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Abstract. Optimizing the structure of the suction port is the key to effectively improving the performance of
the sweeping vehicle. The CFD (computational fluid dynamics) method and gas–solid two-phase flow model
are used to analyse the influence rule of the structural parameters and the height above ground on the cleaning
effect, which is verified by real vehicle tests. The data set was established by an orthogonal test method, and
a BP (backpropagation) neural network was used to fit the structural parameters and evaluation indexes. The
fitting errors were all within 5 %, indicating that the fitting results of this method were good. According to the
fitting relation of the BP neural network output, the whale algorithm should be further used to solve the optimal
structural parameters. The results show that the optimal parameter combination is β = 63◦, d = 168 mm and
h= 12 mm. The energy consumption of the optimized model is reduced, and the internal airflow loss is reduced.
The particle residence time becomes shorter, and the particle can flow out from the outlet faster, thus improving
the dust absorption effect. The research can provide a theoretical reference for performance optimization and
parameter matching of sweepers.

1 Introduction

Road dust and sediment are major sources of particulate pol-
lution in cities, making it important to keep streets clean. In
large cities, street cleaning requires a lot of workers and tech-
nology, which inevitably leads to high costs (Fayzullayevich
et al., 2022). Fully automated dust and particle control is a
means to protect the environment. As an efficient type of
cleaning equipment, the road sweeper works synchronously
with the sweep–suction, which can realize the integration
of road rubbish cleaning and particle dust collection and is
widely used in many contexts (Zeng et al., 2020). As an im-
portant part of the vacuuming system of the sweeper, the
suction port takes the airflow as the carrier to pick up the
dust particles. In order to make the working efficiency of
the sweeper higher and for it to be able to work efficiently
in the unmanned or less populated environment, higher re-
quirements are necessary for the performance of the vacuum
mouth of the sweeper. At the same time, the matching re-

lationship between the operation parameters of the sweeper
system should be more clear, so as to provide a decision-
making basis for the unmanned operation of the sweeper.

The vacuuming port is the key to the vacuuming system of
the sweeper. The innovative design and optimization of the
vacuuming port structure can effectively improve the perfor-
mance of the sweeper. Therefore, researchers have conducted
extensive research on the operation effect of the sweeper.
Qin et al. (2016) proposed adding an air intake channel be-
hind the dust suction port to enhance the ability of airflow
to carry particles and proved the feasibility of the improved
model through tests. Yang et al. (2012) used CFD (compu-
tational fluid dynamics) technology to analyse the influence
of structural parameters such as width and outlet diameter on
the airflow velocity and pressure inside the suction port and
improved the original structure. The research results showed
that the improved suction port had better efficiency. Bofu et
al. (2010) found that running speed and negative pressure
and other operating parameters of the sweeper had a signif-
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icant impact on vacuuming efficiency. Under the premise of
balancing high dust removal rate and low energy consump-
tion, the optimal operating parameters were obtained. Xi et
al. (2016a, b) analysed the structural parameters of the back-
blown dust suction opening and the backblown air volume
and found that increasing the diameter of the opening and
the tilt angle could improve the dust suction efficiency, while
the vehicle speed had a greater impact on the suction effi-
ciency. Liu et al. (2020) proposed using the tornado’s suc-
tion principle for vacuuming and used the flow field simu-
lation method to analyse the new vacuuming device and fi-
nally obtained a set of optimal parameters to maximize the
vacuuming efficiency. From the perspective of the suction
port structure, the above literature studies the influence of
the specific suction port structure on the suction effect. This
method has limitations; it only shows that a specific struc-
ture can improve the effect of vacuuming. For dust collec-
tion research on the effects of structure parameters on the
efficiency of dust collection, M. Zhang et al. (2020, 2019)
used the multi-objective orthogonal test method of power
matrix analysis to analyse the blowing and suction clean-
ing structure applied to the underground track interval and
found that the width ratio and height ratio between the blow-
ing nozzle and the suction nozzle directly affect the cleaning
efficiency, while the best cleaning effect is achieved when
the inclination angle between the blowing nozzle and suc-
tion nozzle is 20◦. Xi et al. (2020a, b) used a homogeneous
design and multiple regression analysis to determine the or-
der of influence of structural parameters to obtain optimal
operating conditions, which were verified by tests. Although
the above methods can accurately predict the vacuuming ef-
ficiency, it is only one evaluation standard, which is often not
suitable for practical production. Nowadays, machine learn-
ing can provide efficient fitting and prediction for complex
industrial design processes, and machine learning has be-
come an important tool for analysing engineering problems.
Lu et al. (2020) proposed an improved algorithm with feature
selection and neural network classification to study the fault
diagnosis of rotating machinery and verified the effectiveness
of the proposed method through hardware experiments. Hu et
al. (2018) proposed an algorithm connecting a convolutional
neural network and a BP (backpropagation) neural network
to predict yarn strength and proved the superiority of the new
method compared with other methods. Z. Wang et al. (2022)
used a new method employing a neural network combined
with a genetic algorithm to predict the modulus of compos-
ite materials and compared it with other algorithms under
the same conditions, and the results proved the feasibility of
the new method. E. Wang et al. (2022) predicted the com-
pressive strength model of ultra-low-temperature permafrost
through the method of a whale optimization algorithm back-
propagation (WOA-BP) neural network. The research results
showed that the prediction model has high accuracy and
can effectively solve the complex non-linear relationship be-
tween the compressive strength of ultra-low-temperature per-

