2

2
∂2

∂ξ2 +µ
∂

∂ξ
+ω1

∂

∂ϕ1
+ω2

∂

∂ϕ2

]
T1
(
θ,ϕ1,ϕ2,ξ, t

′
)

= cos[ξ (t)]F (θ,ϕ1,ϕ2) . (31)

Through the linear transformation t ′ = φ+s, ϕ1 = ω1(φ−s)
and ϕ2 = ω2(φ− s), and the partial derivatives to ϕ1 and ϕ2
on the left side of Eq. (31) are transformed into[
∂

∂s
+
σ 2

2
∂2

∂ξ2 +µ
∂

∂ξ

]
T1(θ,φ,ξ,s)

= cos(ξ (t))F (θ,ω1(φ− s),ω2(φ− s)) . (32)

According to Duhamel’s principle (Zauderer and Stephen,
1985), the solution for Eq. (32) is given by

T1 (θ,φ,ξ,s)=
∫ s

0
f (θ,φ,ξ,s;r)dr, (33)

where f (θ,φ,ξ,s;r) is the solution of the following homo-
geneous equation:(

∂
∂s
+
σ 2

2
∂2

∂ξ2 +µ
∂
∂ξ

)
f (θ,φ,ξ,s;r)= 0, s > r

f (θ,φ,ξ,r;r)= cos[ξ (t)]F
(
θ,ω1(φ− s),

ω2(φ− s)
)
, s = r.

(34)

For solving Eq. (34), we consider the equations(
∂
∂s
+
σ 2

2
∂2

∂ξ2 +µ
∂
∂ξ

)
P (ξ,s;z, t)= 0, s < t,

P (ξ,s;z, t)= lim
s→t

P (ξ,s;z, t)= δ(z− ξ ).
(35)

It can be seen that Eq. (35) is Kolmogorov’s backward equa-
tion for the transition probability function P (ξ,s;z, t), which
is the probability density function of random variable z(t)
conditioned on ξ (s), t > s. The transition probability func-
tion with Eq. (35) is presented by

P (ξ,s;z, t)=
1

√
2π (t − s)σ

exp
{
−
z− [ξ +µ(t − s)]

σ 2(t − s)

}
. (36)

By means of Eqs. (34) and (35), the solution for Eq. (34) is
given by

f (θ,φ,ξ,s;r)= F (θ,ω1(φ− r),ω2(φ− s))
∫
+∞

−∞

E {cos[z(r)]}P (ξ,s;z, t)dz, (37)

where

E {cos[z(r)]} =
∫
+∞

−∞

cos[z(r)]P (ξ,s;z,r)dz

= cos[ξ −µ(r − s)]exp
[
−

1
2
σ 2(r − s)

]
. (38)
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By substituting Eqs. (37) and (38) into Eq. (33) and via some
calculation, T1 (θ,φ,ξ,s) is obtained:

T1(θ,φ,ξ,s)= exp
[
−

1
2
σ 2(t − s)

]
{

cos(ξ )
∫ s

0
F (θ,ω1(φ− r),ω2(φ− r))cos[µ(r − s)]dr

−sin(ξ )
∫ s

0
F (θ,ω1(φ− r),ω2(φ− r)) sin[µ(r − s)]dr

}
. (39)

Meanwhile, the measure T1 (θ,ϕ1,ϕ2,ξ ) in Eq. (33) is solved
by inserting ϕ1 = ω1(φ−s) and ϕ2 = ω2(φ−s) into Eq. (39)
and evaluating the limit s→−∞.

3.3 Solution of second-order perturbation

According to Eq. (14), the second-order perturbation is
rewritten as
L0T2 = g2(p)T0−L1T1−L2T0

= g2(p)T0− cos(ξ )
(
θ1
∂

∂θ
+ϕ1

∂

∂ϕ 1
+pρ1

)
T1− θ2F

′

0(θ )−pρ2F0(θ ). (40)

The solvability condition of Eq. (40) is

1
4π2

∫
ϕ1×ϕ2×ξ×θ[

g2(p)T0− cos(ξ )
(
θ1
∂

∂θ
+ϕ11

∂

∂ϕ1
+ϕ21

∂

∂ϕ2
+pρ1

)
T1

− θ2F
′

0(θ )−pρ2F0(θ ) ·F ∗0 (θ )dθ
]
= 0. (41)

