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Abstract. The face gear tooth surface is a high-order variable curvature surface, and the curvature of the surface
is complicated, so it is difficult to describe the characteristics of the face gear tooth surface by a specific equation.
In this paper, the discrete curvature relation of the surface is used instead of an analytical equation to describe
a spatial meshing surface, and the traditional meshing theory is neutralized to analyze the characteristics of the
face gear tooth surface. Firstly, according to the structural characteristics of the face gear, the sampling method
of the face gear tooth surface is analyzed, and the mathematical model of fitting the tooth surface contact point
is established. Then, the discrete asymptotic surface development analysis method is studied, and the ellipsoid
contact analysis method of the face gear pair is established by simplifying the conjugate surface and its region.
Finally, the contact analysis method of the discrete tooth surface is studied, and the instantaneous contact ellipse
of the face gear tooth surface is calculated, which formed a new numerical meshing method of space curved
surface.

1 Introduction

The gear is the symbol of industrialization. The face gear is
an advanced new configuration gear. The face gear transmis-
sion is a new type of advanced transmission that meshes with
a kind of cylindrical spur gear and bevel gear. Compared with
the traditional spiral bevel gear drive, it has the advantages
of compact structure, small size, lightweight, high bearing
capacity, high reliability, good interchangeability, no axial
force, and remarkable processing efficiency, which can im-
prove the transmission power and lifetime.

Face gear transmission has broad application prospects in
the field of intersecting shaft power and motion transmission
because of its simple structure, low vibration and noise, in-
sensitivity to installation error, power split, and high inter-
changeability. NASA has funded projects such as the Ad-
vanced Rotor Program and the Rotorcraft Transmission Re-
search Program (RDS-21), which have successfully applied
face gear transmission technology to the power split device
of a helicopter main reducer, greatly improving the overall
performance of the transmission system. The face gear trans-
mission technology has been successfully applied to the au-

tomotive power transmission system. Audi has successfully
applied the face gear technology to the central differential,
which reduces the weight compared to the traditional trans-
mission mode and increases the torque distribution ratio be-
tween the front and rear wheels. In addition, the contribution
ratio between the front and rear wheels has been improved. In
addition, face gear transmission is also used in gear transmis-
sion systems such as reducers, dividing heads, high-end ma-
chine tools, radars, ships, fishing reels, and bicycle sprockets,
and has achieved good results.

Gear meshing theory is the basis for face gear tooth sur-
face forming; tooth contact analysis is performed to examine
the meshing and bearing contact of the face gear pairs com-
posed of a cylindrical spur gear and the bevel gear. Chang
et al. (2000) derived the analytical geometry of the face gear
drive and its mathematical model for tooth contact analysis
of the face gear, as well as the spur pinion meshing. Litvin
et al. (2002a, b) proposed an approach for design, tooth con-
tact analysis, and stress analysis of formate-generated spiral
bevel gears. And they also considered a face gear drive with a
spur involute pinion; the generation of the face gear is based
on the application of a grinding or cutting worm, whereas the
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conventional method of generation is based on the applica-
tion of an involute shaper. Liu and Tsay (2002) investigated
the contact characteristics of bevel gear pairs with inter-
sected, crossed, and parallel axes. Guingand et al. (2005a, b)
presented a procedure for analyzing the instantaneous loaded
contact of a face gear and its experimental validation. And
they further presented a method of simulating loaded face
gear meshing. Tang and Liu (2013) introduced the analytical
method based on Hertz theory on normal contact of elastic
solids and the numerical method based on the finite-element
method, calculating the contact stress of a face gear drive
with spur involute pinion. To analyze the transmission per-
formance of a face gear in real working conditions, Wang et
al. (2012) investigated a calculation approach for load equiv-
alent error of alignment to analyze the support system and
tooth deformation of face gear drives. Lee (2016) proposed a
cosine face gear, which is composed of a cosine pinion and a
cosine face gear. According to the theory of conjugate tooth
surfaces, they created the condition of undercutting for the
cosine face gear.

