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Abstract. When patients with lower limb dyskinesia use robots for rehabilitation training, gait parameters are
of great significance for disease diagnosis and rehabilitation evaluation. Gait measurement is usually carried out
by using optical motion capture systems, pressure plates and so on. However, it is difficult to apply these systems
to lower limb rehabilitation robots due to their high price, limited scope and wearing requirements. At the same
time, most of the current applications in robots focus on the basic gait parameters (such as step length and step
speed) for robot control or user intention recognition. Therefore, this paper proposes an online gait analysis
algorithm for lower limb rehabilitation robots, which uses a lidar sensor as the gait data acquisition sensor. The
device is installed on the lower limb rehabilitation robot, which not only avoids the problems of decline in the
detection accuracy and failure of leg tracking caused by lidar placement on the ground, but it also calculates
seven gait parameters, such as step length, stride length, gait cycle and stance time, with high precision in real
time. At the same time, the walking track of the patient may not be straight, and the lidar coordinate system
is also changed due to the movement of the lower limb rehabilitation robot when the patient moves forward.
In order to overcome this situation, a spatial parameter-splicing algorithm based on a time series is proposed to
effectively reduce the error impact on gait spatiotemporal parameters. The experimental results show that the gait
analysis algorithm proposed in this paper can measure the gait parameters effectively and accurately. Except for
the swing time and double support time, which are calculated with large relative errors due to their small values,
the relative errors of the remaining gait parameters are kept below 8 %, meeting the requirements of clinical
applications.

1 Introduction

In recent years, lower limb rehabilitation robots have been
widely used in rehabilitation training due to their advantages
of task repeatability, motion controllability, measurement re-
liability and high feedback (Qian and Bi, 2015). They mainly
helps patients with lower limb dyskinesia from conditions
such as stroke, Parkinson’s disease, spinal cord injury and
so on to carry out dependent ambulation and gradually im-
prove their gait. In addition, the analysis of patients’ gait
under the lower limb rehabilitation robot can provide ob-
jective and accurate evaluation parameters for rehabilitation
doctors. The study has shown that quantitative gait analysis is
helpful in the early diagnosis of disease and detection of the

patients’ rehabilitation status in clinical applications. Quan-
titative data will also enhance their confidence in recovery
(Prakash et al., 2018). Traditionally, most hospitals adopt the
visual observation method, in which doctors directly observe
the walking state of patients and make a subjective judgment
of the patient’s condition according to their experience. Com-
pared with quantitative analysis based on instruments, this is
subjective and has low retest reliability.

With the development of sensor technology, quantitative
gait analysis has gradually attracted extensive attention and
research. At present, methods of gait feature extraction are
mainly divided into several categories: collecting image data
of human movement for detection and tracking, feature ex-
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traction identification and the establishment of human mod-
els (Ahmed et al., 2015; Hynes et al., 2021; Wagner et
al., 2023); attaching external markers captured by optical
systems (Hutchison et al., 2015; Matjačić et al., 2017; Ziegler
et al., 2020) and capturing gait information such as ground
reaction force through force plates with dense and high-
frequency pressure sensor arrays (Costilla-Reyes et al., 2019;
Singh et al., 2017; Vera-Rodriguez et al., 2011). However, the
devices used in these methods are often not easily applied to
the general public due to their high costs, high hardware re-
quirements, large space requirements and limited scope. In-
stead, some scholars use wearable sensors of relatively small
size to analyze gait, for instance, integrating and attaching in-
ertial sensors (accelerometers, gyroscopes, etc.) to the body
surface (thighs, back or feet, etc.) and measuring accelera-
tion and angular velocity changes during walking (Buckley
et al., 2020; Gurchiek et al., 2020; Q. Ji et al., 2018; Li et
al., 2020); embedding sensors (pressure sensors, accelerom-
eters or gyroscopes) into shoes, socks or insoles (Amitrano
et al., 2020; Eizentals et al., 2018; Wang et al., 2019) and in-
tegrating sensor systems to construct three-dimensional hu-
man joint motion (Baghdadi et al., 2018; Li et al., 2018; Liu
et al., 2011). Nevertheless, compared with problems such as
poor universality, high wearing requirements and complex
operation of wearable sensors, recently, some researchers
have put forward the method of measuring gait parameters
with lidar sensors as they are low cost and easy to set up and
move (Duong and Suh, 2020; Iwai et al., 2019; Yorozu et
al., 2015a, b).

Gait analysis has been widely used in assisting robotic
control strategies (Cifuentes and Frizera, 2016; Shi et
al., 2020; Ye et al., 2020), detecting abnormal gait and assist-
ing machines to ameliorate patients’ gait (Lim et al., 2016).
Among them, regarding the aspect of gait analysis using li-
dar, because the sensor itself is characterized by small size
and non-contact measurement, it is very suitable for instal-
lation on mobile devices. At the moment, there is much re-
search on lidar in mobile robots (Piezzo et al., 2017; Yorozu
and Takahashi, 2016, 2020) and intelligent walkers (Bayón
et al., 2017; Xu et al., 2018).

