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Abstract. In human–robot collaborative sewing, the robot follows the sewing action of a worker to complete the
corresponding sewing action, which can enhance production efficiency. When the robot follows the sewing action
of the worker through interactive information, it still faces the problem of low accuracy. In order to improve the
accuracy of the robot following the sewing action, a human upper-limb sewing-action-following system based on
visual information is designed in this paper. The system is composed of an improved OpenPose model, Gaussian
mixture model (GMM), and Gaussian mixture regression (GMR). In the system, an improved OpenPose model is
used to identify the sewing action of the human upper limb, and the label fusion method is used to correct the joint
point labels when the upper limb is covered by fabric. Then the GMM is used to encode each motion element
and time to obtain the regression work of the Gaussian component. GMR is adopted to predict connections
between moving elements and generate sewing motion trajectories. Finally, the experimental verification and
simulation are carried out in the experimental platform and simulation environment of the collaborative robot.
The experimental results show that the tracking error angle can be controlled within 0.04 rad in the first 2 s of
robot movement. Therefore, it can be considered that the sewing-action-following system can realize higher
precision and promote the development of human–robot collaboration technology to a certain extent.

1 Introduction

Human–robot collaboration technology is an important de-
velopment direction in the field of intelligent robots (He et
al., 2017; Baraglia et al., 2017; Ajoudani et al., 2018). The
programming method of collaborative robots usually uses ar-
tificial teaching (Yanagihara et al., 2001) or offline program-
ming (Žlajpah, 2008). The above two programming methods
have operators with greater technical experience, and robots
can only repeat their actions according to the fixed trajectory.
In the sewing factory, in order to cooperate with the worker
efficiently, the collaborative robot needs to understand the
sewing intention of the worker (Lang et al., 2022). By learn-
ing the sewing action of the worker, the collaborative robot
can follow the action of the human upper limb, acquiring the
corresponding sewing skills.

With the development of human–robot collaboration tech-
nology, many simpler and efficient collaborative robot pro-
gramming methods have been developed. The most direct
method for robots to follow people is through kinesthetic

teaching (Wrede et al., 2013). This involves the robot being
manually dragged by people to teach and record its move-
ment. Kinesthetic teaching does not require additional equip-
ment and is easy to operate (Kronander and Billard, 2013;
Billard et al., 2016). Kim et al. (2016) used three different
kinesthetic teaching methods, namely joint-level, task-level,
and contact-level teaching. They programmed the task into
the dual-arm robot to guide the dual-arm robot to complete a
packing task in an industrial environment. Fan et al. (2019)
designed and developed a teaching manipulator with 6 de-
grees of freedom in order to facilitate the setting and record-
ing of motion trajectories of industrial robots. However, this
teaching method is usually only applicable to light manipu-
lators with low inertia, which is difficult for robots with mul-
tiple degrees of freedom, and robots can only perform tasks
in a fixed environment.

In order to achieve intelligent human–robot collaboration,
researchers began to allow robots to use visual recognition to
obtain human–robot interaction information. Schenck et al.
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(2017) used deep learning methods to establish a worker’s
action prediction model and sent the prediction results to the
robot. Then the robot performed corresponding operations
such as digging and dumping granular media. The Google
Brain research institute (Gu et al., 2016) used a Deep Q-
Network to recognize the grasping action of the human arm
and converted the captured image of the arm grasping ac-
tion into the corresponding features of the grasping action to
complete the robot’s assistance crawl.

After the collaborative robot obtains information on the
teaching action through visual information, the skill learning
method can actively follow people’s actions. Khansari-Zadeh
and Billard (2011) used a Gaussian mixture model (GMM)
to model the teaching trajectory probabilistically, calculated
the model parameters through Gaussian mixture regression
(GMR) iteratively until convergence, and predicted the next
movement trajectory. Ijspeert et al. (2013) used a dynami-
cal movement primitive (DMP) to follow the teaching ac-
tion of the robot. By iteratively updating the motion pa-
rameters between the trajectory points, the motion informa-
tion for a single teaching trajectory was learned. The learn-
ing results were generalized to the complete motion process
of the robot. Ravichandar and Dani (2019) transformed the
action-following problem into a steady-state system prob-
lem. This is based on the Stable Estimator of Dynamical Sys-
tems (SEDS) theory, which has the ability to generalize the
motion trajectory point to any target position. However, both
DMP and SEDS have similar limitations and cannot directly
process and generalize motion trajectory points with tempo-
ral attributes. Yunus et al. (2022) proposed a Kalman filter
time series human motion prediction algorithm. The algo-
rithm updated the Kalman gain parameter of the trajectory
data to realize the prediction and the following of the human
action trajectory.