He et al. (2017) obtained the mathematical model of the
helical curve face gear and the tooth contact analysis. Li et
al. (2017) proposed a face gear tooth modeling that is not
based on conjugation theories, and they derived the extreme
geometry boundary conditions of face gear teeth according
to face gear tooth geometry characteristics. Based on the
method of the principal curvatures of the space curve face,
Lin et al. (2017) presented the loaded tooth contact analysis
of the curve face gear pair. Wu et al. (2018) derived a method,
based on the geometry characteristic of the tooth surface, to
calculate the points as an even distribution on the tooth sur-
face. Fu et al. (2018) proposed the application of a profile-
shifted grinding disk to generate an offset, non-orthogonal
and profile-shifted face gear. To solve the problem of the
meshing efficiency of spur face gear sliding friction, Dong
et al. (2018) proposed a gear based on elastohydrodynamic
lubrication theory. Zhou et al. (2019) established an enve-
lope method, according to the geometry characteristic of the
shaper tooth surface, and the mathematical model of the face
gear tooth surface can be represented as an explicit rather
than an implicit one. Zschippang et al. (2000) elaborated on
a method for the generation of a face gear with helix angle,
shaft angle, and axle offset. Feng et al. (2019) investigated
entire tooth surface precise modeling and systematic analysis
method for face gear drives with an involute helical pinion.
Liu and Zhang (2019) presented a spherical face gear pair
by substituting the convex spherical gear for the pinion of a
conventional face gear pair.

At present, the research on the meshing method of face
gear transmission mainly focuses on coordinate transforma-
tion and formula derivation between the tool and target pro-
file. Although some improvements have been made by op-
timizing the derivation process and transforming the bound-
ary conditions, the induced curvature and other parameters
cannot be accurately expressed in a specific equation. Given

Figure 1. Tooth surface sampling diagram.

this, this paper presents data showing that the face gear tooth
surface is expressed in the form of the second-order differ-
ential equation, and the meshing characteristics of the face
gear complex surface can be analyzed by approximating the
complex surface of the face gear. In the process of gear de-
sign, the visibility of the tooth surface contact state is poor,
and finite-element calculation is complicated. There is a lack
of unified calculation standards, and the results are difficult
to control, making it difficult to guide machining. The long
feedback period of face gear design, processing, and testing
is seriously affected by the engineering application of a face
gear.

Based on the abovementioned research, this paper pro-
poses the digital tooth surface meshing theory of face gears,
analyzes the discrete and sampling methods of the face gear
surface, studies the analysis method of curvature of the spa-
tial surface, and establishes the contact analysis method of
space spheroid. The method can quickly define the tooth sur-
face meshing performance of the face gear, which greatly
shortens the face gear sub-design cycle. The design quality
and stability are improved, and a foundation is laid for fur-
ther engineering applications of face gears.

2 Tooth surface discretization and fitting

2.1 Discrete sampling

To analyze the meshing process of space-meshing digital
teeth, this paper establishes a one-to-one correspondence be-
tween the measuring point and the space tooth surface equa-
tion. When selecting sampling points on the tooth surface or
measuring the tooth surface with the coordinate measuring
machine, the sampling points should be evenly distributed as
far as possible. In general, 9 points are selected evenly in the
direction of the teeth (U direction), and 5 points are selected
evenly in the direction of the tooth width (V direction); 45
points are selected in total, and the grid intersection is shown
in Fig. 1. This practice shows that if the selection is too few,
it is not enough to reflect the shape of the tooth surface. How-
ever, if there are too many points, the sampling error of the
sampling point may cause a local fluctuation of the tooth sur-
face.
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Figure 2. Schematic diagram of the grid point coordinate of a face
gear.

The meshing of the face gear tooth surface is shown in
Fig. 2. For any grid node on the tooth surface, the distance
rgrid from this point to the origin O2 of the face gear coor-
dinate system S2(x2,y2,z2) and the distance zgrid along the
tooth height direction of the face gear can be expressed as

{
rgrid =

√
r2

2x + r
2
2y,

zgrid = r2z,
(1)

where r2x , r2y , and r2z are the components of the theoretical
equation r2(ϕs,θks) of the face gear along the three directions
of the coordinate system.

Equation (1) is a system of binary nonlinear equations
about θks and φs. For a face gear with given parameters, rgrid
and zgrid are presented as numbers. Using the Newton itera-
tion method to solve the above nonlinear equations, the coor-
dinates (x2,y2,z2) and normal vectors (n2x,n2y,n2z) at each
grid point of the face gear tooth surface can be calculated.

