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Abstract. A robust position control algorithm with learning feedback gain automatic adjustment for collabora-
tive robots under uncertainty is proposed, aiming to compensate for the disturbance effects of the system. First,
inside the proportional-derivative (PD) control framework, the robust controller is designed based on model and
error. All of the model’s uncertainties are represented by functions with upper bounds in order to surmount the
uncertainties induced by parameter changes and unmodeled dynamics. Secondly, the feedback gain is automat-
ically adjusted by learning, so that the control feedback gain is automatically adjusted iteratively to optimize
the desired performance of the system. Thirdly, the Lyapunov minimax method is used to demonstrate that the
proposed controller is both uniformly bounded and uniformly ultimately bounded. The simulations and exper-
imental results of the robot experimental platform demonstrate that the proposed control achieves outstanding
performance in both transient and steady-state tracking. Also, the proposed control has a simple structure with
few parameters requiring adjustment, and no manual setting is required during parameter setting. Moreover, the
robustness and efficacy of the robot’s trajectory tracking with uncertainty are significantly enhanced.

1 Introduction

Collaborative robot (CoBot) is a kind of robot with high flex-
ibility, security, and cooperation, which can work in the same
workspace as human beings and complete tasks together
(Lytridis et al., 2021; Fan et al., 2023; Zhai et al., 2022).
Compared with traditional industrial robots, collaborative
robots are adaptive and customizable, which can quickly
adapt to diverse production and service needs, and well meet
the requirements of flexible customization in intelligent man-
ufacturing. Collaborative robots have higher safety, enabling
robots to completely eliminate the constraints of fences or
cages while eliminating barriers to human–robot collabora-
tion. Its pioneering product performance and wide range of
application areas have opened up a new era for the develop-
ment of robots. With aging and the increase of labor costs,
reducing labor and reducing human labor intensity has be-
come a major consideration for all walks of life and even
families, and it provides a great application space for col-

laborative robots. For example, in the modern logistics in-
dustry, the use of collaborative robots has become a trend
due to the significant increase in the type, quantity, and sort-
ing speed of goods. In the medical industry, surgical robots
have become a successful model of collaborative robots. Col-
laborative robots will play an important role in the fields of
housekeeping and elderly care services; in nuclear power,
aerospace, and other special environmental fields, collabora-
tive robots have also shown good application prospects, and
more applications are also being planned.

With the increasing demand for high speed, high precision,
and high compliance of collaborative robots, their dynamic
modeling and control must be paid attention to. Nevertheless,
the collaborative robot system is a complex nonlinear sys-
tem with time-varying, multiple-input, and multiple-output
coupling. When the robot is in a state of continuous motion,
its nonlinear dynamic control is of the utmost importance,
and it is essential to optimize the design of trajectory track-
ing controllers so that the robot arm can perform trajectory
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tracking tasks more effectively. Academic researchers have
made considerable efforts to enhance the performance of
collaborative robots’ trajectory tracking, such as computing
torque control (Ghediri et al., 2022; Ramuzat et al., 2022),
disturbance observer (Jie et al., 2020; Regmi et al., 2022;
Salman et al., 2023), adaptive immunity control (ADRC;
Khaled et al., 2020; Ma et al., 2021; Guo et al., 2016; Gaid-
hane et al., 2023), fuzzy control (Xian et al., 2023; Jiang et
al., 2020), and sliding mode control (SMC; Lv, 2020; Duan
et al., 2022; Zhao et al., 2022). These control algorithms
can greatly improve the trajectory tracking performance of
the robot to some extent, but they also have some shortcom-
ings, for example, computational torque control and optimal
control cannot handle uncertainties such as parameters, ex-
ternal disturbances, and variable loads well. The disturbance
observer-based compensation control can impose more pre-
cise control, but this method is extremely demanding on the
model and typically requires a great deal of time for identifi-
cation. Adaptive control realizes the adaptive update of con-
troller parameters through the online identification of param-
eters, but the control performance depends on the parame-
ter identification accuracy, and the transient response perfor-
mance is not good (Guo et al., 2017). Sliding mode variable
structure control has good anti-interference performance af-
ter the system reaches the sliding mode surface, but it has a
shortage of chattering.