In Yorozu and Takahashi (2020), the lidar sensor is
mounted on the service robot to track the gait and estimate
the pedestrian’s body direction, such as forward, backward,
U-turn and other movements, namely position, speed and leg
state. In Yorozu and Takahashi (2016), the proposed leg de-
tection method can effectively identify the cross steps, re-
duce the possibility of losing track of legs and better serve
the safety collision avoidance of autonomous mobile robots.
It realizes leg detection through leg pattern recognition and
data association analysis. In Piezzo et al. (2017), a service
robot for monitoring and encouraging the elderly to walk is
proposed, and the step length of the elderly is measured by
lidar. In Xu et al. (2018), a walking-aid robot system is pro-
posed that uses a force-sensing resistor and a laser ranging
finder to detect the intended human motion expressed by the

user’s upper and lower limbs so as to detect if the user is go-
ing to fall. A rehabilitation robotic platform for patients with
cerebral palsy is proposed in Bayón et al. (2017). Among
them, the system is based on the motion control of detecting
the user’s leg position and motor movement to control the lin-
ear speed of the platform, so as to improve the dependence
of patients in the rehabilitation process.

In summary, most of the cases applied to robots are fo-
cused on gait serving robot control, user intention recogni-
tion and gait cycle identification based on offline models.
However, the current gait analysis method is rarely applied to
lower limb rehabilitation robots. Traditional detection meth-
ods also have a variety of problems: due to the complexity
of the lower limb rehabilitation robot structure, there is usu-
ally an occlusion problem. At the same time, the test sub-
jects need to wear external markers and ensure that the mark-
ers will not loosen or fall off easily during the test, which is
not suitable for daily walking training of patients. As walk-
ing training with rehabilitation robots usually requires long
distances, some sensors (such as inertial sensors and floor
pressure sensors) cannot meet the measurement requirements
well. Based on this, this paper selects a non-contact lidar sen-
sor to collect data, which is installed on the lower limb reha-
bilitation robot. Without affecting daily rehabilitation train-
ing, it can also avoid the problems of decreased detection
accuracy and leg tracking failure caused by the lidar sensor
being placed on the ground.

Although sensors for measuring gait parameters have been
proposed and evaluated in many studies, all literature on
measuring gait parameters with lidar has adopted an offline
model. In addition, in several algorithms based on other sen-
sors, the fixed threshold (Li et al., 2021) and adaptive thresh-
old methods (Bejarano et al., 2015) have been proposed.

In this paper, an online gait analysis algorithm applied to
lower limb rehabilitation robot is designed. Based on the gait
point cloud data collected by lidar, seven gait parameters
including step length, stride length, gait cycle, stance time,
step time, swing time and double support time are calculated
with high accuracy in real time through four core algorithms:
adaptive classification based on a sliding threshold, leg con-
tour extraction, gait phase division and gait parameter cal-
culation. Meanwhile, compared with the previous gait algo-
rithm, which calculated the difference between the left and
right legs in the y axis direction as the approximate spatial
parameter, a spatial parameter-splicing algorithm based on
a time series is proposed to effectively reduce the error in-
fluence of lidar coordinate changes and oblique walking tra-
jectory on the gait spatiotemporal parameters. Based on the
above gait algorithm, a dynamic window method is proposed,
with 100 data points as the dynamic window. In addition, the
method can identify the gait in real time at a sampling fre-
quency of 10 Hz and calculate the gait parameters online. Fi-
nally, the optical motion capture system is used as a reference
system to verify the feasibility and accuracy of the proposed
gait analysis algorithm.
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Figure 1. A photograph of the lidar sensor.

2 System overview

In this paper, a two-dimensional lidar sensor (RPLIDAR
A2M8, Shanghai Silan Technology Co., LTD., Shanghai,
China) with a scanning frequency of 5–15 Hz (typical value
is 10 Hz) selected. The lidar sensor is connected with a driv-
ing board. External devices power and transmit data through
two USB interfaces of the driving board, as shown in Fig. 1.

The robot used in this paper is the iReGo lower limb re-
habilitation robot independently developed by our research
group (J. C. Ji et al., 2018). The gait analysis system is di-
vided into three parts: lidar, lower computer and upper com-
puter of the lower limb rehabilitation robot. In order to more
clearly describe the lower limb rehabilitation robot in this pa-
per, Fig. 2 shows a 3D model drawing.

Lidar is used for the collection of leg data, and the data are
transmitted to the upper computer of the lower limb rehabili-
tation robot through a USB cable. At the same time, the lidar
sensor is powered by the terminal module of the lower com-
puter system. The upper computer sends control instructions
to the lidar sensor through the software interactive interface,
so as to start and stop the sensor and stop the data transmis-
sion. In the meantime, the gait data from the lidar sensor are
received for visual display and the real-time data and gait
parameters are stored in the database for persistent manage-
ment. The software interface is shown in Fig. 3.

Users need to wear a belt when using the robot for train-
ing. Figure 4 shows a scene of actually using the lower limb
rehabilitation robot. Among them, the lidar sensor is installed
in the control cabinet, which is sealed with a steel plate, and
the control cabinet is slotted at the height of the laser emis-
sion light source so that the laser beam can be emitted from
the control cabinet to obtain the user’s gait information. Sim-
ilarly, the relationship between the Cartesian coordinate sys-
tem established by lidar and the human body can be clearly
seen in Fig. 4. The opposite direction of human body walk-

ing is the positive direction of the y axis, and the measured
angle of 0◦ under polar coordinates is the positive direction
of the x axis (i.e., the left direction of human body).