2.2 Establish the tooth surface fitting equation

The cubic B-spline function is used to fit the tooth surface
sampling points, and the tooth surface fitting equation is ob-
tained as follows:

Si = [Ui] [ms] [O2P i] [mt] [Vi] , (2)

where

[Ui]=
[
u3
i u2

i ui 1
]

(ui ∈ [0,1]) ,

[Vi]=
[
v3
i v2

i vi 1
]

(vi ∈ [0,1]) ,

[ms]=


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

 ,

[mt]=


−1 3 −3 1
3 −6 0 4
−3 3 3 1
1 0 0 0

 .
[O2P i] is a matrix of four rows and four columns of control
points.

The control point is obtained by the type value point, and
according to the geometrical invariance of the B-spline func-
tion, the coordinate transformation of the surface Si is only
performed by the coordinate transformation of its control
point. Thus, the following formula can be obtained:

MSi = [Ui] [ms] [O2P i] [mt] [Vi] . (3)

The surface normal vector N i can be obtained as

N i =
Siui ×Sivi∣∣Siui ×Sivi

∣∣ , (4)

where

Siui =
[
U̇i
]

[ms] |O2P i | [mt] [Vi]

and Sivi = [Ui] [ms] |O2P i | [mt]
[
V̇i
]

are the tangent vectors
in the U direction and V direction of the surface Si at the
point µ1:[
U̇i
]
=
[
3u2
i 2ui 1 0

]
,
[
V̇i
]
=
[
3v2
i 2vi 1 0

]
.

2.3 Mathematical model of the tooth surface contact
point

In Fig. 3, the solid line represents the situation of the instan-
taneous meshing contact between pinion 1 and face gear 2 at
some point T in the space. As shown in Fig. 3, T1 and T2 are
the points on the pinion and the face gear. R1 and R2 are the
position vectors of the points T1 and T2 in each coordinate
system, respectively. N1 and N2 are the unit normal vectors
of the pinion and the face gear at these two points.

In establishing the solution model of the contact point, it
can be assumed that pinion 1 is fixed in the coordinate system
61. Suppose that when face gear 2 rotated ϕ2 around its axis
P , T1 and T2 would have instantaneous contact at point T ,
and we have{

R2 =M (ϕ2P 2) ⊗ R2,

N1 =M (ϕ2P 2) ⊗ N1,
(5)

where (ϕ2P 2)⊗R2 represents when vector R2 rotates ϕ2
around the axis P 2. The equations consist of five equations

https://doi.org/10.5194/ms-14-305-2023 Mech. Sci., 14, 305–314, 2023



308 X. Chu et al.: Ellipsoid contact analysis of face gears

Figure 3. Face gear and pinion transmission.

with five unknowns (u1, v1, u2, v2, ϕ2). For the convenience
of further solution, Eq. (5) is converted. The following equa-
tion can be obtained:
G(X)=min {f (X)} ,

f (X)=|R1−M (ϕ2P 2) ⊗ R2|
/

(Q+ |N1−M (ϕ2P 2) ⊗ N2|),

xj ∈
[
aj ,bj

]
,

(6)

where in
{
X |xj (j = 0,1, . . .,4)

}
xj stands for the five un-

knowns (u1, v1, u2, v2, ϕ2); [aj ,bj ] is the corresponding in-
terval for xj ; and |R| is the length of the vector R. Equa-
tion (6) transforms the problem of solving nonlinear equa-
tions in a certain interval into the minimum value optimiza-
tion problem with constraints. In Eq. (6), Q(Q≥ 1) is intro-
duced to reduce the influence of the position vector at the
beginning of the search and to speed up the search. This is
because in the initial search the change in the length of the
position vector difference is not the same magnitude as the
change in the length of the unit normal vector, and its value
can be selected according to the specific situation.

When using this method to solve the contact point of the
tooth surface, the pinion can be rotated around its axis P1 to a
certain meshing position and fixed; the surface parameters of
the contact point and the rotation angle ϕ20 of the large wheel
at this moment can be solved. Then, the pinion in turn rotates
1ϕ1 around its axis P1, and it solves the rotation ϕ2 of the
face gear and calculates the angle increment1ϕ2 = ϕ

′

2−ϕ20
of the face gear.