mafrost and its influencing factors. Zhao et al. (2022) stud-
ied the whale algorithm and its application in cobot excita-
tion trajectory optimization. The results show that the exci-
tation trajectory optimized by the whale algorithm is smooth
and has a strong anti-noise ability, which is beneficial to im-
proving the accuracy of robot parameter identification. The
existing research shows that the BP neural network joint op-
timization algorithm is widely used in practical engineering
problems, which can provide a good reference for the struc-
tural design and performance analysis of the vacuuming port
of the sweeper.

Taking the self-developed Ruiqing S26 pure electric
sweeper as the analysis object, the influence of structural pa-
rameters and height above ground on the characteristics of
the flow field and the efficiency of vacuuming was analysed,
and it was verified by real vehicle tests. The sample set was
established by an orthogonal experiment, and the range anal-
ysis was used to determine the best scheme affecting a single-
objective function. As there are multiple objective functions
to judge the dust extraction efficiency, a new structural opti-
mization design method using a BP neural network combined
with a whale algorithm is used in this study. Taking the influ-
encing factors such as front baffle angle, outlet diameter and
ground height as the input and the air velocity on front intake
surface, pressure at the inlet of the exhaust pipe and cleaning
efficiency as the output, the BP neural network was used to
perform machine learning on the input and output, and the
fitting relationship was studied. By constructing the fitness
function, the multi-objective problem is transformed into a
single-objective maximum-value problem. Finally, the whale
algorithm is used to solve the fitness function and find the
best design scheme. This study can provide a reference for
performance optimization and parameter matching of sweep-
ers.

2 Physical model and simulation calculation

In practical engineering problems, the development of ma-
chine structures is influenced by many factors, and the cost
of primitive methods to obtain the most stable and reliable
structures through extensive physical testing is extremely
high. Here, CFD techniques are used to simulate the origi-
nal dust extraction port to analyse the influence of structural
parameters on the flow field characteristics and dust extrac-
tion efficiency and to verify the numerical simulation results
with the aid of real vehicle tests.

2.1 Physical model

The physical model is given in Fig. 1a. This simulation uses
pure suction vacuum, so only the front of the vacuum sys-
tem is taken as the simulation model. The simulation model
and structural parameters are given in Fig. 1b. According
to Zhang et al. (2014), in order to realistically simulate the
working environment of the dust suction port, an external air
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Figure 1. Simulation model and structural parameters.

Table 1. Specific dimensions of the dust extraction port.

S D β h

1200 mm 160 mm 60◦ 5 mm

domain needs to be added outside the dust suction port, as
shown in Fig. 1b, where D is the exhaust outlet diameter, S
is the length of the dust suction port, β is the inclination of
the front intake surface and h is the height above the ground.
The specific dimensions are shown in Table 1.

2.2 Simulation calculation

The mesh schematic of the simulation model is shown in
Fig. 2, and an unstructured mesh is used for this simulation.
The entire computational domain was divided into the exter-
nal air domain and the internal flow field domain. A tetra-
hedral mesh was used for the internal flow field of the dust
extraction port, and a hexahedral mesh was used for the ex-
ternal air domain with a mesh number of 638587.

The airflow is the vehicle for the dust particles to enter
the suction port and can be modelled as a continuous phase
and the dust particles as a discrete phase. The Navier–Stokes
equation can therefore be used to solve for the continuous
phase of the flow, while the discrete phase can be solved us-
ing the DPM (discrete phase model; Fu et al., 2021). Given
the small effect of temperature on the gas–solid two-phase
flow and the inner wall of the dust suction port, the effect of
temperature is not considered. The airflow phase conforms to
air mass conservation and momentum conservation, and the
corresponding equations for air mass and momentum conser-
vation in the dust suction port (Zhu et al., 2022) are

∂ρ1

∂t
+∇ · (ρ1v1)= 0 (1)

∂(ρ1v1)
∂t

+∇ · (ρ1v
2
1)=−∇p1+∇τ1+ ρ1g− f1, (2)

where ρ1 is the air density, t is time, v1 is the air velocity, p1
is the air pressure, g is the acceleration of gravity, τ1 is the
air stress tensor and f1 is the average resistance of the air.

In the Lagrange coordinate system, the trajectory of the
discrete phase can be solved by the differential equation of
particle forces to simulate particle motion in turbulent flow

Figure 2. Schematic diagram of the simulation model mesh.