Due to the complex characteristics of the robot system,
there are always parameter uncertainties and external distur-
bances in practical applications. Because it does not require
an excessive amount of model information, proportional-
integral-derivative (PID) control has become the most com-
mon and standard technique. For application occasions with
general trajectory accuracy requirements, small load, and low
speed, PID control may meet the requirements, but for oc-
casions with complex trajectories, high speed, and high ac-
curacy requirements, it is difficult for traditional PID con-
trol to meet the requirements. Therefore, by combining the
PID algorithm with other algorithms, some new algorithms
have also emerged, such as the fuzzy control algorithm (Li
et al., 2022), synovial control algorithm (Zhang, 2016), and
neural network control algorithm (Xu and Wang, 2023). For
instance, in Muñoz-Vázquez et al. (2019), a control scheme
based on fuzzy control was proposed to synthesize PID er-
ror manifolds to improve the tracking ability of closed-loop
systems. In Zhong et al. (2021), a fuzzy adaptive PID fast
terminal sliding mode controller for redundant manipulator
systems with variable loads is proposed. This controller can
accomplish accurate monitoring of the manipulator’s end ef-
fector trajectory. In Xiao et al. (2022), for instance, an adap-
tive proportional-integral-derivative (PID) controller based
on a radial basis function (RBF) neural network is utilized to
enhance the manipulator’s tracking performance. The RBF
neural network modifies its parameters based on the differ-
ence between the network output and the system output. The
PID parameters are modified using the Jacobian matrix and

motion error. But these algorithms are essentially PID al-
gorithms, increasing the algorithm’s complexity. In order to
improve the overall performance of collaborative robots, we
have also built more advanced control methods based on PID,
such as dynamic feedforward control (Niu et al., 2019; Zaiwu
et al., 2021) and adaptive robust control (ARC; Yin and Pan,
2018; Kong et al., 2020). These control methods are estab-
lished for complete dynamic models and have shown good
results. For example, Zhang et al. (2022) closed a study gap
by suggesting feedforward recoil and static friction correc-
tion and by focusing on reducing mistakes during joint in-
version. The results of the experiments show that the feed-
forward compensation makes the robot much more accurate
when the joints are inverted, cutting the error by more than
70 %. In Ryu et al. (2000) a new method for making a ro-
bust controller was suggested to obtain a less conservative
feedback controller. This method was used to make a single-
link flexible manipulator. The goal is to obtain the best con-
trol performance when there are big weights that change over
time. This will make sure that the flexible manipulator is sta-
ble when the tip position is changed. A robust control was
proposed by Zhen et al. (2000). Using the upper limit of pa-
rameter uncertainty to improve the robot’s dynamic perfor-
mance can give good control performance to deal with sys-
tem problems caused by parameter changes. There are many
methods that are similar, but setting and adjusting the set-
tings in these methods is hard and complicated. Also, these
controllers do not take into account the dynamic properties,
coupling relationships, and control needs of complex nonlin-
ear robot systems. They cannot handle changes and doubts in
the system well. Robots work in complicated environments
with many unknowns, especially when they are used in real
engineering. Our new goal is to make a controller that makes
sure the output tracking error of the uncertainty model is al-
ways within a certain range and also lets key parameters be
changed automatically online.