Suppose that the pinion is rotated around the axis P1 by
angle 1ϕ1, then the tooth surface equation is S′

1. The one
corresponding to the angle of increment of a face gear is1ϕ2,
and the face gear tooth surface equation is S′

2. The tooth
surfaces S′

1 and S′
2 contact at point T ′, and the first-class

basic quantity of the tooth surface S′
1 and S′

2 are given as

Ei = S′2
ui, Fi = S′

ui ·S
′′

ui, Gi = S′2
vi . (7)

The second-class basic quantity is expressed as follows:

Li =Ni ·S
′
uui, Mi = n ·S′

uvi, Gi = nS
′
vvi, (8)

where n is the normal vector at point T ′c ; S′
ui is the first

derivative of the tooth surface i on the parameter ui ; and
S′
uvi is the second derivative of the tooth surface i on the

parameter ui .

3 Curvature analysis of space monolithic free-form
surface

The binary vector function r(u,v) has two parameters u and
v. When u and v change, its endpoint M will draw a contin-
uous surface S in space, and its equation can be expressed
as

r(u,v)= (x(u,v),y(u,v),z(u,v)) . (9)

Suppose thatM0 is any point on the surface S, and its surface
coordinates are u0 and v0. If we let v = v0 and only change
u, we can get a curve r = r(u,v0) passing throughM0 on the
surface S. Similarly, if we let u= u0 and only change v in
Eq. (1), we can get a curve r = r(u0,v) passing through M0
on the surface S. According to the properties of the space
surface, we can solve the first-order and second-order partial
derivatives.

ru (u0,v0)=
∂r (u0,v0)

∂u
, rv (u0,v0)=

∂r (u0,v0)
∂v

,

ruu (u0,v0)=
∂2r (u0,v0)

∂u2 , ruv (u0,v0)=
∂2r (u0,v0)
∂u∂v

,

rvv (u0,v0)=
∂2r (u0,v0)

∂v2 . (10)

The first fundamental homogeneous equation of the surface
is expressed as follows:

ds2
= Edu2

+ 2Fdudv+Gdv2, (11)

where E, F , andG are the coefficients of the first fundamen-
tal homogeneous equation, respectively.

E = (ru)2, F = rurv, G= (rv)2.

The second fundamental homogeneous equation of the
surface is expressed as follows:

ϕ = Ldu2
+ 2Mdudv+Ndv2, (12)

where L, M , and N are the coefficients of the second funda-
mental homogeneous equation, respectively.

L= nruu, M = nruv, N = nrvv. (13)
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The unit normal vector of surface S at M0 is expressed as
follows:

n=
ru× rv

|ru× rv|
. (14)

Substituting the coefficient of the first fundamental homo-
geneous equation into Eq. (14), then

n=
ru× rv
√
EG−F 2

. (15)

The normal curvature kn of the surface is expressed as fol-
lows:

kn = n
d2r

ds2 = kβn= k cosθ, (16)

where β is the main normal vector, and k is the curvature of
the curve r at M0; θ is the angle between β and n.

Substituting the coefficients of the first basic homoge-
neous form and the second basic homogeneous form, the for-
mula for calculating the normal curvature is expressed as fol-
lows:

kn =
Ldu2

+ 2Mdudv+Ndv2

Edu2+ 2Fdydv+Gdv2 . (17)

The torsion of curvature at points M along α = dr
ds is ex-

pressed as follows:

τg =−

(
dn
ds
,n,

dr
ds

)
. (18)

We introduce the coefficients of the first and second fun-
damental homogeneous equations to obtain the calculation
formula for the short-range torsion rate.

τg

=
(EM −FL)du2

+ (EN −GL)dudv+ (FN −GM)dv2
√
EF −G2

(
Edu2+ 2Fdudv+Gdv2

) (19)

Then, we have

τg =
1
2

dkn
dθ
. (20)

Let g1 and g2 be the main directions. The principal curva-
ture of direction g1 is k1, and the principal curvature in the
direction g2 is k2. The angle between α and g1 is θ . Accord-
ing to the Euler formula and the Bertrand formula, we have
the following:

kn = k1cos2θ + k2sin2θ =
k1+ k2

2
+
k1− k2

2
cos2θ,

τg =− (k1− k2) sinθ cosθ =−
k1− k1

2
sin2θ. (21)

Figure 4. Direction distribution diagram of the main curvature of
the face gear.