(H. Zhang et al., 2020). The differential equation for the par-
ticle forces acting on the discrete phase is expressed as

dv2
dt = Fd (v1− v2)+ g(ρ2−ρ1)

ρp
+Fother

Fd =
18µ
ρ2d

2
2

CdRe2
24

Re2 =
ρ1d2|v2−v1|

µ

Cd = a1+
a2
Re2
+

a3
Re2

2
,

(3)

where v2 is the particle velocity; Fd(v1–v2) is the viscous
drag force; ρ2 is the particle density; µ is the aerodynamic
viscosity; Cd is the traction coefficient; Re2 is the relative
Reynolds number of the particle; d2 is the particle size; Fother
is the other forces; and a1, a2 and a3 are constants.

A jet source is used at the suction inlet to release the grit
particles: the boundary condition is set to escape, and the
particles enter uniformly from the suction inlet into the in-
terior of the suction inlet. The inner wall of the suction port
is bounded by the boundary condition reflect, and the exit
boundary is set to trap; i.e. the particles are trapped when they
reach the exit of the exhaust pipe, and the tracking of the par-
ticles is stopped. The dust extraction efficiency is calculated
by counting the number of particles collected at the outlet
(trapped) and the total number of particles injected (tracked)
(Zhang et al., 2017). The equation for the dust extraction ef-
ficiency is as follows:

η = trapped/tracked. (4)

2.3 Simulation results

For the original model, the forward air surface inclination
angle β and the outlet diameter D directly affect the inter-
nal flow field, so here the effect on the flow field parameters
such as the forward air surface velocity and the exhaust in-
let pressure is studied by the control variable method, while
the effect of changing β and D on the suction efficiency is
calculated by Eq. (4).

Figure 3 shows the effect of the angle of inclination of the
forward air surface on the characteristics of the flow field.
When the inclination angle is less than 65◦, the airflow in
the dust suction port is smooth, and the energy loss is small;
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Figure 3. Influence of the angle of inclination of the front inlet
surface on the flow field characteristics.

Figure 4. Effect of the angle of inclination of the front intake sur-
face on the efficiency of dust extraction.

therefore, as the inclination angle increases, the forward air-
flow speed increases. The increase of the inclination angle
inevitably causes the dust collection box cross-sectional area
to increase, reducing the negative pressure from the outlet to
the exhaust inlet, so the absolute value of the pressure at the
exhaust inlet increases. When the inclination angle is greater
than 65◦, the internal airflow loss increases, and the work-
ing power at the dust suction port near the ground decreases,
resulting in a reduction of the forward airflow velocity. Fig-
ure 4 shows the effect of the angle of inclination of the for-
ward air surface on the suction efficiency, which can be seen
from Fig. 4; as the inclination angle increases, the suction
efficiency increases and then decreases, and 65◦ is also its
threshold value. It can be seen that the suction efficiency is
directly related to the characteristics of the flow field. At an
inclination angle of less than 65◦, the increase in airflow ve-
locity at the forward air surface and the pressure at the ex-

Figure 5. Influence of the outlet diameter on the flow field charac-
teristics.

Figure 6. Effect of the outlet diameter on the efficiency of dust
extraction.

haust inlet increase the suction force at the dust suction port.
The opposite is true for inclination angles greater than 65◦.

The effect of exit diameter on the flow field characteris-
tics is given in Fig. 5. As can be seen from this figure, as
the outlet diameter increases, the airflow velocity at the for-
ward air surface increases and then decreases slightly. The
exhaust inlet pressure first decreases, then increases and then
starts to decrease again, and then it finally increases. When
the outlet diameter is 160 mm, both the forward air velocity
and the exhaust inlet pressure reach their absolute maximum
values. Increasing the diameter of the tube reduces the loss
along the inlet and outlet, so at the beginning, the flow field
characteristics increase. However, too large a pipe diameter
causes the increased power to be offset by the losses, so the
final trend is decreasing. Figure 6 shows the effect of the out-
let diameter on the suction efficiency, which increases and
then decreases as the outlet diameter increases, reaching a
maximum at 160 mm.
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Figure 7. Location of measurement pick-up points.

According to the above analysis and related literature,
there is a close correlation between the flow field charac-
teristic parameters and the dust suction efficiency (Jin et
al., 2022); when the flow field characteristic parameters in-
crease, the dust suction efficiency will also increase with
them. Therefore, when judging the dust suction performance
of a sweeper, the dust suction efficiency should not be the
only criterion, but the flow field characteristics and the dust
suction efficiency should be investigated comprehensively.

2.4 Testing and validation

The tests were carried out with the aid of the S26 sweeper
at Anhui Airuite New Energy Special Vehicle Co., Ltd. The
S26 sweeper studied in this paper has three modes: energy-
saving, normal and high-efficiency. The three modes corre-
spond to the three pressures of 2400, 2800 and 3200 Pa re-
spectively, so the tests were carried out at three different pres-
sures. The test is divided into two parts; one is to investigate
the characteristics of the flow field under different negative
pressures, i.e. 12 points at the entrance to measure the wind
speed and 5 points at the exit to measure the wind pressure
(the specific location of the points is shown in Fig. 7), and the
second is to investigate the vacuum efficiency under different
driving speeds and negative pressures. The above tests were
carried out without the use of auxiliary brushes and lances;
i.e. only the flow field characteristics and the efficiency of
the purely suction-type dust suction outlet itself were inves-
tigated.