To realize the sewing action of the human upper limb, a
following method for the robot – OpenPose and GMM–GMR
(OGG) – is proposed in this paper. OGG is designed to ob-
serve a worker’s sewing action and realize the following of
this sewing action. The specific methods of this paper are as
follows:

1. The OpenPose model is built to identify the motion tra-
jectory of human upper-limb joints. The joint localiza-
tion problem in fabric occlusion is solved by the tag fu-
sion method.

2. The GMM is used to encode the action trajectory ob-
tained by the deep neural network with the time factor
to obtain motion elements, and GMR is applied to cal-
culate the mean function and variance function of each
motion element. Then the obtained Gaussian regression
functions are mixed and weighted to perform trajectory
regression prediction. The trajectory information for the
sewing action is learned by storing the conditional ex-
pected value and variance of trajectory parameters.

3. The trajectory information for the learned sewing action
is transmitted to the robotic arm, which starts to move
according to the trajectory information.

The structure of the paper is arranged as follows. The
overview of the framework will be discussed in the next sec-
tion. Section 3 shows the sewing action recognition method,
and Sect. 4 introduces the sewing-action-following method.
Finally, Sect. 5 presents the simulation and physical platform
experimental environment and results.

2 Overview of the OGG method framework

On the robot platform, our following system used to use the
visual servo method. However, we found some disadvan-
tages, and we designed a new system that acted with OGG.
As shown in Fig. 1, the robot system based on the visual
servo method uses original visual features to extract human
image features, maps them to the robot joint angles, performs
visual servo control, and realizes the tracking of workers’
sewing actions. Due to inaccurate features and robot system
errors, the error in the robot’s following action is large.

In the OGG method, we made improvements in trajectory
acquisition and trajectory tracking. The previous method of
trajectory acquisition is to identify visual features to obtain
key point information, but the OGG method uses OpenPose
to obtain the joint point coordinate information on the hu-
man body. The previous method used in trajectory tracking
is a visual servo, a control method using feedback, while the
GMM–GMR method is used in this paper. The robot gener-
ates the following motion trajectory corresponding to each
joint according to the trajectory prediction result, so that the
robot can follow the sewing action of the human body upper
limb. Finally, we verify the feasibility and stationarity of our
method using both simulation and real-world robots.

3 Sewing action recognition method

The motion information in the worker’s sewing action is re-
flected to the joint trajectory. Learning to accurately locate
the shoulder, elbow, and wrist joints in the worker’s sewing
action video sequence and to obtain the joint trajectory is key
for the robot to follow the sewing action. In fabric turnover
and other actions, due to the problem of workers’ habitual
actions, some upper limbs or hands are often covered by fab-
ric, and the joint positioning will fail. This paper, which uses
the label fusion method to correct the joint point label, im-
proves the OpenPose model and obtains the complete joint
information for workers in sewing.

3.1 Joint positioning

The OpenPose model adopts a VGG-16 deep learning net-
work and dual-channel CNN residual network structure (Ye
et al., 2022). Figure 2 shows the structure of OpenPose. The
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Figure 1. The comparison of the OGG method and visual servo method in the trajectory acquisition and trajectory tracking.

Table 1. The OpenPose model structure convolution kernel number.

Stage C1 C2 C3 C4 C5 Output

F – – – – – 512
Stage 1 8 16 32 64 128 640
Stage 2 16 32 64 128 256 768
Stage 3 16 32 64 128 256 768
Stage 4 16 32 64 128 256 768
Stage 5 32 64 128 256 512 1024
Stage 6 32 64 128 256 512 1024

first 10 layers of VGG-16 obtain the original feature maps
F of the action image and then connect three 3× 3 convo-
lution kernels, which extract deep feature information and
spatial texture information while retaining some shallow in-
formation, where max pooling uses 1× 1 convolution ker-
nels, which make the network deeper to extract higher-level
features. Experiments show that the six stages can make the
model converge as quickly as possible without overfitting.
The output of each stage is sent to the next stage together
with the feature of several sub-networks. The convolution
part of each stage is a residual network structure composed of
a feature map for operation, and the joint positioning results
are output after six stages.