Set the angle between α1 and g1 to ϕ, and the angle be-
tween α2 and g1 to 90◦+ϕ. From Eq. (21), the normal cur-
vature and short-range torsion of the α1 direction and the α2
direction are expressed as follows:

kn1 =
k1+ k2

2
+
k1− k2

2
cos2ϕ,

kn1 =
k1+ k2

2
−
k1− k2

2
cos2ϕ,

τg =−
k1− k2

2
sin2ϕ. (22)

When we substitute them to kn1kn2− (τg1)2, we have the
following:

kn1kn2− (τg1)2
= k1k2. (23)

According to the above basic formula of the surface, the
curvature characteristics of the space free surface are ana-
lyzed. The simulation results of the face gear are shown in
Fig. 4.

4 Generative analysis of the discrete curvature
asymptotic surface

4.1 Curvature of the conjugate surface

Knowing two surfaces, when solving the conjugate motion
relationship of the surfaces in the contact process, the aver-
age curvature and Gaussian curvature are used to describe
the characteristics of the points on the surface. We suppose
that the two curvatures are denoted by k1 and k2 and are de-
termined by the following equations.

H =
k1+ k2

2
=
EN − 2FM +GL

2
(
EG−F 2

) ,

K = k1k2 =
LN −M2

EG−F 2 , (24)
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where E, F , and G are the first fundamental quantities of
the surface, and L, M , and N are the second fundamental
quantities of the surface.

The average curvature H is a key indicator of curvature,
and the Euler equation can prove that the average value of
normal curvature of a point on the surface along two orthog-
onal directions is the same; it equals the average curvature.
This shows that the curvature of a point only considers aver-
age curvature. Therefore, when the regional structure is sim-
plified, the substituted constructed surfaces must have equal
Gaussian curvature and mean curvature. In other words, it
should have the same principal curvature and main direction.
In some simple secondary, rotating surfaces, such as ellip-
soids, cylinders, and hyperboloids, the longitude lines and
latitude lines are geodesics, and the measuring torque is zero.
Therefore, the direction of the longitude line and latitude line
becomes the main direction and the main curvature, which
can replace the conjugate surface contact area.

4.2 Equations and expressions of the ellipsoid

According to the surface feature of the initial point, the sur-
face can be simplified to the elliptical surface, cylindrical
surface, and hyperboloid; all three types can be written as
general statements.

x2
+ f y2

+ z2
= a2 (25)

In the equation, f =± a
2

b2 , and a and b are the lengths of the
long axis and the short axis, respectively.

And this assumes b ≥ a, so

−1≤ f ≤ 1. (26)

When −1≤ f ≤ 0, it is a hyperbola.
When −f = 0, it is a circular cylinder with a radius of a.
When 0≤ f ≤ 1, it is the rotation of the ellipse.

Suppose that these three types of surfaces are all rotating
surfaces with the Y axis as the rotation axis; the longitude
line as a circle; and the latitude line as an elliptical spiral,
a straight line, or a hyperbola, respectively. The normal of
the ellipsoid is N = [x fy z]T , and its direction points to the
outside; the normal curvature of the longitude line and the
latitude line of the ellipsoid are given as
kg =

−f a2

[a2+f 2y2−f y2]
3
2
,

kt =
−1√

a2+ f 2y2− f y2
.

(27)

4.3 Replacement of the conjugate surface with an
ellipsoid

When a point P = [a 0 0]T on the surface of the ellipsoid
matches a point on the conjugate surface, its normal direction
should be the same as the fixed point. The main direction of

P is the same as that of the specified point on the conjugate
surface, and the principal curvature is equal. According to the
characteristics of the ellipsoid, the two main directions of the
P points should be the longitude line and the latitude line,
and the normal curvature of the longitude line and latitude
line should be{
kg =−f /a ,

kt =−1/a .
(28)

However, the absolute value of two normal curvatures is ex-
pressed as |kg| = a/b2 and |kt | = 1/a. Because b ≥ a, so
|kg| ≤ |kt |. This shows that the y axis is usually the long axis
of the ellipsoid. It is assumed that the two main curvatures on
the conjugate surface have the following relation: |k1| ≤ |k2|.
When the ellipsoid replaces the hyperboloid, i.e., kg = k1 and
kt = k2, we can deduce that a =−1/k2 and f = k1/k2.

5 Ellipsoid contact analysis (ECA)

After the ellipsoid replaces the conjugate surface, the prob-
lem of solving conjugate surfaces becomes the problem of
solving the minimum distance between two points. Suppose
that the two ellipsoids S1 and S2 are placed in two coordinate
systems σ1(O1−x1y1z1) and σ2(O2−x2y2z2), and S1 and S2
can be, respectively, expressed as follows:{
x2

1 + f1y
2
1 + z

2
1 = a

2
1,

x2
2 + f2y

2
2 + z

2
2 = a

2
2 .