Since lidar can only detect a two-dimensional spatial
plane, the installation height of the lidar sensor is adjusted to
the height above the ground plane, and the distance between
the tester’s calf and the sensor is detected as the data basis
of the gait parameter algorithm (see Fig. 5). Multiple tests
in this paper have shown that the installation height should
be 280 mm, which is designed to ensure that no shoes are
detected during walking.

3 Method

3.1 Algorithm

As shown in Fig. 6, the core of the gait analysis algorithm is
to convert the original data collected by lidar into gait param-
eters, which is mainly composed of the following processes.
Firstly, the point cloud data obtained from lidar scanning is
preprocessed, and the range of data points is selected to elim-
inate the interference of miscellaneous points on the subse-
quent algorithm. Secondly, adaptive classification of selected
data points, leg contour extraction and determination of left
and right leg positions are carried out, in which the possible
state of legs together is considered. In addition, according
to the time series of the left and right leg positions in the
walking process, the peak and trough points (namely toe off
the ground, TO, and heel strike on the ground, HS) are iden-
tified. Finally, on the basis of gait phase division, the gait
spatial parameter-splicing algorithm based on the time series
is proposed to calculate the gait spatiotemporal parameters.
The algorithm takes into account the variability of the lidar
coordinate system applied to the robot, which can reduce the
influence of its error on the gait spatiotemporal parameters.
Based on the above gait analysis algorithm, 100 data points
are used as the dynamic window to calculate the gait param-
eters of each frame and realize the real-time performance of
gait analysis.

3.2 Preprocessing

Define the arbitrary measurement data point pij obtained in
the ith scan as

pij =
(
ti,θij ,dij ,xij ,yij

)
, (1)

where j is the index of the data points from each scan, ti is
the relative time at which the scan begins, θij is the relative
angle of the j th point in the ith scan, dij is the Euclidean
distance between the j th point and the origin defined by lidar,
and (xijyij ) is the Cartesian coordinate converted from the
original polar coordinate of the j th point.

Assume that the lidar scanning plane is parallel to the
ground, its position with respect to the rehabilitation robot
remains unchanged and the x axis is defined as the measured
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Figure 2. 3D model of lower limb rehabilitation robot.

Figure 3. The software interface of walking train.

angle of 0 ◦. The established Cartesian coordinate system is
shown in Fig. 4, and the specific formula is

xij = dij cosθij , (2)

yij = dij sinθij . (3)

Then the set of all laser points obtained in the ith scan is
defined as follows:

Si =
{
pij
}
j = 1,2, . . .,n, (4)

where n is the number of points at the ith scan (namely 800
for RPLIDAR A2M8).

Since the position of the lidar sensor remains unchanged
relative to the rehabilitation robot, in order to extract the data
points corresponding to the leg contour, a rectangular mea-
surement area is defined with a certain range of effectiveness.
In this case, the set of laser points is defined as follows:

SW
i =

{
pij ∈ Si,Xmin < xij <Xmax,Ymin < yij < Ymax

}
, (5)

where Xmin, Xmax, Ymin and Ymax are the limits of the mea-
surement area in Cartesian coordinates, in this paper taken as
[−300,300,0,1200].
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Figure 4. Practical scenario using the lower limb rehabilitation
robot.

Figure 5. Influence of different lidar mounting heights on measure-
ments.

3.3 Leg recognition

3.3.1 Adaptive classification based on sliding threshold

In order to detect leg position, clustering of discrete data
points obtained by lidar is a key step in leg recognition. In
this paper, an adaptive clustering algorithm based on a sliding
threshold is adopted. When the distance between the current
point pij and the previous point pi,j−1 is less than a thresh-
old value Dij_max, it can be roughly classified as the same
class of data points. Conversely, pij and pi,j−1 are in differ-
ent categories: pij is the first point of the new category while

Figure 6. Flow chart of gait analysis algorithm.

pi,j−1 is the last point of the old category. It is specifically
expressed as

Dij_max = di,j−1

(
sin1θ

sin(λ−1θ )

)
+ 3σ, (6)

where Dij_max is the threshold calculated of the j th laser
point in the ith scan, 1θ is the scanning angle resolution of
the lidar sensor, σ is the measurement distance error and λ
is the adjustment constant parameter. Since the angle reso-
lution and measuring distance error of the lidar sensor itself
are 0.7◦ and 10 mm, after multiple experimental adjustments
and verifications, in this paper, we take σ = 0.01 m, λ= 10◦.

As shown in Fig. 7, the process of the proposed adaptive
clustering method based on a sliding threshold can be clearly
represented, where1θ is amplified to simplify the visualiza-
tion process. Figure 8 shows the classification results.

According to experimental experience, at least three points
on each leg are required for leg circle fitting. If the number of
data points in the category obtained after adaptive clustering
is less than 3, such as some outliers, these data points will be
excluded as environmental noise. There is also the possibility
that the lidar sensor itself scans for less laser points.