The OpenPose model structure is introduced as shown in
Table 1. C1–C5 represent the number of convolution kernels
of each convolutional layer in a single channel. F represents
the feature map part of the direct output. Stage 1–Stage 6
represent the six stages of the dual-channel CNN structure.

The two CNN channels of the OpenPose model predict
the position of joints and limbs, respectively. Channel 1 pre-
dicts the position of the joint points, which is represented
by the size of the part confidence maps (PCMs). The con-
fidence value is the Gaussian response of the pixel from

the joint point, and the closer the pixel to the joint point,
the larger the response value. The non-maximum suppres-
sion (NMS) algorithm is used to obtain the peak value of
all Gaussian responses as the network output at this stage,
which is recorded as S1; Channel 2 predicts part affinity
fields (PAFs) of joint points. The PAF represents the posi-
tion of the limb and the direction of the pixels on the limb,
which is recorded as L1. If the pixel is outside the limb, the
PAF is 0; if the pixel is on the limb, the PAF between xj1 and
xj2 is (xj2− xj1)/

∥∥xj2− xj1
∥∥

2.
After six stages of network training, the position informa-

tion on all joint points and the direction vector of connected
joint points are obtained. When the greedy reasoning algo-
rithm is used to connect joint limbs and the total affinity be-
tween the two joint points is calculated iteratively to the max-
imum, the loss function of the model converges and the skele-
ton connection between the joint limbs can be obtained. The
loss functions of channels 1 and 2 at Stage t are expressed as
f tS and f tL. The loss function is calculated in Eq. (1).

f tS =

J∑
j=1

∑
P

W (p) ·
∥∥∥Stj (p)− S∗j (p)

∥∥∥2

2

f tL =

C∑
c=1

∑
P

W (p) ·
∥∥Ltc(p)−L∗c (p)

∥∥2
2 (1)

Here, J andC represent the quantity of S andL, respectively.
For a joint point p, if the label of p is missing, W (p) is 0,
and the loss function does not calculate this point; if W (p)
is 1, it means that the label of p is successful, and the loss
function of the point is calculated. f tS is the L2 norm between
the predicted value St and the ground truth (GT) S∗, and f tL
is the same. (S∗j (p),L∗c (p)) represents the key tag of model
training. The total loss function is the sum of the loss function
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Figure 2. Posture feature extraction process.

of each sub-stage network, as shown in Eq. (2):

f =

T∑
t=1

(f tS + f
t
L). (2)

3.2 Improved OpenPose model

In order to solve the problem of joint positioning failure
caused by the shielding of some upper limbs by fabric, this
paper corrects the joint point label by label fusion and im-
proves the loss function of OpenPose in the process of cal-
culating the loss function of the model (Kato et al., 2018).
The original model is used to generate labels for the data set
PT = (ST (p),LT (p)). The label that was marked when the
model was trained (y∗ = (S∗j (p),L∗c (p))) was combined with
PT to get a new label (yLC = (SLCj (p),LLCc (p))) as a label
for the current model training. The calculation formula for
the new label is given by

SLCj (p)=max
(
S∗j (p),STj (p)

)
,

LLCc (p)=

{
L∗c (p)

(∥∥L∗c (p)
∥∥

2 >
∥∥LTc (p)

∥∥
2

)
LTc (p) (otherwise),

(3)

and the loss function after label correction is

f tS =

J∑
j=1

∑
P

W (p) ·
∥∥∥Stj (p)− SLCj (p)

∥∥∥2

2
,

f tL =

C∑
c=1

∑
P

W (p) ·
∥∥∥Ltc(p)−LLCc (p)

∥∥∥2

2
. (4)

In order to verify the effectiveness of the improved model,
a comparative experiment on human motion recognition is
carried out. The COCO human skeleton frame data set is
used for model training, and mean average precision (MAP)

Table 2. Comparison of the results of different models on the
COCO human body data set.

Model MAP (%) FPS

DeeperCut 62.2 6.4
Mask R-CNN 73.6 8.2
OpenPose 74.5 8.7
This study 78.7 9.1

is used as the accuracy evaluation index to represent the aver-
age positioning accuracy of all joint points; FPS (frames per
second) is used as the time evaluation index to represent the
number of picture frames tested per second. Table 2 presents
the comparison results.