Figure 8 shows the physical diagram of the S26 sweeper
and the test site. In the investigation of the flow field char-
acteristics, the suction port needs to be connected to the cor-
responding test equipment, so the flow field characteristics
in the driving condition cannot be measured, and only the
flow field characteristics under different negative pressures
are investigated here. When investigating the flow field char-
acteristics under different negative pressures, the test uses
the DP1000-IIIB digital pressure anemometer with an L-type
pitot tube; the charge amplifier uses the WS-2401 charge,
voltage, filter and integral four-function amplifier; and the
data acquisition instrument is the WS-5931N/N240204. Be-

fore the test to investigate the dust suction efficiency at differ-
ent driving speeds and negative pressure, 14 kg of dust on the
road was weighed, and the distribution density of dust parti-
cles was about 0.15 kg m−2, thus simulating a more serious
dust load on the road (Xi et al., 2016b). After the test, the dust
collected in the bin was weighed to determine the dust extrac-
tion efficiency. To ensure the reliability of the tests, each set
of tests was repeated three times in both parts of the test, and
the average value was taken as the final result.

Figure 9 gives a comparison between the simulated and
experimental outlet wind pressure under different negative
pressures. As can be seen from the figure, the trend of the
simulated results is basically the same as that of the exper-
imental results, with the wind pressure in the centre of the
outlet area being greater than that in the edge area. The max-
imum error between the simulated data and the experimental
data is 9.5 %, which is within the allowable error range of
10 % mentioned in the literature (Yuan et al., 2020a). Fig-
ure 10 gives a comparison between the simulated and exper-
imental inlet wind speed at different negative pressures. The
maximum error is 9.2 %, which is also within the allowable
error range of 10 %. The main reason for the error here is that
the positions of the measurement points in the simulation do
not exactly coincide with the positions of the measurement
points in the test, thus causing deviations.

Figure 11 gives the simulation results and test comparison
of the vacuum efficiency under different driving speeds and
negative pressures. It can be seen from the figure that under
the same negative pressure, the vacuum efficiency tends to
decrease as the driving speed increases. Under the same driv-
ing speed, the greater the negative pressure, the greater the
dust suction efficiency. The maximum error is 6.6 %, again
within the allowable error range of 10 %. The main source of
error is that the initial settings of the particle phases in the
CFD simulation are ideal, whereas these conditions are al-
ways changing during the test. In addition, the road surface
and the inner wall of the suction port are set to be smooth
and slip-free in the simulation, but in reality they are rough,
which does not allow for a realistic simulation of the col-
lision between the particles and the inner wall. Through the
above comparison test, it can be seen that the maximum error
in the flow field characteristics and dust extraction efficiency
is within the permissible range, which means that the simu-
lation results are feasible.

3 Orthogonal test

The “orthogonal test design” method is a way to select the
optimal combination of test factors (Yang et al., 2021). From
the above study, it is clear that the simulation results for the
dust extraction port are feasible, so the simulation results will
approximate the effect of the real operation of the equiva-
lent dust extraction port. Under normal operating conditions,
the height h of the dust extraction opening above the ground
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Figure 8. S26 sweeper physical and test site view.

Figure 9. Simulation and test comparison of outlet air pressure at different negative pressures.

also has an effect on the dust extraction effect of the sweeper.
Therefore, the influence of three important structural param-
eters on the sweeping performance is investigated by means
of an orthogonal test design: the front flap inclination angle
β, the outlet diameter d and the height h above the ground.

3.1 Design parameter variables

The parameters β, d and h were chosen as design variables,
and there were a large number of combinations of param-
eters between them, so representative partial combinations
were selected for testing from the full range of tests. The de-
sign variables were selected to have the same span values,
while h was generally controlled to be within 20 mm (Ye et
al., 2022). Therefore, the L16(43) orthogonal test table was
chosen here. For each of the three factors, β, d and h, four
equally spaced levels were used, and each of the four levels
is shown in Table 2.

Table 2. Factor-level table.

Level Tilt of front Outlet Height above
baffle diameter ground

(◦) (mm) (mm)

1 55 145 4
2 60 155 8
3 65 165 12
4 70 175 16

3.2 Objective function and calculation results

The objective function is used to evaluate the dust suction
performance of the dust suction port under different com-
binations of parameters (Xia et al., 2016). When evaluating
the dust suction performance, both the dust suction efficiency
and the flow field characteristics of the dust suction port need
to be considered. The dust suction efficiency η is calculated
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Figure 10. Simulation and test comparison of inlet air velocity at different negative pressures.

Figure 11. Comparison of simulated and experimental dust extraction efficiency at different driving speeds and negative pressures.

Table 3. Simulation results.