Therefore, combined with the problems existing in practi-
cal engineering, a simple and feasible robust trajectory track-
ing control algorithm for collaborative robots based on learn-
ing feedback gain self-adjustment is proposed in this paper.
Firstly, the control of the collaborative robot is first divided
into a nominal part and an uncertainty part. The parameters
of the nominal parts are measured according to the robot
manufacturer or the CAD software. However, all uncertain-
ties of dynamic models are represented by corresponding
functions, and the upper bound is assumed to be expressed
in scalar form, which overcomes the uncertainties caused by
parameter variations and unmodeled dynamics. Then, in the
proportional-derivative (PD) control framework, a powerful
controller is created based on the model and errors, and the
feedback gain is automatically adjusted by learning. This al-
lows the control feedback gain to be altered automatically
repeatedly to achieve the highest possible level of system
performance. Finally, the Lyapunov minimax approach is
used to demonstrate that the recommended controller satis-
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fies both uniform boundedness and uniform ultimate bound-
edness. This conclusion was reached by demonstrating that
the suggested controller satisfies both of these conditions.
This shows that the system is stable. Compared with exist-
ing robust control methods such as model predictive control
(MPC), SMC, and ADRC, the proposed control method has
a simple structure, and fewer parameters to be adjusted, and
the parameter tuning process does not need to be manually
set, which can be completed by learning, and the robustness
is also good.

In particular, this paper’s main contributions can be de-
scribed as follows.

1. Taking into account real-world engineering applica-
tions, a PD-based stable controller is created and ap-
plied to a nonlinear joint module system with uncer-
tainty. It inherits the traditional PD control and robust
control. With error-based and model-based features, ac-
curate position tracking can be achieved.

2. The control feedback gain is automatically adjusted by
learning so that the desired performance of the system
is optimized by iteratively adjusting the control feed-
back gain automatically. The dynamic model after feed-
back has a simple structure, self-adjusting parameters,
and good robustness, which is practical in engineering.

3. Numerical simulations and experimental verification
are carried out on a two degrees-of-freedom (2-DOF)
collaborative platform. Experiments that track harmonic
signals and step signals are used to compare how well
the three control methods work. Simulations and exper-
iments show that the suggested control method can do a
better job of following a route than other control meth-
ods.

The rest of this article is organized as follows. The first sec-
tion describes the relevant literature review. The second sec-
tion describes the dynamics model of the robot trajectory
tracking and the controller design process. The third section
gives the corresponding proof. The fourth section describes
the experimental work and the obtained results. Finally, the
conclusions are given to summarize the research work in this
paper.

2 Modeling and controller design

2.1 System modeling

The dynamics of a rigid linkage robot arm have been mod-
eled in the literature on robotics:

H (2)2̈+C(2,2̇)2̇+G(2)+D2̇= τ, (1)

where 2 , (21,22)T stands for the two angles at the joint
and τ , (τ1,τ2)T stands for the two torques at the joint. As-
sume that the inertia matrix H is nonsingular and given by

the following equation:

H ,

[
H11 H12
H21 H22

]
, (2)

where

H11 =m1l
2
c1+m2l

2
1 +m2l

2
c2+ 2m2l1lc2 cos(22)+ I1+ I2,

H12 =H21 =m2l
2
c2+m2l1lc2 cos(22)+ I2,

H22 =m2l
2
c2+ I2,

where l1 and l2 represent the lengths of the first and second
linkages, lc1 and lc2 represent the distance between the first
and second links and joints 1 and 2, m1 and m2 represent
the masses of the first and second linkages, and I1 and I2
represent the inertia matrices of the first and second linkages,
respectively.

The following formula describes the matrix of centrifugal
forces and force coefficients:

C(8,2̇)

,

[
−m2l1lc2 cos(22)2̇2 −m2l1lc2 cos(22)(2̇1+ 2̇2)

m2l1lc2 cos(22)2̇1 0.

]
(3)

The gravity vector G ,
[
G1 G2

]T is defined as follows:

G1 =m1lc1gcos(21)

+m2g
[
l2 cos(2̇1+ 2̇2)+ l1 cos(2̇1)

]
,

G2 =m2lc2gcos(2̇1+ 2̇2), (4)

where g is the gravitational constant of the Earth.
The following is the formula for the damping matrix D.