It can be seen from Table 2 that compared with DeeperCut,
the accuracy of this method is improved by 16.5 percentage
points and FPS is improved by 2.7. Compared with Mask
R-CNN, the accuracy is improved by 5.1 percentage points
and FPS is improved by 0.3. Compared with OpenPose, the
accuracy is improved by 4.2 percentage points and FPS is
improved by 0.4. Figure 2 shows the recognition results of
human upper-limb joints before and after improvement.

Figure 3 shows that the improved model can correct the
joint point label, reposition the right wrist joint, establish the
limb connection with the right elbow joint, and successfully
identify the right arm of the human body.

4 Robot sewing-action-following method

The obtained coordinates of upper-limb joints of the worker’s
sewing action are taken as training samples. We considered
the time factor for the clustering process on the nodes of
the training samples, and GMM mixed coding is used on
the clustering nodes. The expectation maximization (EM) al-
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Figure 3. Comparison chart of the recognition effect of the improved model. (a) Before improvement. (b) After improvement.

gorithm is adopted to cluster the model parameters, so as
to maximize the probability of the model based on histori-
cal data. Clusters representing Gaussian components are ob-
tained, and each cluster represents a joint. So the worker’s
sewing action is composed of motion. GMR is used to pre-
dict the motion of joint training, and the conditional expected
value and variance of the model are constantly updated ac-
cording to the prediction error. The expected value and vari-
ance become the parameters of motion learning.

4.1 GMM sewing motion mixed coding

In order to enable the robot to simultaneously learn the joint
motion information and the corresponding time information,
the GMM is used to encode the obtained sewing motion tra-
jectory (Xie et al., 2017). The sewing action of the worker’s
upper limb contains the motion trajectory information on
shoulder, elbow, and wrist joints. The same period t(t =
1000ms) is used to divide the motion trajectory of each joint
into several motion elements, each of which represents a sub-
process of the sewing action of a joint. The GMM� is estab-
lished to carry out mixed coding for each segment-of-motion
element, and each element is represented by seven dimen-
sions: a one-dimensional timestamp t and a six-dimensional
joint posture of the robot h= {x,y,z,α,β,θ}. In order to de-
termine the predicted trajectory according to the comparison
of different trajectory probabilities, the GMM is used to es-
tablish the joint distribution probability density function ofN
Gaussian components. Each Gaussian component represents
a coded motion element:

p(t,h|�)=
N∑
n=1

πnpn

(
t,h|µn,

∑
n

)
. (5)

Here, t and h, respectively, represent the time stamp and joint
posture of the motion element in the model �, and πn, pn,
µn, and

∑
n are the prior value, conditional probability den-

sity, mean value, and covariance of the nth Gaussian compo-
nent, respectively.

Firstly, the sewing trajectory data are modeled by prob-
ability density function, and the training trajectory data are
cluster-analyzed by the GMM. To improve the convergence
speed of the algorithm, the k-means algorithm is used for
GMM initialization. By using the EM algorithm, the param-
eters in the probability density function are estimated un-
til convergence. According to the conditional distribution of
data conforming to a normal distribution, the regression func-
tion ofN Gaussian components is obtained, which is used for
GMR trajectory prediction learning.

4.2 GMR sewing trajectory prediction

GMR has been used to calculate the mean function and vari-
ance function of each moving element, and the N Gaussian
regression functions are mixed and weighted to predict the
trajectory regression. By updating the conditional expected
value and variance in the learning trajectory parameters, the
trajectory information on the sewing action is learned, and
the trajectory of the robot following the action is generated
(Cheng et al., 2021).

In the ith motion element model �i , the time value t is
used to query the trajectory h of each time step. For a spe-
cific time step t̂ , the conditional expected value µ̂h and vari-
ance

∑̂
h are estimated by GMR for attitude ĥ, and the joint

probability density function is

p
(
t̂ ,h|�

)
=

N∑
n=1

πnpn

(
t̂ |µ̂h,n,

∑̂
hh,n

)
pn

(
t̂ |µ̂t,n,

∑̂
t t,n

)
. (6)

Here, µ̂h,n represents the mean value corresponding to the
kth Gaussian component posture h when the time step is t̂ .∑̂
hh,n means that when the time step is t̂ and the mean is

µ̂h,n, the query condition of the nth Gaussian component is
the variance corresponding to the attitude h. The same can be
obtained for µ̂t,n and

∑̂
t t,n.
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In Eq. (6),

µ̂h,n = µh,n+
∑
th,n

(∑
t t,n

)−1 (
t̂ −µh,n

)
,

∑̂
hh,n
=

∑
hh,n

−

∑
ht,n

(∑
t t,n

)−1∑
th,n

. (7)

µh,n represents the mean value corresponding to the nth
Gaussian component time t and attitude h;

∑
t t,n and

∑
th,n,

respectively, indicate that when the mean value is µh,n, the
query condition is the variance corresponding to time t and
attitude h. The same can be obtained for

∑
hh,n and

∑
ht,n.