Through the integral for ϕ1, ϕ2, and ξ on [0,2π ] and the
massive calculations, Eq. (41) can be simplified as∫ π/2

0

{[
L(p)− g2(p)

]
F0(θ )

}
F ∗0 (θ )dθ = 0, (42)

L(p)=
1
2
σ 2(θ )

d2

dθ2 +
[
µ(θ )+pµ̂(θ )

] d
dθ
+

[
pq(θ )+

1
2
p2q̂(θ )

]
,

σ 2(θ )= πσ 2
{

1
8

(
α1b

2
11

$1
+
α2b

2
22

$2

)
sin2θ

+
1
ν

[
4α3b12b21

(
sin2θ cosθ + 2cos3θ + 2

)
cosθ

+
α4

ω2
1
b2

12sin4θ +
α4

ω2
2
α4b

2
21cos4θ

]}
,

µ(θ )= πσ 2
{

1
8

[
α2b

2
22

$2ω
2
2

(2+ cos2θ )−
α1b

2
11

$1ω
2
1

(2− cos2θ )

]
sin2θ

+
1
ν

[ α4

2ω2
1
b2

12 (sin2θ − tanθ ) sin2θ + 2α3b12b21 sin4θ

−
α4

2ω2
2
b2

21 sin2θcos2θ
]}
−
π

2
(a11− a22) sin2θ,

µ̂(θ )=−πpσ 2
{
α2b

2
22

16$2ω
2
2

sin4θ +
α1b

2
11

8$1ω
2
1

sin2θ

+
1
ν

[
α4

4ω1ω2
b12b21 sin2θsin2θ −

(
α4

2ω2
1
b2

12−
2ω1α3

ω2
b2

21

+
α4

4ω2
2
b2

21− 6α3b12b21

)
sin2θcos2θ

]}
,

q(θ )= πpσ 2
{

1
2

(
α1b

2
11

$1ω
2
1

cos2θ +
α2b

2
22

$2ω
2
2

sin2θ

)

+
1
8

(
α1b

2
11

$1ω
2
1
+
α2b

2
22

$2ω
2
2

)
sin22θ −

1
ν

[
8ω1

ω2
α3b

2
21cos4θ

+ 4α3b12b21 cos2θ +
α4

4

(
b12b21

ω1ω2
+
b2

12

ω2
1

)
sin22θ

]}
+
π

2
p (a11− a22)cos2θ +

π

2
pa11,

q̂(θ )= πp2σ 2
{

1
2

(
α1b

2
11

$1ω
2
1

cos4θ +
α2b

2
22

$2ω
2
2

)
sin4θ

+
1
ν

[
α4

4

(
b12b21

ω1ω2
+
b2

12

ω2
1

)
− 2α3

(
ω1

ω2
b2

21+ b12b21

)
sin22θ

]}
,

α1 =
[
σ 4
+ 4

(
µ2
+ 4ω2

1

)]
, α2 =

[
σ 4
+ 4

(
µ2
+ 4ω2

2

)]
,

α3 = σ
4
[
σ 4
− 8

(
µ2
−ω2

1 −ω
2
2

)2
]

− 16µ2
(

3µ2
− 2ω2

1 − 2ω2
2

)
+ 16

(
ω2

1 −ω
2
2

)2
,

α4 = σ
8
[
σ 4
+ 12

(
µ2
+ω2

1 +ω
2
2

)2
]
+ 16σ 4

[
3
(
µ4
+ω4

1 +ω
4
2

)
+ 2

(
µ2ω2

1 +µ
2ω2

2 +ω
2
1ω

2
2

)]
+ 64µ4

(
µ2
−ω2

1 −ω
2
2

)
−64µ2

[(
ω2

1 −ω
2
2

)2
− 8ω2

1ω
2
2

]
+ 64

(
ω6

1 −ω
2
1ω

4
2 −ω

4
1ω

2
2 +ω

6
2

)
,

$1 =
[
σ 4
+ 4(µ+ 2ω1)2

][
σ 4
+ 4(µ− 2ω1)2

]
,

$2 =
[
σ 4
+ 4(µ+ 2ω2)2

][
σ 4
+ 4(µ− 2ω2)2

]
,

ν =
[
σ 4
+ 4(µ+ω1+ω2)2

][
σ 4
+ 4(µ−ω1+ω2)2

]
[
σ 4
+ 4(µ+ω1−ω2)2

]
σ 4
+ 4(µ−ω1−ω2)2.
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Because of the arbitrariness of function F ∗0 (θ ), if Eq. (42)
holds, the expression in braces must be identically zero,
which engenders the eigenvalue problem for the second-
order expansion g2(p) of g(p); i.e.