D ,

[
ς1 0
0 ς2

]
, ς1 > 0, ς2 > 0 (5)

The first and second joints have damping coefficients ς1 and
ς2, respectively.

Consider the following uncertainties in the practical use of
Model (1):

H (2)8̈+C(8,2̇)2̇+G(8)+ (D+$D)8̇+4(t)= τ, (6)

where the bounded uncertainty of the damping matrix$D=
diag($ς1,$ς2), $ς1 ≤$ς1max,$ς2 ≤$ς2max, 4(t) ,
(41,42)T is an uncertainty unknown perturbation with
‖4(t)‖ ≤4max,∀t .

In this case, we consider Model (6) as an affine uncertain
nonlinear system with the following structure:

ẋ = f (x)+1f (x)+ g(x)u,x(0)= x0,

y = h(x), (7)

where x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rp
is the controlled output, x0 is the given finite initial condition,
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1f denotes an unknown matrix or vector with uncertainty in
the model. The column and function h of the vector field f ,
1f , g satisfy the following assumptions.

Hypothesis 1: the columns of f : Rn→ Rn and g : Rn→
Rn×m are vector fields C∞ on a bounded set X ⊂ Rnh(·),
which is the function ofC∞ onX, and the vector fields1f (·)
is the function of C1 on X.

Hypothesis 2: Model (6) has a well-defined order at each
point x0

∈X, that is {r1, r2, . . ., rm}, and the system can be

linearized in the following form:
i=p∑
i=1

ri = n.

Hypothesis 3: the indeterminate vector function 1f (·)
meets the condition ‖1f (x)‖ ≤9(x) (∀x ∈X), where 9(x)
is a continuous function that is not negative.

Taking into consideration Hypothesis 2 and the nominal
requirements, which are 1f = 0, System (7) may be ex-
pressed as follows:

y(r)(t)= b(x(t))+A(x(t))u(t), (8)

where y(r)(t) ,
(
y

(r1)
1 (t),y(r2)

2 (t). . .,y
(rp)
p (t)

)T
, and b, A is

the function of g, f , and h; there is no single form of A on
X.

When the nominal Model (8) is taken into consideration,
we are able to create a virtual input vector ν. Let

ν(t)= b(x(t))+A(x(t))u(t). (9)

Then virtual linear input–output mapping can be obtained as
follows:

y(r)(t)= ν(t). (10)

Correspondingly, the stabilization output feedback of the sys-
tem at this time is

uo = A
−1(x)(νs(t,x)− b(x)), νs = (νs1,. . .,νsp)T ,

νsi(t,x)= y(ri )
id
−K i

ri

(
y(ri−1)
ri

− y(ri−1)
rid

)
− . . .K i

1
(
yi − yid

)
, i ∈ {1, . . .,p} . (11)

If the tracking error is set as φi(t)= yi−yid , then the tracking
error of the system is

φ
ri
i (t)+K i

ri
φ
ri−1
i (t)+ . . .+K i

1φi(t)= 0, i ∈ {1, . . .,p} . (12)

By adjusting the gain K i
j (i = 1, . . .,p,j = 1, . . .ri) so that

the polynomials in Eq. (12) are all Hurwitz. It is possible
to derive the global asymptotic convergence of the tracking
error, denoted by φi .

Our goal is to design a controller with feedback to en-
sure that the output tracking error of the uncertain model is
consistently bounded and that the calming feedback gain K
can be automatically adjusted online iteratively, where the
automatic adjustment is used for performance optimization.
The following actions help control the model: first, you need

to create the robust controller to make sure that the track-
ing error is confined dynamically. It is then combined with
a model-free learning algorithm to autonomously and itera-
tively modify the controller’s feedback gain.