Test serial β D h V P η

number (◦) (mm) (mm) (m s−1) (Pa) (%)

1 1 1 1 28.3 −1.869 72
2 1 2 2 29.8 −1.913 74
3 1 3 3 30.3 −1.922 75
4 1 4 4 30.1 −1.899 72
5 2 1 2 29.9 −1.865 75
6 2 2 1 29.7 −1.871 73
7 2 3 4 30.7 −1.943 75
8 2 4 3 30.5 −1.932 73
9 3 1 3 30.2 −1.871 76
10 3 2 4 31.4 −1.925 78
11 3 3 1 31.4 −1.919 78
12 3 4 2 29.6 −1.911 76
13 4 1 4 29.3 −1.873 72
14 4 2 3 29.8 −1.932 74
15 4 3 2 29.5 −1.889 75
16 4 4 1 29.4 −1.881 72

from Eq. (4): the larger the η, the greater the dust suction ca-
pacity. The greater the forward air velocity V and the lower
the pressure at the exhaust inlet P , the lower the energy loss
and hence the greater the suction capacity. The results of the
simulation are shown in Table 3.

3.3 Range analysis

The range analysis is an intuitive method of analysing or-
thogonal experimental designs by calculating the R value
(the value of the range of a factor) to reflect the magnitude
of the effect of changes in the level of the factor on the range
of the objective function (Yu et al., 2022b). The greater the
R, the greater the effect of the number of levels selected un-
der the factor on the index and also to determine the optimal
level situation and thus the optimal combination. The specific
range analysis is shown in Table 4, which reflects the degree
of influence of each parameter on the objective function.

From the range analysis table it can be seen that for for-
ward air surface velocity, combined with a comparison of the
magnitude of the R values, factor A (front baffle inclination)
is the optimum factor, followed by factor B (exit diameter)
and finally factor C (height above ground). Therefore, the or-
der of influence is factor A> factor B> factor C. For the ex-
haust inlet pressure, factor B (outlet diameter) is the optimum
factor, followed by factor C (height above ground) and finally
factor A (front baffle inclination), in order of influence: fac-
tor B> factor C> factor A. For the suction efficiency, factor
A (front baffle inclination) is the optimum factor, followed by
factor B (outlet diameter) and finally factor C (height above
ground), in order of influence: factor A> factor B> factor C.

Figure 12 gives a graph of the average value of each level
of the factors, from which the optimum level for each factor
can be visualized. For the forward air surface velocity, fac-
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Table 4. Analysis of extreme deviations.

Item Level V (m s−1) P (KPa) η (%)

β (◦) D (mm) h (mm) β (◦) D (mm) h (mm) β (◦) D (mm) h (mm)

k 1 118.50 117.70 118.80 −7.603 −7.478 −7.540 293.00 295.00 295.00
2 120.80 120.70 118.80 −7.611 −7.641 −7.578 296.00 299.00 300.00
3 122.60 121.90 120.80 −7.626 −7.673 −7.657 308.00 303.00 298.00
4 118.00 119.60 121.50 −7.575 −7.623 −7.640 293.00 298.00 297.00

k avg 1 29.63 29.43 29.70 −1.901 −1.870 −1.885 73.25 73.75 73.75
2 30.20 30.18 29.70 −1.902 −1.910 −1.895 74.00 74.75 75.00
3 30.65 30.48 30.20 −1.907 −1.918 −1.914 77.00 75.75 74.50
4 29.50 29.90 30.38 −1.894 −1.906 −1.910 73.25 74.50 74.25

Best level 3 3 4 3 3 3 3 3 2

R 1.15 1.05 0.68 0.013 0.048 0.029 3.75 2.00 1.25

Optimum combination A3B3C4 B3C3A3 A3B3C2

Figure 12. Plot of average values for each level of the factors.

tor A is optimal at the third level of front baffle inclination,
i.e. 65◦; factor B (outlet diameter) is optimal at the third level,
i.e. 165 mm; and factor C (height above ground) is optimal
at the fourth level, i.e. 16 mm. For the exhaust inlet pressure,
factor A is optimal at the third level of inclination of the front
baffle, i.e. 65◦; factor B is optimal at the third level of the out-

let diameter, i.e. 165 mm; and factor C is optimal at the third
level of height above the ground, i.e. 12 mm. For suction ef-
ficiency, factor A is optimal at the third level of inclination of
the front baffle, i.e. 65◦; factor B is optimal at the third level
of outlet diameter, i.e. 165 mm; and factor C is optimal at the
second level of height above the ground, i.e. 8 mm.
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Combining Table 4 with Fig. 12, it can be seen that for the
forward air surface velocity, A3B3C4 is the optimal combi-
nation of parameters. For the exhaust inlet pressure, B3C3A3
is the optimal combination of parameters. For suction effi-
ciency, A3B3C2 is the optimal combination of parameters.
The above analysis determines the optimal solution for the
influence of a single-objective function, and it is not possible
to select a comprehensive performance for multiple objective
functions. Therefore, the following is a neural network to fit
multiple influence factors and multiple objective functions,
and the whale algorithm is used to find the optimal solution.