(29)

The normal vector of the ellipsoid can be expressed as{
N1 =

[
x1 f1y1 z1

]T
,

N2 =
[
x2 f2y2 z2

]T
.

(30)

5.1 Minimum distance between ellipsoid and ellipsoid

Assume that the rotation matrix from σ2 to σ1 is expressed as
follows:

M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 . (31)

The vector between two coordinate centers (two ellipsoid
centers) can be expressed as

ρ =O1O2 =
[
ρx ρy ρz

]
. (32)

Based on the conjugate theory, the two points with the
minimum distance are usually on two conjugate surfaces, the
normal lines of the two points are parallel to each other, and
the vectors between the two points are parallel to the normal
line. Therefore, we have{
KnNl =MN2,

KrNl =Mr2− r1+p,
(33)
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where Kn and Kr are two unknown coefficients that can be
expressed as

Knx1 =M11x2+M12f2y2+M13z2,

Knf1y1 =M21x2+M22f2y2+M23z2,

Knz1 =M31x2+M32f2y2+M33z2,

Krx1 =M11x2+M12y2+M13z2− x1+ ρx,

Krf1y1 =M21x2+M22y2+M23z2− y1+ ρy,

Krz1 =M31x2+M32y2+M33z2− z1+ ρz.

(34)

The minimum distance between two points can be obtained
from the eight equations (Eqs. 32 and 34). To obtain the an-
alytical solution, the hypothesis of the ellipsoid should be
further simplified.

5.2 Analytical solution from point to ellipsoid

The ellipsoid S2 is simplified to a point, where x2, y2, and z2
are zero. According to the above derivation, we can obtain

(Kr + 1)x1 = ρx,

(Krf1+ 1)y1 = ρy,

(Kr + 1)z1 = ρz.

(35)

This can be obtained by substituting Eq. (35) into Eq. (32).

D1K
4
r +D2K

3
r +D3K

2
r +D4Kr +D5 = 0, (36)

where

D1 =−a
2
1f

2
1 ,

D2 =−2a2
1f1 (1− f1) ,

D3 = ρ
2
xf

2
1 + f1ρ

2
y + ρ

2
zf

2
1 − a

2
1
(
1+ 4f1+ f

2
1
)
,

D4 = 2
[(
ρ2
x1+ ρ

2
y + ρ

2
z

)
f1− a

2
1 − a

2
1f1

]
,

D5 = ρ
2
x + f1ρ

2
y + ρ

2
z − a

2
1 .

Four analytical solutions can be obtained from Eq. (36), two
of which are real solutions and the other two are imaginary
solutions. Figure 5 shows the diagram of the real solution.
The imaginary solution shown in Fig. 6 should be given up.
The two real solutions are the nearest A1 and the farthest A2
from P . Get rid of the farthest point according to the require-
ments. Then, point A1 of the analytical solution is obtained,
which is the closest point of the ellipse to P .

After obtaining the A1 point on the ellipsoid, the shortest
distance point B1 from A1 to S2 can be solved by repeating
the solution of the four polynomials of A1 to the ellipsoid S2.
Thus, an iterative process is completed. Figure 6 shows the
points Ai and Bi that have been iterated over six times. The
minimum distance can be obtained through finite iteration
and the iteration termination condition.

|rAi − rBi | −
∣∣rA(i−1)− rB(i−1)

∣∣≤ ε1,

|NAi ×NBi | ≤ ε2, (37)

where ε1 and ε2 represent the convergence precision.

Figure 5. Diagram of the real solution.

Figure 6. Schematic diagram of finite iteration.

5.3 The analytical solution of the ball to the ellipsoid

The main reason for the low solution speed is that the ellip-
soid surface features are not used. When the ellipsoid is sim-
plified to a point, all the curvature characteristics of the point
disappear. Therefore, the point can be reduced to a sphere
according to the curvature characteristic.

In general, the distance between the center of the sphere
and the center of the ellipsoid is the distance from the sphere
to the ellipsoid. Therefore, the shortest distance between the
two ellipsoids can be reduced to find the center of the sphere.
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Figure 7. An iterative process diagram of the ball to the ellipsoid.