Meanwhile, the distance between the j th laser point and
the previous laser point in the ith scan is defined as

Dij =
∣∣∣∣pij −pi,j−1

∣∣∣∣=√(xij − xi,j−1
)2
+
(
yij − yi,j−1

)2
. (7)

Then the clustering condition is

Qi =

{
Qi + 1 Dij >Dij_max

Qi Dij ≤Dij_max
, (8)
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Figure 7. Schematic diagram of adaptive clustering principle.

Figure 8. Data classification of adaptive clustering based on a slid-
ing threshold.

where Qi is the number of categories of data points scanned
at the ith time.

3.3.2 Leg contour extraction

The cross section between the laser scanning plane and the
human leg can be approximated as a circle. Since the lidar
sensor can only scan the contour of the calf from a certain
angle range, the obtained point cloud data set is an approxi-
mately circular arc and the complete contour of the calf can-
not be obtained, as shown in Fig. 8. Therefore, it is necessary
to fit the circle as the approximate contour of the calf.

In order to take stability into consideration, this paper first
uses a geometric method to calculate the matching circle, and
determines the matching circle parameters according to the

least square method, as follows:

min
n∑
j=1

[(
xij − x

(
θij
))2
+
(
yij − y

(
θij
))2]

. (9)

Then the center and radius of the matching circle of laser
data points in each frame can be obtained. However, through
experimental tests, it is found that the real-time performance
of this method cannot meet the predetermined requirements
in the case of real-time data acquisition, so this paper simpli-
fies it.

In the case of ideal clustering results (i.e., after adopting
an adaptive clustering algorithm based on a sliding thresh-
old, there are two classes of data points and the number of
each class of data points reaches above the required num-
ber of center fitting), we assume a cluster m of ith scan,
defining each data point in the cluster as rik = {xik,yik},
k = 1,2, . . .,nm. Based on experimental experience, the cir-
cle with a fixed radius of Rleg was initially defined as the
model for leg recognition. Estimate the location of the center
point of each cluster based on geometric constraints:

uim =
xi,ck ×

(√
x2
i,ck + y

2
i,ck +Rleg

)
√
x2
i,ck + y

2
i,ck

= cosβ ×
(√

x2
i,ck + y

2
i,ck +Rleg

)
, (10)

wim =
yi,ck ×

(√
x2
i,ck + y

2
i,ck +Rleg

)
√
x2
i,ck + y

2
i,ck

= sinβ ×
(√

x2
i,ck + y

2
i,ck +Rleg

)
, (11)

where ck is the intermediate value of the index of the data
points contained in the various clusters.

ck =median {k} , (12)

where Rleg is the fixed radius for fitting the center of the
leg circle, which is taken as 40 mm in this paper consid-
ering the user’s calf radius at the height of lidar scanning.
cim = {ti,uim,wim} is the estimated position of the center
point of the cluster in the ith scan. β is the angle between the
origin and the central point of each cluster.

In this mathematical geometry model, the estimated center
points of each cluster and the center points of the data point
index are considered to be numerically approximate in the
angle formed by the origin when the aspect ratio difference
is large. Figure 9 shows a schematic diagram of leg center
estimation in one scan, where the blue curve in the figure
represents the right foot of the tester and the red curve rep-
resents the left foot of the tester. Figure 10 shows the actual
fitting circle results.
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Figure 9. Estimation of leg center position.

Figure 10. Contour fitting results.

3.3.3 Leg tracking and differentiation

When the clustering result is ideal, let SWL
i represent the left

leg data point cluster and SWR
i represent the right leg data

point cluster. On the premise that the center position of the
two clusters is estimated, Li,m,m is defined as the Euclidean
distance between the center point position of the category
ci,m obtained by the ith scan and the center point position of
the previous scan ci−1,m.

Thus, let the distance Li,m,L of the left leg cluster and the
distance Li,m,R of the right leg cluster be defined as follows:

Li,m,L =
∣∣∣∣ci,m− ci−1,L

∣∣∣∣ , (13)

Li,m,R =
∣∣∣∣ci,m− ci−1,R

∣∣∣∣ . (14)

Before left and right leg judgment, left and right leg cluster
initialization is performed. According to the coordinate sys-
tem and the fixed gait law, the position of the left and right
legs corresponding to the two clusters are determined for the
first time through the abscissa size of the center in the first
frame, that is, the center point cluster with the smaller ab-
scissa value is the right foot cluster.

From this, the following model can be obtained:
ci,m ∈ S

WL
i Li,m,L < Li,m′,L only left foot

ci,m ∈ S
WR
i Li,m,R < Li,m′,R only right foot

ci,m ∈ S
WR
i uim < uim′ both feet

. (15)

However, in the actual situation, clustering is often not
ideal, as there may be more than two clusters that also meet
the number of leg center fitting requirements. In this case, a
judgment factor is proposed to select the first two categories
with a larger value as data point clusters for leg fitting. The
factor is defined as follows:

K =
nm

Li,m,m
, (16)

where nm is the number of data points within cluster m ob-
tained in the ith scan.