4 BP neural network fitting

Neural networks have a strong non-linear fitting capability
and can be used to fit problems where the relationship be-
tween the objective function and the influencing factors can-
not be expressed directly in mathematical functional equa-
tions (Lin et al., 2021). In traditional test data collection pro-
cesses, input and output data are obtained through extensive
physical testing. However, for the dust suction port struc-
ture in this study, the cost is extremely significant. The above
study has demonstrated that the error between the simulation
data and the experimental data is within a reasonable range.
This suggests that the simulated data can be used as a sub-
stitute for the experimental data. Therefore, here a BP neural
network is fitted with the simulated data using the orthogonal
test design data set described above.

The neural network model diagram is shown in Fig. 13,
which mainly includes an input layer, a hidden layer and an
output layer, with data transfer between two adjacent lay-
ers in the form of weight transfer (Egrioglu et al., 2019).
This neural network is a two-layer feedforward network
with s-shaped hidden neurons and linear output neurons (fit-
net), which can fit a multidimensional mapping problem
well given consistent data and sufficient hidden layer neu-
rons (Zhang et al., 2018). The network is trained using the
Levenberg–Marquardt backpropagation algorithm (trainlm),
using mean squared error (MSE) as the loss function. Be-
fore starting to fit, the model divides the input samples into
a training set, a validation set and a test set according to
7 : 1.5 : 1.5. The training set is input to the neural network
during the training process and is adjusted for error. The val-
idation set is used to measure the level of generalization of
the network, and training is stopped when the level of gener-
alization no longer improves. The test set evaluates the net-
work performance independently during and after training
(Y. Wang et al., 2022).

4.1 Sample training and evaluation

The front baffle inclination, exit diameter and ground clear-
ance height are used as inputs, and the results of the objective
function simulation in Table 3 are used as outputs. Before
fitting, the input data also need to be normalized to elimi-

Figure 13. BP neural network model diagram.

nate fitting errors due to differences in magnitudes and also
to prevent large data from assimilating small data (Wang et
al., 2016). The normalization method is as follows:

X∗i =
Xi −Xmin

Xmax−Xmin
, (5)

where X∗i is the value of the ith input data after data normal-
ization, Xi is the original value of the ith input data, Xmin
is the minimum value of the input data set and Xmax is the
maximum value of the input data set.

4.2 Number of neuron nodes in the hidden layer

The choice of the number of nodes in the hidden layer neu-
rons is crucial (Yu et al., 2022a), with too few nodes leading
to underfitting. On the contrary, for a training set with insuf-
ficient information, too many nodes will lead to overfitting
(Yu et al., 2021). Therefore, the optimal number of nodes in
the hidden layer should be selected, taking into account the
fitting effect and operational efficiency.

A comparison of the errors for different numbers of nodes
is given in Table 5, from which it can be seen that the actual
error is smallest at 2.15×10−17 for a number of nodes of 10.
Therefore the best fit is achieved when the number of nodes
is taken as 10. A graphical representation of the regression
curve is given in Fig. 14, which shows how the output com-
pares to the training target, the validation target and the test
set target. For an ideal fit, the data should fall along a 45◦

angle, and the output and target should be equal, ideally with
R = 1. As can be seen from the graph, the R value for the
training set is 1, the R value for the validation set is 0.99991,
the R value for the test set is 0.9999 and the overall R value
is 0.99981, which shows a good fit between the predicted and
target outputs.

4.3 Fitting results compared to test model

In order to further illustrate the fitting accuracy of the ap-
proximate model, six groups of parameters were randomly
selected to establish the test model, and the test model was
simulated and calculated according to the above simulation
method. The simulation results were compared with the fit-
ting results, and the results are shown in Table 6. From Ta-
ble 6, it can be seen that the fitting errors of the six groups of
test models are all within 5 %, which is within the acceptable
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Table 5. Comparison of errors with different number of nodes.

Number of nodes 7 8 9 10 11 12 13 14

Actual error 5.04× 10−4 1.01× 10−6 2.57× 10−6 2.15× 10−17 2.92× 10−9 4.35× 10−5 2.05× 10−5 1.20× 10−6

Figure 14. Graphical representation of the regression curve.

range for engineering. It further illustrates the high fitting ac-
curacy of the approximation model, which can be used for
the subsequent optimization of the whale algorithm.

5 Whale algorithm optimization

Based on the above BP neural network outputs V , P and η,
the optimal structural parameters need to be further solved.
The solution of these parameters is a multi-objective opti-
mization problem, which cannot be solved by traditional op-
timization methods. Therefore, this paper converts the multi-
objective problem into a single-objective optimal problem by
constructing the fitness function E. Finally, the fitness func-
tion is solved by the whale optimization algorithm (WOA)
to find the optimal solution. The specific expressions are as
follows:

E =
η ·V

P
, (6)

where η is the suction efficiency, V is the forward airflow
velocity and P is the exhaust inlet pressure.