L(p)F0(θ )= g2(p)F0(θ ), θ ∈
[
−π/2,π/2

]
. (43)

4 Eigenvalue problem of the moment Lyapunov
exponent

Now, we solve the eigenvalue problem shown in Eq. (43).
At the two boundary points θ =−π

/
2 and π

/
2 , the eigen-

function F0(θ ) satisfies the zero Neumann boundary condi-
tion according to the following papers: Namachchivaya et
al. (1996) and Namachchivaya (2001). Then, based on Wedig
(1988) and Bolotin (1965), F0(θ ) is expanded as an orthogo-
nal expression of a Fourier cosine series; i.e.

F0(θ )=
∞∑
m=0

zm cos(2mθ ). (44)

Substituting the above expansion into Eq. (43), multiplying
cos(2nθ ) with both sides of the equation, and integrating with
respect to θ on

[
−π

/
2 ,π

/
2
]
, the following equations can

be calculated out:
∞∑
m=0

anmzm = g2(p)zn,

anm =

∫ π/2

−π/2

[
L(p)cos(2mθ )

]
cos(2nθ )dθ, n= 0,1,2, . . .. (45)

Equation (45) can be transformed into the vector form

RZ = g2(p)Z, (46)

where Z = (z0,z1,z1, . . .,zn, . . .)T ,R= (aij ), and its sub-
matrix sequence is

[a00],

[
a00 a01
a10 a11

]
,

 a00 a01 a02
a10 a11 a12
a20 a20 a22

 , . . .,

a00 a01 a02 . . .

a10 a11 a12 . . .

a20 a21 a22 . . .
...

...
...

. . .

 . (47)

Equation (46) shows that g2(p) is the leading eigenvalue of
the infinite-order matrix R. Therefore, an infinite eigenvalue
sequence of g2(p) is obtained according to Eq. (47). If the
sequence converges to a definite value as n→∞, the value
is just the second-order approximation of the moment Lya-
punov exponent. However, with the increased n, the large-
scale calculations emerge and are even beyond computation.
Thus, the truncation method for n is applied by the numerical
solution.

For example, as n= 0, g2(p)= a00. When n= 1, the
second-order approximation g2(p) is the eigenvalue of the
second-order sub-matrix of R. For n= 2, the third-order ap-
proximation is the eigenvalue of the third-order sub-matrix
of R, etc. If the two or more curves of g2(p) are almost co-
incident with the increase in n, the curve can be regarded as
the approximation of g2(p).

5 Numerical results of stochastic stability

It is not possible to solve the analytical expression of the
moment Lyapunov exponent from the eigenvalue problem
defined in Eq. (46), especially for the high-order matrix R.
Therefore, in order to intuitively indicate the validity of this
programme, we give the numerical graphs for the sequence
of the moment Lyapunov exponent g(p) in Fig. 2. The influ-
ences of the different values of noise and system parameters
on the moment Lyapunov exponent g(p) and maximal Lya-
punov exponent g′(0) are shown in Figs. 3–7.

In Fig. 2, the curves of the moment Lyapunov exponent
g(p) with the increased values of n for two different cases
are given. The two pictures display that the deviation of the
curves of the moment Lyapunov exponent is very large at
n= 1 and n= 2, where n represents the order of the sub-
matrix. However, as n= 2 and n= 3, the curves of g(p) are
nearly coincident. Thus, we conclude that the series of the
moment Lyapunov exponent are convergent when the order
n of matrix R rises, and it is sufficient for us to truncate the
fourth-order approximate of g2(p).