Considering the situation that legs may be together in the
actual walking process, the threshold L is set when only one
cluster exists after adaptive clustering. In this paper, L is
150 mm. When the distance between the first and the end
points in the cluster is greater than the threshold value, it
is considered that there are two types of clusters; otherwise,
there is only one type of clusters. The results can be obtained
according to the above model.

3.4 Gait feature detection based on peak values and
geometric constraints

Human walking is a periodic process. It can be concluded
that the leg coordinate time series of walking presents a curve
similar to a sine function. In the actual process of walking,
due to the influence of noise factors, the curve is prone to
a tiny jitter phenomenon, which leads to pseudo-peaks and
pseudo-troughs. This situation has great interference for the
recognition of two gait key points: HS and TO. Based on this,
a gait feature detection method based on peak values and ge-
ometric constraints is adopted in this paper. If the following
two conditions are met, the feature point is considered effec-
tive.

Condition 1. Perform first-order curve fitting on the cur-
rent gait data, excluding pseudo-troughs above the curve
and pseudo-peaks below the curve.
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Figure 11. Gait curve diagram.

Condition 2. For the same side, there is only one trough
between adjacent peaks. For the opposite side, there is
only one peak between adjacent peaks.

3.5 Calculation of gait parameters

After detecting the gait features of the point cloud data, it
is represented by the smooth leg coordinate time series. The
actual curve is shown in Fig. 11, which roughly presents a
periodic law, but it is not as smooth as the ideal curve, with
pseudo-troughs and pseudo-peaks.

According to the gait curve obtained, the peak value (TO)
and trough value (HS) in the figure are extracted as eigen-
values. In this paper, HS time is defined as the time point at
which the heel touches the ground, which is approximately
the discrete time corresponding to the minimum value in the
smooth time series. TO time is defined as the time point when
the toe leaves the ground, which is approximately the discrete
time corresponding to the maximum value in the smooth time
series. HS and TO positions are defined as the distance from
the lidar sensor in the forward and backward directions.

In this paper, seven spatiotemporal parameters are cal-
culated (i.e., stance time, swing time, double support time,
stride time, step time, stride length and step length). A dia-
gram of gait time parameters is shown in Fig. 12. The for-
mula is as follows:

In the kth gait cycle, THS(k) and TTO(k) are assumed to
be the corresponding moments of HS and TO, and T ′TO(k) is
assumed to be the moment that the opposite toe leaves the
ground.

Taking the heel striking the ground as the starting point
of a cycle, then gait cycle T is the time from one heel strik-
ing to the next heel striking on the same side, which can be
expressed as

T = THS(k+ 1)− THS(k). (17)

Figure 12. Schematic diagram of gait time parameters.

Swing time Tsw is the time from the TO to the heel striking
on the same side, expressed as

Tsw = THS(k)− TTO(k). (18)

Stance time Tst is the time from heel striking to the toe off
on the same side, expressed as

Tst = TTO(k)− THS(k). (19)

Double support time Tds is the time from heel striking to
the opposite toe off, expressed as

Tds = T
′

TO(k)− THS(k). (20)

In the kth gait cycle, YHS(k) and Y ′HS(k) are assumed to be
the position coordinates when one heel strikes and the op-
posite heel strikes. The calculation method of standard gait
spatial parameters is as follows:

SL= YHS(k)−Y ′HS(k). (21)

Stride length is the longitudinal straight distance from one
heel striking to the next heel striking on the same side, ex-
pressed as

SR= YHS(k)−YHS(k+ 1). (22)

Since the measurement height of the lidar sensor is above
the ankle height of the tester, and the shoe height worn by
different people during the test also has an impact on the data
measured by lidar. A height factor G is introduced based on
the analysis of the human body model, as shown in Figs. 13
and 14.

According to the figure, the following two relationships
can be obtained:

D1−D2

Lc
=
HP−HR

HP
(23)

H 2
P +

(
Lc

2

)2

= L2
t , (24)

where Lc is the step length in a gait cycle and HR and HP
are the height of the lidar sensor and the human hip joint
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Figure 13. Gait parameter relationship diagram based on human
body model.

Figure 14. Gait parameter definition diagram.

from the ground, respectively. D1 and D2 are the distances
from the tester’s right and left legs to the origin, and Lt is the
tester’s leg length.

From this, the height factor can be obtained:

G=
HP

HP−HR
≈

Lt

Lt−HR
. (25)

Most previous research on lidar is based on the sensor be-
ing fixed to the ground plane to calculate the gait parameters.
In this paper, the lidar sensor is applied to the rehabilitation
robot. When calculating the gait parameters, especially the
step length parameter with a different frame, the direction of
the rehabilitation robot may not be straight forward during
the walking process, and the walking trajectory of the tester
may not be a straight line. Therefore, a spatial parameter-
splicing algorithm based on a time series is proposed, as
shown in Fig. 15.