2.2 Robust controller design

Consider the case of a robotic arm system for the control
of trajectory tracking. Assume that the intended angle of the
trajectory is 2d , angular velocity is 2̇d , and angular accel-
eration is 2̈d ; 2d is continuously second-order derivable at
[t0,∞], and they are consistently bounded.

Let

φ(t)=2(t)−2d (t). (13)

Then φ̇(t)= 2̇(t)− 2̇d (t) and φ̈(t)= 2̈(t)− 2̈d (t). We
rewrite the dynamics model (6) in the form of Eq. (8), where
A=H−1 and b =H−1(C2̇+G+D2̇). Based on the mod-
eling analysis in the previous section, we can then write the
following robust controller containing output feedback νs :

τ = H (2d +φ,σ, t)νs
+C(2d +φ,2̇d + φ̇,σ, t)(2̇d + φ̇)
+G(2d +φ,σ, t)+D(2̇d + φ̇,σ, t)(2̇d + φ̇)

+

(
∂V

∂2̇1
,
∂V

∂2̇2

)T
K

∥∥∥H−1
∥∥∥
F(

$ςmax

√
2̇2

1+ 2̇
2
2+1max

)
. (14)

According to Eq. (11) we can obtain

νs = 2̈d −Kd
(
2̇− 2̇d

)
−Kp(2−2d ), (15)

whereKd = diag(kd1,kd2)> 0,Kp = diag(kp1,kp2)> 0.Kp
is the proportional control parameter and Kd is the differen-
tial control parameter. These control parameters are derived
from conventional PID control. Both the proportional and
differential control parameters are denoted by the letters Kp
and Kd, respectively. The traditional PID control served as
the basis for deriving these control parameters.

In fact, due to the variation of the values in the model and
the unmodeled part of the dynamics, as well as the uncertain-
ties in the system, it is impossible to obtain the exact model
characteristic matrix. Consequently, the array of dynamical
model eigenvalues can be separated into a nominal portion
and an uncertain portion.
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H (2d +φ,σ, t)
= Ĥ (2d +φ, t)+1H (2d +φ,σ, t)

C(2d +φ,2̇d + φ̇,σ, t)
= Ĉ(2d +φ,2̇d + φ̇, t)
+1C(2d +φ,2̇d + φ̇,σ, t)

G(2d +φ,σ, t)
= Ĝ(2d +φ, t)+1G(2d +φ,σ, t)

D(2̇d + φ̇,σ, t)
= D̂(2̇d + φ̇, t)+$D(2̇d + φ̇,σ, t),

(16)

where Ĥ (·), Ĉ(·), Ĝ(·), and D̂(·) are the deterministic term
of the corresponding matrix/vector, while the nominal part
contains the uncertainty 1H (·), 1C(·), 1G(·) and $D(·)
depends on σ , which is an uncertain parameter in the robotic
arm system and is time varying.

The dynamics model controller satisfying Eq. (14) also has
the following fundamental properties.

Property 1: for a robotic system where H (2,σ, t) is
a symmetric positive definite bounded matrix, there exist
scalar constants µmax ≥ µmin ≥ 0, for all (2,σ, t) ∈ Rn×R
such that

µmaxI≥H (2,σ, t)≥ µminI. (17)

I is the identity matrix, and µmax and µmin are scalars that
can be determined.

Property 2: the matrix S(2,2̇,σ, t)= Ḣ (2,σ, t)−
2C(2,2̇,σ, t) is a skew-symmetric matrix, Ḣ (2,σ, t) is the
derivative of H (2,σ, t) with respect to time, and for any
γ ∈ Rn there exists

γ T Sγ = 0. (18)

For a given S= diag[si]n×n, si > 0, assume that the bound-
ary of model uncertainty is scalar d and put all uncertainties
into the function 4; then the relationship is as follows:∥∥4(φ,φ̇,σ, t)∥∥≤ d (φ,φ̇,σ, t) (19)

in the formula

4
(
φ,φ̇,σ, t

)
=−1H (2d +φ,σ, t)