5.1 WOA optimizes processes

The WOA is an intelligent optimization algorithm that mim-
ics the feeding behaviour of whales in nature, with each
whale position representing a feasible solution. The algo-
rithm has a simple structure, few adjustment parameters and

Figure 15. Calculation flow chart.

a high level of optimization-seeking capability. The standard
WOA simulates the whale’s unique search and seizure mech-
anism, which consists of three key stages: prey seizure, bub-
ble netting and prey search. Before using the WOA to solve
the problem, the above three types of predation need to be
expressed in mathematical formulations (Guo et al., 2022).

1. Prey roundup. The WOA assumes that the current best
candidate solution is the target prey or the location clos-
est to the optimal solution and that after the optimal lo-
cation is defined, other locations will approach the opti-
mal location. The mathematical expression for the loca-
tion update is

X(t + 1)=X∗(t)−A ·D (7)
D =

∣∣C ·X∗(t)−X(t)
∣∣ , (8)

where X∗(t) is the current optimal solution position, D
is the distance between the current individual whale and
the current optimal solution, X(t) denotes the current
position, t denotes the number of iterations, and A and
C are coefficient variables.

A and C are given by the following equations, with a
decreasing linearly from 2 to 0 during the iteration; r is
a random vector on [0, 1].

A= 2a× r − a (9)
C = 2r (10)
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Table 6. Comparison of simulation results with fitted results.

Programme V (m s−1) P (KPa) η (%)

Fitted Simulation Error Fitted Simulation Error Fitted Simulation Error
values values values values values values

1 29.46 28.10 4.61 % −1.904 −1.854 2.63 % 75.17 74.00 1.56 %
2 29.44 29.40 0.14 % −1.904 −1.881 1.21 % 75.17 78.00 3.76 %
3 29.37 30.40 3.51 % −1.896 −1.952 2.95 % 75.98 78.00 2.66 %
4 29.83 30.30 1.57 % −1.901 −1.915 0.74 % 75.25 77.00 2.33 %
5 30.08 30.10 0.07 % −1.912 −1.889 1.20 % 74.06 73.00 1.43 %
6 30.04 29.50 1.79 % −1.908 −1.883 1.31 % 72.14 70.00 2.97 %

2. Bubble net predation. The position update between
whale and prey during bubble net predation is expressed
by the logarithmic spiral equation, with the following
expression:

X(t + 1)=X∗(t)+D′ · ebl cos(2πl) (11)
D′ =

∣∣X∗(t)−X(t)
∣∣ , (12)

where D′ is the distance between the ith whale and its
prey, b is the logarithmic spiral shape constant, and l is
a random number on [−1, 1].

The whale approaches its prey by contracting the en-
velope while spiralling upwards, so the WOA assumes
a random choice between contracting the envelope and
spiralling upwards with 50 % probability, thus updating
the whale’s position. The mathematical expression is as
follows:

X(t + 1)=


X∗(t)−A ·D p ≤ 0.5
D′ · ebl cos(2πl)+X∗(t)

P > 0.5,
(13)

where p is a random number on [0, 1].

3. Searching for prey. In addition to the bubble net method
of predation, randomly searching for prey is a viable op-
tion for enhancing WOA explorability. In this case, the
whales no longer update their position according to the
current optimal prey but update according to the ran-
domly selected whales. That is, distance D is updated
randomly when |A|> 1. The individual whale will then
deviate from its original target prey in order to search
for it, which in turn will improve its predation ability,
which will result in a certain global search performance
of the WOA. The mathematical expression is as follows:

X(t + 1)=Xrand(t)−A ·D (14)
D = |C ·Xrand(t)−X(t)| , (15)

where Xrand(t) is the current position of the random
whale individual.

Figure 16. Effect of changing the number of populations on the
calculation results.

In order to more clearly express the standard WOA calcu-
lation process described above, a flow chart of the standard
WOA calculation is given in Fig. 15.

During the calculation, both the number of populations N
and the maximum number of iterations tmax have an impact
on the results. Figure 16 shows the effect of changing the
number of populations on the fitness function E when the
maximum number of iterations is the same. When tmax is
large enough to be 200, the fitness function tends to decrease
when N is changed and eventually converges in all cases.
When N = 80, E changes to a minimum value of −1199.5,
which is smaller than the minimum value ofE in other cases,
and the accuracy also meets the requirements. After consid-
ering various factors, the best result is obtained whenN = 80
is taken. The best combination of parameters at this point is
β = 63◦, D = 168 and h= 12 mm.

5.2 Comparison of optimization results

The optimum combination of parameters obtained above was
simulated, and the simulation results were compared with the
original model simulation results. The results are shown in
Table 7. The dust extraction efficiency η was increased by
16.11 %, a large variation, which may be produced by the
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Table 7. Comparison of evaluation indicators before and after opti-
mization.

Evaluation indicators V (m s−1) P (KPa) η (%)

Original model 23.16 −1.792 76.03
After optimization 24.23 −1.899 92.14

Figure 17. Comparison of flow field characteristics before and after
optimization.

change in height h above the ground. The airflow velocity
V at the front inlet surface increased by 1.07 m s−1, and the
exhaust inlet pressure P increased by 0.107 KPa. The small
change is due to the fact that the flow field characteristics
are related to the structural parameters, which did not change
much with the optimized parameter combination compared
to the original model parameters. From the comparison re-
sults it can be seen that the above optimization method is in-
deed feasible for the structural optimization of the dust suc-
tion outlet, and the optimized parameters obtained can im-
prove the dust suction capacity.