Define the new center point of the leg position formed by
splicing as rNi in the ith scan, where rNi =

{
ti,x

N
i ,y

N
i

}
; then,

the formulas for calculating the step length is as follows:

Figure 15. Spatial parameter-splicing algorithm based on a time
series.

xNi = x
R
i − x

L
i + x

L
i−1, (26)

yNi = y
R
i − y

L
i + y

L
i−1, (27)

k =
yNi − y

R
i−1

xNi − x
R
i−1

, (28)

xTi =

(
k2
· xR
i−1+ k ·

(
yL
i−1− y

R
i−1
)
+ xL

i−1
)

k2+ 1
, (29)

yTi = k ·
(
xTi − x

R
i−1

)
+ yR

i−1, (30)

where a vertical line is drawn from the support foot to the
track of the swing foot and the vertical point is defined as tTi ,
tTi =

{
ti,x

T
i ,y

T
i

}
. The Euclidean distance between tTi and

rNi is defined as the step length.
Through this algorithm, the errors of gait space parame-

ters measured in mobile robots (such as the following two
cases) can be reduced, as shown in Figs. 16 and 17. In the
difference algorithm (Sakdarakse and Somboon, 2020), the
step length is the distance in the y direction between the legs
at the HS point. Figure 16 shows a case where the walking
track is oblique and the lidar coordinate system remains un-
changed. sl and sw are the step length and step width calcu-
lated by the difference algorithm, and sl′ and sw′ are the step
length and step width calculated by the algorithm proposed
in this paper. Similarly, the stride length is the distance on the
diagonal line.

Figure 17 shows a situation when the track is straight and
the lidar coordinate system changes. For the angle change of
the lidar sensor θ , a = a1, sl, sl2 and sl3 are the actual step
length, the step length calculated by the proposed algorithm
and the step length calculated by the difference algorithm,
respectively. As can be seen from the figure, the parameters
calculated by the proposed algorithm in this paper are closer
to the actual parameters, and as θ increases and the spatial
parameters in actual walking are larger, the error can be ef-
fectively reduced by this algorithm.
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Figure 16. Walking path oblique condition.

Figure 17. Lidar coordinate system changes.

3.6 Online real-time analysis algorithm

Based on the above gait analysis algorithm, the post-
calculation of each gait parameter can be realized in the
case of data sets. However, the real-time ability of the algo-
rithm to recognize heel striking should be good. In this paper,
100 data points are taken as a dynamic window and 10 Hz is
taken as a sampling frequency. In addition, on the basis of
the 100 data points, whether the 99th data point is a trough
(that is, whether the leg heel strikes the ground) is identi-
fied. Through this dynamic window, the function of real-time
recognition of gait and calculation of gait parameters is real-
ized.

Finally, through the communication between the upper
and lower computers, the gait of the patient is collected in
real time and presented on the interface of the rehabilitation
robot, which brings the fun of walking training to the patient.
It also provides gait parameter data for doctors to evaluate pa-
tients’ recovery status, and the data are synchronously saved
to the cloud database so that doctors can remotely view pa-
tient reports at any time.

4 Experiment and results

4.1 Experimental setup

The optical motion capture system (OptiTrack, NaturalPoint,
Inc, Corvallis, USA) is used as the reference system. In order
to determine the joint location, optical markers are placed on
the testers’ knee joints and lateral ankles. A total of 22 mark-
ers are attached to each tester’s lower limbs (see Fig. 18 for
detailed marker locations). HS time (heel strike time) and TO
time (toe off time) are automatically estimated based on the
marked motion path. HS time is defined as the time when
the distance between the marks of the left and right lateral
malleolus of the leg maximizes in the direction of the tester
(Tanabe et al., 2017). The TO time is defined as the maxi-
mum angle between the calf (the line connecting the center
mark of the knee joint rigid body and the center mark of the
ankle joint rigid body) and the vertical line in the sagittal
plane. Based on this, HS position and TO position are calcu-
lated according to time. Therein, the origin of the coordinate
system set by the reference system is located at the middle
point of the walking distance.

The OptiTrack Prime 17W camera is set around the top
of the laboratory (see Fig. 19, where individual motion cap-
ture cameras are represented as M) to form the capture area
of the entire motion capture system. The rehabilitation robot
equipped with lidar is located at one end of the test area (rep-
resented by T in Fig. 19).

4.2 Verifying the effectiveness of the gait analysis
algorithm

To verify the validity of the proposed gait analysis algorithm,
six young testers (three males and three females: average
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Figure 18. Wearing details of the experimental tester.

age 24–26, height 170–175 cm and weight 50–60 kg) are re-
cruited to participate in this experiment. In this experiment,
each tester carries out five experiments. In the scene of us-
ing the rehabilitation robot, gait parameters calculated by the
proposed gait analysis algorithm are compared with those
measured by the OptiTrack.

The experiment scenario is as follows: before the experi-
ment, the leg length and height of the shoes worn by the tester
are recorded, and the tester wears the belt of the rehabilita-
tion robot. The robot moves forward with the force sensor in
the belt, and there is a certain distance between the tester’s
waist and the robot. In the five experiments, the first three
experiments are carried out according to the fixed step length
and the number of steps marked on the ground (the fixed step
length is 350 mm according to the height of the tester in this
experiment). For the last two times, it is enough to follow a
certain length of a straight path according to the usual walk-
ing habits of the tester, taking into account the differences in
walking speed and stride length among the different individ-
uals. At the same time, the optical markers are affixed to 22
positions of the lower limbs of the tester. During the experi-
ment, the synchronization of the gait analysis algorithm and
data collected by 3D motion capture system is ensured.