(
2̈d −Sφ̇

)
−1C

(
2d +φ,2̇d + φ̇,σ, t

)(
2̇d −Sφ

)
−1G (2d +φ,σ, t)−$D

(
2̇d + φ̇,σ, t

)
. (20)

The problem to be solved so far is to design a control law to
ensure that the tracking error is within a predefined bound.
We define the nominal systematic error as follows:

φ(t)=
(
φ(t) φ̇(t)

)T
. (21)

The controller design should also make φ(t) asymptotic sta-
bility; the designed controller is

τ = Ĥ
(
2̈d −Sφ̇(t)

)
+ Ĉ

(
2̇d −Sφ(t)

)
+ Ĝ+ D̂

−Kpφ(t)−Kdφ̇(t)− κ
(
φ̇(t)+Sφ(t)

)
d2. (22)

The controller is based on the nominal system tracking error
φ(t) and system uncertainty, the first six terms are used only
to indicate the nominal system (i.e., a system without uncer-
tainty), and the last term compensates for system uncertainty,
where κ is an adjustable constant variable and κ > 0.

2.3 Automatic adjustment of learning-based feedback
gain

Despite the model uncertainty of the system, our task is to
track the desired output trajectory, and there are feedback
gains kd1, kd2, kp1, and kp2. Manually adjusting the gains
requires additional time. In this setting, a gain that can be au-
tomatically altered while maintaining system stability during
adjustment is crucial and is referred to in the industry as the
auto setting.

Therefore, we must initially define an appropriate learning
cost function that characterizes the intended controller per-
formance. Since the ultimate control goal is output trajectory
tracking, choose the following tracking cost function:

Q(ψ(α))=
∫ I tf

(I−1)tf
φψT (t)C1φψ(t)dt

+

∫ I tf

(I−1)tf
φψ̇T (t)C2φψ̇(t)dt, (23)

where I = 1,2. . . signifies the amount of repetitions, tf is the
length of the finite interval in which each iteration occurs,
C1 = diag(c11,c12)> 0, C2 = diag(c21,c22)> 0, and φψ =
(21−21d ,22−22d ). α is the optimized variable, also in
vector form; define α = (ηkp1,ηkd1,ηkp2,ηkd2), so the feed-
back gain can be written as

kp1 = kp1nominal+ ηkp1,

kd1 = kd1nominal+ ηkd1,

kp2 = kp2nominal+ ηkp2,

kd2 = kd2nominal+ ηkd1, (24)

where kdi nominal,kpi nominal(i = 1,2) signifies the gain of the
controller’s nominal setting.

According to the information provided by this learning
cost function and the manufacturing execution system (MES)
algorithm (for details, see Ariyur and Krstić, 2004; Krstić
and Wang, 2000), ES nonlinear dynamic systems can be
linearized based on an average approximation method over
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time. Using this method, we obtain the change of gain as

ẋkp1 =mkp1 sin
(
ω1t −

π

2

)
Q (ψ(α))

ηk̂p1 = xkp1 (t)+mkp1 sin
(
ω1t +

π

2

)
, (25)

ẋkd1 =mkd1 sin
(
ω2t −

π

2

)
Q (ψ(α))

ηk̂d1 = xkd1 (t)+mkd1 sin
(
ω2t +

π

2

)
, (26)

ẋkp2 =mkp2 sin
(
ω3t −

π

2

)
Q (ψ(α))

ηk̂p2 = xkp2 (t)+mkp2 sin
(
ω3t +

π

2

)
, (27)

ẋkd2 =mkd2 sin
(
ω4t −

π

2

)
Q (ψ(α))

ηk̂d2 = xkd2 (t)+mkd2 sin
(
ω4t +

π

2

)
, (28)

ηkpj = ηk̂pj ((I − 1)tf) , (I − 1)tf < t < Itf,

j ∈ {1,2} , I = 1,2. . .