A comparison of the flow field characteristics before and
after optimization is given in Fig. 17, from which it can be
seen that both the velocity and pressure of the airflow inside
the optimized dust suction outlet have been increased. Fig-
ure 17a gives a comparison of the cross-sectional pressures,
and it can be seen that the optimized pressure in the exhaust
pipe is significantly better than the original model. The opti-
mized inlet and outlet pressure loss 1p is 1869.45 Pa com-
pared to 1p of 1989.31 Pa for the original model, indicating
that the optimized suction port has a low energy consump-
tion. Figure 17b gives a comparison of the near-ground air-
flow velocities, and it can be seen that the optimized near-
ground airflow velocities are more uniform. The average ve-
locity of the optimized near-ground airflow is 14.22 m s−1

compared to 13.21 m s−1 for the original model, indicating
a reduction in airflow losses within the optimized suction
port. In summary, the optimized airflow inside the dust suc-
tion port has an increased ability to carry particles, which in
turn improves the dust suction capacity.

Figure 18 shows a comparison of the particle trajectories
before and after optimization. The optimized particle trajec-

Figure 18. Comparison of particle trajectories before and after op-
timization.

tory is smoother, with particles colliding with the internal
chamber of the dust collection box and still being picked up
by the airflow. The velocity and residence time of the particle
movement inside the dust suction port both reflect the particle
trajectory inside the dust suction port. A comparison of par-
ticle residence times is given in Fig. 18a, which reflects the
time from start to outflow of particles, and it can be seen that
the optimized particle residence times become shorter. The
shorter residence time indicates that the suction efficiency of
the suction port has been improved. Figure 18b gives a com-
parison of the particle velocities, and it can be seen that the
optimized particles become faster. A particle with too small
a velocity will result in it not being able to overcome gravity
and fall off, whereas the higher the particle velocity, the eas-
ier it will be to flow out of the outlet. The optimized model
shows a slight increase in particle movement speed compared
to the original model, as well as a shorter particle residence
time. The particles flow out of the outlet more quickly, thus
improving the suction effect.

6 Conclusions

Using the Ruiqing S26 pure electric sweeper as the research
object, the CFD method is used to analyse the influence of
the structural parameters of the dust extraction port and the
height above the ground on the dust extraction effect of the
sweeper, which cannot be solved by traditional optimization
methods. This paper establishes a sample set through orthog-
onal tests, then uses neural networks to fit multiple influenc-
ing factors and multiple objective functions, and finally uses
the whale algorithm to find the optimal solution. The specific
conclusions are as follows:

1. There is a good correlation between the flow field char-
acteristics and the dust extraction efficiency. The incli-
nation angle β of the forward air surface and the outlet
diameter D directly affect the internal flow field, and
the size of the inclination angle affects the energy loss
inside the dust extraction port; increasing the pipe di-
ameter will reduce the along-route loss between the in-
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let and outlet, but too large a pipe diameter will offset
the increased power and loss. The maximum error of the
simulation result of the outlet air pressure under differ-
ent negative pressures is 9.5 %, the maximum error of
the simulation result of the inlet air speed under differ-
ent negative pressures is 9.2 %, and the maximum error
of the simulation result of the vacuum efficiency under
different driving speeds and negative pressures is 6.6 %.
The maximum error of the above simulation results is
within the error tolerance of 10 %.

2. Using the extreme difference analysis of the orthogonal
experiment, the optimal solution affecting the individ-
ual objective function is obtained: for the forward air
surface velocity, A3B3C4 is the optimal combination of
parameters; for the exhaust pipe inlet pressure, B3C3A3
is the optimal combination of parameters; and for the
vacuum efficiency, A3B3C2 is the optimal combination
of parameters.

3. The results of fitting the BP neural network to mul-
tiple influencing factors and multiple objective func-
tions showed that the actual error was the smallest at
2.15× 10−17 for a neuron node number of 10, and the
regression curves showed that all R values were within
acceptable limits. Six sets of parameters were randomly
selected to build the test model and were found to be
within 5 % of the fitting error, indicating that this neural
network fitted well.

4. The optimal combination of parameters is β = 63◦,
D = 168 and h= 12 mm. Based on the original model,
V is increased by 1.07 m s−1, P by 0.107 KPa and η by
16.11 %. The inlet and outlet pressure loss1p of the op-
timized model becomes smaller, indicating that the en-
ergy consumption of the optimized dust suction port is
small. At the same time, the average velocity of the air-
flow near the ground is increased, which indicates that
the airflow loss inside the optimized dust suction port
is reduced. The optimized particle trajectory becomes
smoother, where the particle velocity is slightly higher
than in the original model, but the particle residence
time is shorter than in the original model, and the parti-
cles flow out of the outlet more quickly, thus improving
the suction effect.
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