4.3 Analysis of gait parameter results

The statistics and errors of gait parameters detected by the
reference system and the proposed gait analysis algorithm
are shown in Table 1.

As can be seen from Table 1, for the measurement of
gait parameters, because the values of swing time and dou-
ble support time are relatively small compared with other
time parameters, the relative errors of the two are relatively
large, 23.87 % and 14.27 %, respectively. The relative errors
of the other parameters are all kept below 8 %. At the same
time, from the measured step length and step width, the mea-
sured values of 360.3, 714.2, 368.3 and 728.6 mm in the ex-
perimental group and the control group are slightly differ-

ent from the fixed step length of 350 mm and step width of
700 mm specified in the experiment. In summary, compared
with other gait analysis systems (Fudickar et al., 2018; Iwai
et al., 2019), the measurement error of lidar gait analysis al-
gorithm is within the acceptable range. In addition, it can
be observed that the walking cycle time of healthy adults is
about 1.3 s, the swing time is about 0.47 s and the stance time
is about 0.83 s (Kotiadis et al., 2010). On the lower limb re-
habilitation robot, the corresponding time parameter value is
significantly extended, indicating that rehabilitation walking
in the lower limb rehabilitation robot is different from walk-
ing in natural, unrestrained conditions.

The correlation and consistency between the two systems
can be evaluated by the Pearson correlation coefficient and
intra-group correlation coefficient (ICC(2,1)) and 95 % con-
fidence interval. When using Pearson correlation analysis, it
is necessary to judge its significance (p) and correlation co-
efficient (r). Significance indicates whether there is a rela-
tionship between the two system, while the correlation co-
efficient is used to judge the strength of the relationship be-
tween the two systems. The correlation of gait parameters
between the two systems is shown in Fig. 20. Table 2 shows
the correlation and consistency of gait parameters measured
between the two systems.

It can be seen from Fig. 20 and Table 2 that all param-
eters present a significant positive correlation (p < 0.01),
among which all gait parameters except swing time show
good correlation and consistency with the dynamic arrest
system (r > 0.75, ICC(2,1)> 0.75). The gait cycle and the
stance time show a very high correlation and consistency
(r = 0.99, ICC(2,1)= 0.99 and r = 0.98, ICC(2,1)= 0.98),
while the swing time has relatively low correlation and con-
sistency compared with other time parameters (r = 0.47,
ICC(2,1)= 0.45). This may be caused by two factors. First,
the swing time parameter itself has a small measurement
range, and ICC is the ratio of the true variance to the true
variance plus error. If the true variance is small, the ICC
will be relatively small. Secondly, there are certain errors in
the measurement method itself. The proposed algorithm will
have similar errors no matter how the measurement param-
eters change. Therefore, the decrease of the measured value
with the measurement error may reduce the concurrent valid-
ity of the time parameter measured in the proposed method
(Iwai et al., 2019).

Bland–Altman (BA) diagram is a common clinical method
used to evaluate the consistency of two measurement meth-
ods. At the same time, in order to prove the influence of
individuals in each gait parameter on the difference, a BA
diagram of each gait parameter is drawn for this paper (as
shown in Fig. 21). The horizontal axis represents the mean
value of the gait parameters of the two systems. The verti-
cal axis represents the difference between the measured val-
ues of the two systems. The blue horizontal solid line in the
middle represents the mean value of the difference. The or-
ange horizontal dashed line represents the position where the
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Figure 19. Experimental environment settings.

Table 1. Comparison of spatiotemporal parameters between the reference system and the proposed gait analysis algorithm.

Gait parameter Reference system Proposed system Absolute error Relative error MAE RMSE
mean±SD mean±SD mean±SD (%)

mean±SD

Gait cycle (s) 4.43± 1.27 4.47± 1.30 0.16± 0.14 3.57± 2.87 0.16 0.22
Step time (s) 2.24± 0.68 2.25± 0.70 0.17± 0.15 7.92± 6.38 0.17 0.23
Stance time (s) 3.57± 1.22 3.59± 1.23 0.19± 0.13 5.79± 4.15 0.19 0.23
Swing time (s) 0.86± 0.25 0.84± 0.18 0.19± 0.13 23.87± 17.12 0.19 0.23
Double support time (s) 1.37± 0.59 1.40± 0.58 0.17± 0.12 14.27± 11.01 0.17 0.21
Step length (mm) 360.3± 31.7 368.3± 32.9 18.1± 13.9 5.0± 3.8 18.1 22.8
Stride length (mm) 714.2± 50.2 728.6± 46.5 25.6± 15.9 3.6± 2.2 25.6 30.1

Table 2. Correlation of gait parameters between the proposed sys-
tem and the reference system.

Gait parameter p r ICC(2,1) [95 % CI]

Gait cycle (s) < 0.01 0.99 0.99 [0.98–0.99]
Step time (s) < 0.01 0.95 0.95 [0.92–0.96]
Stance time (s) < 0.01 0.98 0.98 [0.97–0.99]
Swing time (s) < 0.01 0.47 0.45 [0.27–0.60]
Double support time (s) < 0.01 0.94 0.94 [0.91–0.96]
Step length (mm) < 0.01 0.78 0.78 [0.70–0.83]
Stride length (mm) < 0.01 0.85 0.85 [0.77–0.90]

mean value of the difference is 0. The upper and lower brown
horizontal dashed lines respectively represent the upper and
lower limits of 95 % consistency limits, namely, the standard
deviation of 1.96 times.