Then, for a specific step size t̂ , the mixing weight of the
N th Gaussian component is employed in the program as

βn
(
t̂
)
=

πnp
(
t̂ |µt,n,

∑
t t,n

)∑N
n=1πnp

(
t̂ |µt,n,

∑
t t,n

) . (8)

Therefore, the GMR model of the trajectory, that is, the
predicted value of the output, is f

(
t̂
)
, computed as follows:

f
(
t̂
)
=

N∑
n=1

βn
(
t̂
)
µ̂h,n. (9)

The corresponding variance for v(t̂) is

v(t̂)=
N∑
n=1

βn
(
t̂
)(
µ̂2
h,n+

∑̂
hh,n

)
−

(
N∑
n=1

βn
(
t̂
)
µ̂h,n

)2

. (10)

By substituting the learned conditional expected value
µ̂h,n and variance

∑̂
hh,n into Eq. (10), the Gaussian mixture

regression function can be weighted and mixed to complete
the regression prediction of the sewing trajectory. According
to the trajectory prediction results, the robot can generate the
following motion trajectory of each joint to realize the learn-
ing and tracking of sewing actions.

4.3 GMM weight adjustment

The traditional GMM has poor data processing ability for
sewing trajectories on time series, resulting in a lack of
smoothness of GMM convergence. Therefore, in this pa-
per, an autoregressive integrated moving average (ARIMA)
model is used to process the sewing action trajectory, so
that the trajectory data tend to be stable (Ma et al., 2022).
Through the error analysis of the ARIMA model, the weight
of the GMM is adjusted by weighted fusion.

According to the similarity between the GMM and the
ARIMA model, SI(Ri,Rj ) is defined, where i 6= j . Ri and
Rj are the reference of the GMM and the ARIMA model, re-
spectively. DI(Ri,Rj )=

∣∣Ri −Rj ∣∣ shows the reliability dif-
ference between different models, and SI(Ri,Rj )DI(Ri,Rj )
meets the requirements of a normal distribution. The simi-
larity of the two models is shown in Eq. (11). The larger the

distance between the reliability analysis results, the smaller
the similarity of the two models.

SI(Ri,Rj )= e−DI(Ri ,Rj ) (11)

The degree of mutual support in the two models can be
expressed as

A(Mi)=
1

n− 1

n∑
j=1,j 6=i

SI(Ri,Rj ). (12)

The mutual support between the results of the two models
is the dynamic weight of each model, which is

ωi =
A(Mi)
n∑
i=1
A(Mi)

. (13)

After the weight adjustment, the probability density func-
tion of the joint distribution of n Gaussian components is es-
tablished using the GMM as follows:

p(t,h|�)=
n∑
i=1

ωiπipi

(
t,h|µi,

∑
i

)
. (14)

In order to verify the smoothness of the sewing motion
track processed by the GMM after weight adjustment, this
paper takes the single-motion element of the sewing trajec-
tory as an example, the traditional GMM and the weight-
adjusted GMM are used in MATLAB to process the sewing
action trajectory, and the GMM smoothness is compared.
The results are shown in Fig. 4.

Figure 4a–b and c–d, respectively, show the model con-
vergence process when the GMM processes a single sewing
motion element before and after weight adjustment. When
the variance of the GMM is σ 2

= 0.05, the model converges
to the position of the red area in Fig. 4b and d. By comparing
the convergence process of the GMM in Fig. 4, it is found
that the processing of trajectory data by the traditional GMM
lacks smoothness and tends to fall into the local extremum in
the convergence process. However, the GMM convergence
curve after weight adjustment is smoother, and the conver-
gence process is more stable. The model does not easily pro-
duce extreme local values, which is conducive to predicting
and following the sewing action trajectory of GMR.