We can derive kt ≥ kg; hence, the curvature of the sphere
is kt . The position vector roof of the sphere center can be
derived from the following equation.

ro = r −
N

|N |kt
(38)

This indicates that the center of the sphere is usually on the
y axis, and it is independent of the other two variables x and
z. The iterative process is shown in Fig. 7.

The conjugate of the surface shows that the two surfaces
revolve around their axis; the rotation angles are ϕ1 and ϕ2.
When ϕ1 is a constant, there must be ϕ2 to make the two sur-
faces in contact in a conjugate form. The rotation surface S2
should rotate at an angle to make the conjugate surface con-
tact. The two rotating surfaces are very close when in contact,
and their radius of rotation is very large, so the rotational mo-
tion of S2 can be simplified as a translation. Assume that the
unit vector of the translation direction is

δp =
[
δpx δpy δpz

]
, (39)

where δpx , δpy , and δpz are only related to ϕ2. Generally, the
direction of translation is not along the shortest path between
the two ellipsoids, but with an angle. Therefore, the distance
along the translation path to the ellipsoid S2 can be simpli-
fied as the projection of the shortest distance in the transla-
tion direction. Therefore, the approximate distance l can be
expressed as

l = δp (r1− r2) . (40)

When l is positive, it moves forward. On the contrary, when l
is negative, it moves in the opposite direction. Figure 8 shows
the process of the ellipsoid S2 approaching S1, which is an

Figure 8. The solving process of the ellipsoid S1 to the ellipsoid
S2.

iterative process. When the direction δp of the shift is the
same as the direction of the shortest distance, the root of the
equation can be solved step by step. Conversely, when the
angle between the two surfaces becomes larger, the impact
of the ellipsoid curvature on the approximation process will
be lower.

Apply the above analysis method to analyze the tooth con-
tact of the gear pair. First, the main curvature and main di-
rection of the tooth surface are calculated. Then, the regional
structure of the initial calculation point is simplified to the
ellipsoid based on the simplifying principle. ECA is applied
to a series of conjugate contact points on the tooth surface,
and the meshing line is available. Finally, the relative main
direction and the main curvature can be calculated according
to the curvature characteristics of the two surfaces. The size
and direction of the meshing point can also be calculated.

Taking the parameters shown in Table 1 as an example,
the calculated contact cloud diagram of the face gear tooth
surface is shown in Fig. 9. The tooth surface contact path
of the front gear can be seen from the figure. To avoid ex-
cessive tooth-bottom undercut and tooth-top sharpening, the
face gear width is designed to be 32 mm under the conditions
of processing. The surface contact trace of the face gear is
directed from the outer tooth top to the inner tooth bottom,
which can meet the requirements of face gear transmission
meshing contact. From the above analysis, it can be seen that
the application of ellipsoidal surface contact analysis theory
can quickly determine the meshing characteristics of the face
gear tooth surface and effectively shorten the development
cycle of the face gear.
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Table 1. Face gear pair design parameters.

Parameters Units Values

Module mm 8.5
Pressure angle ◦ 25
Tooth number of cylindrical gear – 12
Tooth number of a face gear – 17
Tooth width of a face gear mm 32
Tooth width of a spur gear mm 36

Figure 9. Contact-type cloud picture on the tooth surface.

6 Conclusions

This paper presents an ellipsoidal contact analysis method for
the meshing tooth surface of a face gear. Ellipsoidal substi-
tuting of the meshing surface can simplify the choke contact
process and avoid the singularity entering the analysis area,
thus improving the iteration speed and stability. The numer-
ical engagement method of the ellipsoid arc of high-order
face gears can be extended to the contact process analysis
of other complex surfaces. It provides a theoretical basis for
the rapid integrated optimization design of face gears. Some
conclusions are given as follows.

1. According to the characteristics of the face gear, the pre-
ferred method of the face gear flank sample point is es-
tablished, the flank sampling point is meshed by three
B-spline functions, the face gear flank fitting equation
is derived, and a mathematical model is formulated to
solve the contact point of the fitted flank using the com-
posite method.

2. With the two-curve direction as the reference direction,
the curvature of the surface at the determining point and
the short-range deflection rate are obtained.

3. To simplify the solution of the conjugate motion rela-
tionship in the theory of flank conjugate, it is proposed
to replace the conjugate surface with an elliptic body to

simplify the digital iterative process into an analytical
solution.
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