If the difference of the measurement results follows a
normal distribution, then 95 % of the difference should lie
within mean± 1.96 SD. When most of the difference points
lie within this interval and the mean value of difference is
close to zero, this indicates that the consistency of the two
systems is better. As can be seen from Fig. 21, most of the
points fall within the consistency limit and the average value

of the difference is close to zero, which proves that the pro-
posed gait analysis algorithm and the reference system are
very consistent.

4.4 Result analysis of different spatial parameter
calculation methods

For the same point cloud data, the proposed spatial
parameter-splicing algorithm based on the time series and the
existing difference algorithm are used to compare step length
results. The statistical values and errors obtained are shown
in Table 3.

As can be seen from Table 3, when the tester walks ran-
domly along a linear path of a certain length in accordance
with their usual walking habits, the relative error and abso-
lute error of the step length calculated by the proposed al-
gorithm are 4 % and 14.2 mm. Compared with the relative
error of 5.9 % and the absolute error of 21.2 mm calculated
by the existing difference algorithm, it can be seen that the
error calculated by the proposed algorithm is smaller than
that calculated by the difference spatial parameter algorithm.
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Figure 20. Correlation of gait parameters between the two systems: (a) gait cycle, (b) double support time, (c) stance time, (d) swing time,
(e) step time, (f) step length and (g) stride length.

Table 3. Comparison of step length of the two algorithms.

Algorithm Minimum value Maximum value Absolute error Relative error MAE RMSE
(mm) (mm) (mm) (%)

mean±SD mean±SD

Spatial parameter-splicing algorithm 0.4 34.3 14.2± 10.1 4.0± 2.8 14.2 17.4
Difference algorithm 1.1 57.7 21.2± 13.7 5.9± 3.8 21.2 25.2
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Figure 21. Bland–Altman diagrams of the two systems with respect to gait parameters: (a) gait cycle, (b) double support time, (c) stance
time, (d) swing time, (e) step time, (f) step length and (g) stride length.

4.5 Analysis of the real-time effect of the proposed
algorithm

In the above experiment, when the tester used the lower limb
rehabilitation robot for walking training, the robot interactive
interface simultaneously showed the footprints of the tester.
For example, the tester steps out on their left leg and we
record the moment when their left leg reaches HS. The pro-

posed gait analysis algorithm synchronously detects the data
of the left leg. The processed data are transmitted to the robot
through the interface based on TCP communication, and the
footprint image and parameters are synchronously displayed
on the interface.

As can be seen from Table 4, the average recognition de-
lay of the proposed gait analysis algorithm is about 0.486 s,
which is within the acceptable range. The recognition delay
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Table 4. Average recognition delay and RMSE of the proposed al-
gorithm.

Algorithm Absolute error (s) MAE RMSE
mean±SD

Proposed algorithm 0.486± 0.204 0.486 0.527

is mainly the detection delay of an HS event and the fluctua-
tion of the leg data in the HS event. The scanning frequency
of the lidar sensor itself is 10 Hz. According to the law of
the gait curve, after reaching the HS point, the HS situation
can be determined only when the next data point is detected
within at least 0.1 s.

5 Conclusion

At present, most quantitative gait analysis is usually limited
by site and scope and cannot be well integrated with lower
limb rehabilitation robots. In this paper, a gait analysis al-
gorithm for a lower limb rehabilitation robot is proposed,
which uses lidar to obtain gait phase information and gait
spatiotemporal parameters. The algorithm includes the adap-
tive clustering method based on a sliding threshold, leg con-
tour fitting and center estimation, recognition of gait phase
key points and calculation of gait time and space parame-
ters. To effectively reduce the errors caused by patient tra-
jectory deviation and changes in the lidar coordinate sys-
tem due to robot motion during walking, a spatiotemporal
parameter-splicing algorithm based on a time series is pro-
posed. Compared with the gait parameters measured by the
optical motion capture system, the experimental results ver-
ify the effectiveness and accuracy of the proposed algorithm.
Except for the two parameters of double support time and
swing time, which have relatively large relative errors due
to their small values, the relative errors of other gait parame-
ters are kept below 8 %. Based on the gait analysis algorithm,
a dynamic window method is proposed in this study, which
takes 10 Hz as the sampling frequency and 100 data points as
the dynamic window to identify whether the 99th data point
is the HS point, so as to realize real-time recognition and gait
parameter calculation. The experimental results show that the
average recognition delay of the proposed algorithm is about
0.486 s, which is within the acceptable range, and it shows
good performance for the application of online gait parame-
ter calculation of mobile robots.

In future development work, emphasis should be placed
on the application of online gait parameters in real-time
robot control and interaction strategies, intelligent recogni-
tion of hemiplegia and other abnormal gaits, adaptive adjust-
ment of rehabilitation plan, etc., which have good application
prospects in the fields of mobile robots, rehabilitation and di-
agnostic monitoring.
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