5 Experiment and result analysis

In order to verify the following effect of the OGG method,
the sewing action recognition experiment, the sewing ac-
tion learning simulation experiment, the sewing trajectory
tracking simulation experiment, and the robot following ex-
periment were carried out. The experimenter showed the
sewing action and collected images with an industrial cam-
era. This information on upper-limb action was extracted
for the sewing action learning simulation experiment, which
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Figure 4. The GMM handles the convergence process of kinematic
elements. (a–b) Traditional GMM. (c–d) Weight-adjusted GMM.

demonstrated the feasibility and learning effect of the OGG
method. Finally, the stability and application value of the
OGG method is verified by the sewing trajectory tracking
simulation experiment and the robot following experiment,
and the effectiveness is verified by comparing the results with
the visual servo system.

5.1 Sewing actions recognition experiment

In the process of sewing, there are often actions such as mov-
ing the fabric, allocating the fabric, and turning the fabric.
According to these actions, the experimenter conducted three
groups of teaching sewing action demonstrations. The size of
the fabric was 260× 160 mm, and the working radius of the
robot with 6 degrees of freedom was 850 mm, which was in
line with the working space of the robot.

The improved OpenPose model was used to conduct pos-
ture recognition for teaching sewing actions. Figure 5a, b,
and c are the recognition results of three groups of teaching
sewing actions, respectively. After the recognition is success-
ful, the coordinate changes in the shoulder, elbow, and wrist
joints of the human right arm in each action are recorded.
The sewing track corresponding to each joint is obtained as
the track sample for the robot to learn.

5.2 Sewing action learning simulation experiment

After the recognition by the OpenPose model is completed,
the coordinate changes corresponding to the right arm joint

are recorded during the sewing action. The motion tracks
of the wrist, elbow, and shoulder of the human right arm
are obtained, as shown in Fig. 6, where the yellow, purple,
and green curves represent the motion trajectory of the wrist
joint, elbow joint, and shoulder joint, respectively. Points A,
B, C and A′, B′, C′ are the starting and ending positions of
the wrist joint, elbow joint, and shoulder joint, respectively.
As can be seen from Fig. 6, when moving fabric, the mo-
tion amplitude of the three joints of the right arm is relatively
small. When the fabric was aligned, the motion amplitude of
the wrist joint in the vertical direction increased significantly.
In the process of fabric flipping, the motion amplitude of the
three joints in the vertical direction is large, which accords
with the kinematic characteristics of the human body in real-
ity.

The GMM and GMR are used to encode and learn each
complete trajectory. The two-dimensional projection of the
learned trajectory is shown in Fig. 7, where each two-
dimensional curve represents the learning result of a joint
motion trajectory in Fig. 6. Figure 7a corresponds to the
motion track of the shoulder joint when moving the fabric,
namely the green track in Fig. 6a. Figure 7b corresponds to
the wrist motion track when aligning the fabric, namely the
yellow track in Fig. 6b. Figure 7c corresponds to the elbow
action trajectory when flipping the fabric, which is the purple
trajectory in Fig. 6c.

In Fig. 7, the light brown curve represents the training
data, black ellipses represent the two-dimensional Gaussian
characteristics of motion elements, and the brown line rep-
resents the learning path. Elements of the three movements
have different characteristics; for example in Fig. 6a, a third

of the GMM covariance is
∑
=

[
1 0.32

0.32 1

]
, a fourth of

the GMM covariance is
∑
=

[
1 0.76

0.76 1

]
, the trajectory

curve has an inflection point when the variance is bigger, and
the trajectory curve is smoother when the variance is small.
For the same reason, the variance of the second GMM in
Fig. 7b and that of the third GMM in Fig. 7c are both large.
The results show that the proposed method can effectively
capture the constraint conditions at each motion element and
teach the trajectory information for each motion element, so
as for the robot to effectively learn the sewing action.

5.3 Sewing trajectory tracking simulation experiment

When the worker moves the fabric, the three joints of the
shoulder, elbow, and wrist all move a long distance, which is
more conducive to verifying the tracking effect of the sewing
motion trajectory compared with aligning the fabric and flip-
ping the fabric. Therefore, this paper takes the motion trajec-
tory of the three joints of the right arm in moving the fabric
as an example. We use the simulation model of robot with
6 degrees of freedom built in the Robot Operating System
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Figure 5. Recognition result of teaching sewing motion. (a) Move the fabric. (b) Align the fabric. (c) Flip the fabric.