It can be seen from the analytical expressions of the ele-
ments in matrix R that the moment Lyapunov exponents are
impacted by the noise excitation. In Fig. 3, the curves of the
moment Lyapunov exponent with respect to the noise param-
eters are described. The effects of the drift coefficient µ and
diffusion coefficient σ on the moment stability are contrary.
The moment stability of the system is weakened with the in-
crease in µ, while it is enhanced with the increased σ . Fur-
thermore, there is a bigger sensitivity near σ = 0.1 because
the distance of the curves between σ = 0.1 and σ = 0.2 is
larger than among σ = 0.2, 0.3 or 0.4. At the same time, the
almost sure stability of the system excited by noise is also
presented in Fig. 4. When σ = 0.2 and 0.4, µ < 0.82 and
σ = 0.6 and µ < 0.91, the system is almost surely asymp-
totically stable. However, jumping between µ= 0.82 and
µ= 0.84, the curves rapidly increase and the system be-
comes instable, and the trend slightly slows down a little at
σ = 0.6.

In addition, moment Lyapunov exponents are not only re-
lated to noise disturbance but are also affected by system pa-
rameters. The effects of the different values of damping co-
efficients on the moment Lyapunov exponent are shown in
Fig. 5. It is obvious that the moment stability of the system is
enhanced with the increase in d1 and d2, but the influence of
d1 on the system is stronger than that of d2 because the varia-
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Figure 2. Convergence of the moment Lyapunov exponent with the increase in n: (a) k = Cn= 0.4, d1 = 0.1, d2 = 0.2, A0 = 1.4, B0 = 1,
b11 = b12 = b21 = b22 = 1, µ= σ = 0.2; (b) k = Cn= 0.4, d1 = 0.1, d2 = 0.2, A0 = 0.8, B0 = 1.2, b11 = b22 = 1, b12 = b21 = 2, µ=
σ = 0.2.

Figure 3. Curve variation in the moment Lyapunov exponent with the increase in noise parameters µ and σ for the following case: k = Cn=
0.4, d1 = 0.1, d2 = 0.2, A0 = 1.4, B0 = 1, b11 = b12 = b21 = b22 = 1.

Figure 4. Variation in the maximum Lyapunov exponent with
noise parameters µ and σ for the following case: k = Cn= 0.4,
d1 = 0.1,d2 = 0.2, A0 = 1.4, B0 = 1, b11 = b12 = b21 = b22 = 1.

tional intensity of its curves is larger. Figure 6 depicts the mo-
ment Lyapunov exponent with the increased k and Cn. The
increase in k weakens the system stability, and the larger k is,
the smaller the influence becomes from Fig. 6a. In Fig. 6b,
all the four curves coincide completely, which indicates that
different values of Cn have no effect on the system. Finally,
the trends of the curves in Fig. 7a and b are just the oppo-
site of each other, and the moment stability of the system
strengthens with the increase in A0.

6 Conclusions

In this paper, the stochastic stability of a gyro-pendulum sys-
tem parametrically excited by a bounded noise is investi-
gated through the moment Lyapunov exponent. An eigen-
value problem of the moment Lyapunov exponent is con-
structed by applying the theory of the stochastic dynamical
system. Then, a perturbation method and Fourier cosine se-
ries expansion are used to obtain the infinite-order matrix
whose leading eigenvalue is just the second-order expansion
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Figure 5. Trends of the moment Lyapunov exponent with system parameters d1 and d2 for the following case: k = Cn= 0.4, A0 = 1.4,
B0 = 1, b11 = b12 = b21 = b22 = 1, µ= σ = 0.2.

Figure 6. Effect of system parameters k and Cn on the moment Lyapunov exponent for the following case: d1 = 0.1, d2 = 0.2, A0 = 1.4,
B0 = 1, b11 = b12 = b21 = b22 = 1, µ= σ = 0.2.

Figure 7. Influence of system parameters A0 and B0 on the moment Lyapunov exponent for the following case: k = Cn= 0.4, d1 = 0.1,
d2 = 0.2, b11 = b12 = b21 = b22 = 1, µ= σ = 0.2.
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of the moment Lyapunov exponent. Furthermore, the conver-
gence of the infinite eigenvalue sequence is numerically ver-
ified by two typical cases. Finally, the effects of system and
noise parameters on the moment Lyapunov exponent are dis-
cussed. The impacts of two noise parameters on moment sta-
bility are the opposite of each other: the increase in µ makes
the stability enhance, and σ has the opposite effect. Among
the system parameters, only Cn has no effect on the stabil-
ity, and moment stability is strengthened with the increased
k and A0, while the other parameters weaken it.
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