Figure 6. Sewing motion trajectory diagram. (a) Move the fabric. (b) Align the fabric. (c) Flip the fabric.

(ROS) to carry out the simulation experiment of robot trajec-
tory tracking.

Input the angle values of the right arm shoulder joint, el-
bow joint, and wrist joint, respectively, into joints 2, 3, and
4 of the robot simulation model in ROS. Each joint of the
robot will move to the desired position, so that the robot can
track the teaching sewing track. In this paper, the Kalman
prediction method and the GMM–GMR method are used to
calculate the joint angle values.

The Kalman prediction method was used to predict the
joint angle value in the trajectory interpolation process. The
next joint angle value was predicted according to the cur-
rent joint angle value, and the optimal value was calculated
according to the predicted and measured values of the joint
angle.

The process of joint angle change using the GMM–GMR
method is shown in Fig. 8a–f. The robot model in the Gazebo
physical simulation platform follows the sewing motion tra-
jectory according to the received expected joint angle and
broadcasts the status of each joint to monitor the robot model
joints 2, 3, and 4 in real time in the terminal. The arc of mo-
tion changes.

Figure 9 shows trajectory tracking curves and correspond-
ing error curves of joints 2, 3, and 4 in the process of robot
motion tracking.

Figure 9a–c show the trajectory tracking curves of joints 2,
3, and 4. The dashed brown line represents the motion of the

target joint angle, the solid orange line represents the motion
of the joint angle of the GMR model, and the dashed blue
line represents the motion of the joint angle of the Kalman
model. Figure 9d–f show the tracking error curves of joints 2,
3, and 4. The solid orange line represents the tracking error in
the GMR model, and the solid blue line represents the track-
ing error in the Kalman model. Figure 9d–f illustrate that the
GMR model has a smaller trajectory tracking error than the
Kalman model.

From the trajectory tracking curve and error tracking curve
of joints 2, 3, and 4, it can be seen that the joints of the robot
will have an error of 3–5◦ at the initial stage of motion. This
is because when the robot enters the motion state from the
static state, the moving joints will have a relatively large jit-
ter, thus causing interference with the trajectory tracking. By
comparing the error tracking curves of the Kalman model
and the GMR model at each joint, the tracking error in the
Kalman model increases significantly after 2 s. The reason
for this is that the Kalman model has a relatively stable judg-
ment for the prediction in a short time and cannot effectively
process the long-term noisy trajectory data. The tracking er-
ror in the GMR model decreases with the increase in time,
and its accuracy is higher than that of the Kalman model.
In the tracking error curves of joints 2, 3, and 4, compar-
ing the error changes in the GMR model and Kalman model
within 0–1 s, it can be seen that the GMR model can reduce
the tracking error in a shorter time. The reason for this is that
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Figure 7. Sewing motion trajectory learning results. (a) Move the fabric. (b) Align the fabric. (c) Flip the fabric.

Figure 8. Trajectory tracking simulation experiment.

the time variable is added to the GMR model and the con-
tinuity of robot movement with time is taken into account.
Comparing the error tracking curve, it can be seen that the
accuracy and reliability of the GMR model are better than
the Kalman model, which proves that the OGG method has
better real-time performance and learning ability.

5.4 Robot following experiment with the OGG method

In the working space, the robot can use 6 degrees of freedom
to get to a particular point with a given attitude. The sewing

task in this paper can be completed only with robot with 6
degrees of freedom (Schrimpf et al., 2014). In this paper,
the TA6_R3_RevB1 robot in the laboratory is used to con-
duct physical verification experiments on the designed robot
sewing action following the system. The robot has 6 degrees
of freedom, and the DSP28335 is used as the controller of
the robot. The controller and the robot are connected through
controller area network (CAN) communication.

We perform a human sewing action follow-up verification
experiment on a robotic platform with 6 degrees of freedom,
as shown in Fig. 10a–f. The improved OpenPose model is
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Figure 9. Tracking and error curves of joint motion trajectories for GMR and Kalman methods. (a–c) Joint trajectory tracking curve. (d–
f) Joint tracking error curve.

used to obtain the coordinates of the upper-limb joint nodes
of the human body in the sewing action. The joint coordinates
are mapped to the robot system under ROS through the three-
dimensional coordinate mapping. The GMM–GMR method
is used to give the robot joint trajectory point speed and
time attributes corresponding to the sewing action. The robot
movement learns from a series of angle values correspond-
ing to each joint and sends them to the controller. Each joint
moves to the desired angle in turn to complete the tracking
of the teaching sewing action.

In the action of flipping the fabric, the end of the robot has
a large range of motion in the workspace, which can test the
accuracy of the OGG method more comprehensively. There-
fore, taking the teaching sewing action of flipping the fab-
ric as an example, the following experiment is carried out to
compare trajectory tracking curves and corresponding error
curves of joints.

To realize the mapping of joint pixel coordinates to robot
three-dimensional coordinates, the position data in the robot
workspace are obtained through the transformation matrix
calculation. The sewing trajectory composed of the posi-
tion data is the target trajectory, which obtains the target
joint angle. The comparison method in Fig. 11 is the visual
servo method in Fig. 1. The comparison results are shown in
Fig. 11.

Figure 11a–c show the trajectory tracking curves of
joints 2, 3, and 4. The dashed brown line represents the target
joint motion, the solid orange line represents the joint motion
after using the OGG method, and the dashed blue line repre-
sents the joint motion after using the visual servo method.
Figure 11d–f show the tracking error curves of joints 2, 3,

and 4. The solid orange line represents the tracking error in
the OGG method, and the solid blue line represents the track-
ing error in the visual servo method. Figure 11 shows that the
trajectory tracking error in the OGG method is smaller than
that of the visual servo method.

It is observed that the results shown in Fig. 11 are similar
to what was shown in Fig. 9, where there is an initial 3–6◦

error in the joint motion of the robot. By comparing the error
tracking curves of the two methods, we found that the track-
ing error in the visual servo method increased significantly
after 1 s, while the tracking error in the OGG method de-
creased over time and had a higher accuracy than the visual
servo method.

Furthermore, in an effort to compare which is better in
terms of tracking between the OGG method and the visual
servo method, we examined the two methods by compar-
ing the precision of the robot end effector tracking the hu-
man wrist, during the action of flipping the fabric. In order
to quantitatively analyze the accuracy of the robot end ef-
fector tracking the human wrist, we used the mean squared
error (MSE) to evaluate its error. To avoid randomness, we
collected 200 sampling points.

We analyzed the errors in the x-, y-, and z-axis directions
of the robot workspace separately. The comparison results of
the tracking errors in the two methods are shown in Table 3.
The comparison of the data shows that the tracking accuracy
of the OGG method is significantly better than that of the
visual servo method.
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Figure 10. The human sewing action follow-up verification.

Figure 11. Tracking and error curves of joint motion trajectories for OGG and visual servo methods. (a–c) Joint trajectory tracking curve.
(d–f) Joint tracking error curve.

Table 3. Error in robot end effector tracking human wrist.

Method x axis (mm) y axis (mm) z axis (mm)

OGG 1.74 0.62 2.58
Visual servo 4.12 1.18 5.75

6 Conclusions

We propose a vision-based robot sewing-action-following
system. Through the robot sewing-action-following experi-
ment in the simulation and the real environment, the follow-
ing conclusions are drawn.

The improved OpenPose model can accurately obtain the
sewing trajectory of the upper limb in a complex environment
where the joints are occluded, ensuring the accuracy of ac-
tion recognition. When the GMM mixes coding time factors
and clustering nodes, the EM algorithm is used to process
the clustering process of the sewing trajectory. The weight of
the GMM is adjusted through the error analysis and weighted
fusion of the ARIMA model, which increases the stability of
the convergence process of the GMM. The experimental re-
sults show that the detection accuracy of the improved Open-
Pose model is 78.7 %, and the processing speed is 9.1 FPS.
Compared with the visual servo method, the OGG method
has a smaller overall error in the tracking accuracy of the
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robot’s sewing movement. It is easier to achieve stability in
the initial motion stage.

The experimental results show that the OGG method has a
strong sewing-action-following ability. It can accurately de-
tect workers’ sewing actions in complex scenes, which pro-
vides a theoretical basis and technical support for the intelli-
gent development of collaborative sewing robots.

In human–robot collaborative sewing, worker and robot
cooperate to complete complex sewing tasks. This paper only
completed the robot imitation stage. To complete the col-
laborative sewing task, the robot also needs to go through
a practice phase, gathering learning experience directly from
online interaction. In the process of online interaction, the
robot can update network parameters through model-free re-
inforcement learning. Meanwhile we also need to consider
the safety of human–robot collaboration.
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