ηkdj = ηk̂dj ((I − 1)tf) , (I − 1)tf < t < Itf,
j ∈ {1,2} ,I = 1,2. . ., (29)

where mkp1 , mkd1 , mkp2 , and mkd2 are positive numbers.
The control algorithm designed above can be summarized

as follows.

1. From the perspective of the structure of the control algo-
rithm, it maintains the traditional PD control and robust
control and is error and model based. Essentially, as-
suming that the piecewise function of the d upper bound
is a robust feedback term, the effect of model uncer-
tainty can be attenuated. For the control without terms
d , it is a PD feedback control based on a dynamic model
and errors, which is also different from the traditional
error-based PD control.

2. The positive gain coefficients Kp and Kd are both con-
stant without any limitation. Designers can automat-
ically iteratively select these parameters according to
many practical factors such as actual saturation limit,
and optimize the expected performance of the system
through feedback to ensure consistent boundedness of
tracking errors. Therefore, the control algorithm is easy
to be applied and realized in practical engineering con-
trol.

3 Stability proof

Lyapunov candidate functions are used to analyze and verify
the stability of the control algorithm proposed in the previous
section. Since the robot system is damped and the system
energy has been decaying. It is necessary to demonstrate that
V (e) is both positively definite and decreasing. Firstly, select

the following Lyapunov function:

V (φ, t)=
1
2

(
φ̇+ Sφ

)T
H (φ+2d (t))

(
φ̇+ Sφ

)
+

1
2
φT
(
Kp+ SKd

)
φ. (30)

Secondly, prove that V (e) is positive definite. According to
Formula (17), H (2,σ, t)≥ µminI , H is bounded, thus

V ≥
1
2
µmin

∥∥φ+ Sφ̇∥∥2
+

1
2
φT
(
Kp+ SKd

)
φ

=
1
2
µmin

(
φ̇2
+ 2sφ̇φ+ s2φ2

)
+

1
2

(kp + skd )φ2

=
1
2

[
φ φ̇

]
9

[
φ

φ̇

]
, (31)

where

9 =

[
µmins

2
+ kp + skd µmins

µmins µmin

]
. (32)

9 > 0 is easy to prove.

V ≥
1
2
ρmin9

(
φ2
+ φ̇2

)
≥ ρ1

∥∥∥φ∥∥∥2
, (33)

where

ρ1 =min
{

1
2
ρmin9

}
, ρ1 > 0. (34)

Therefore V is positive definite.
According to Formula (17), H (2,σ, t)≤ µmaxI , we ob-

tain

V ≤
1
2
µmax

∥∥φ+ Sφ̇∥∥2
+

1
2
φT
(
Kp+ SKd

)
φ

=
1
2
µmax

(
φ̇2
+ 2sφ̇φ+ s2φ2

)
+

1
2

(
kp + skd

)
φ2

=
1
2

[
φ φ̇

]
9

[
φ

φ̇

]
, (35)

where

9 =

[
µmaxs

2
+ kp + skd µmaxs

µmaxs µmax

]
. (36)

Therefore,

V ≤
1
2
µmax9

(
φ2
+ φ̇2

)
≤ ρ2‖φ‖

2, (37)

where

ρ2 =max
{

1
2
ρmax9

}
, ρ2 > 0. (38)

For all φ ∈ R2n, V is diminishing. So the choice of function
is reasonable.
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It is now necessary to prove that the derivative of the
Lyapunov function is negative definite. For any σ , the time
derivative of V according to Formula (14) of the trajectory of
the controlled mechanical system is

V̇=
(
φ̇+ Sφ

)T
H
(
φ̈+ Sφ̇

)
+

1
2

(
φ̇+ Sφ

)T
H
(
φ̇+ Sφ

)
+φT

(
Kp+ SKd

)
φ̇. (39)

After substituting φ̈(t)= 2̈(t)− 2̈d (t), Formula (39) can be
reduced to the following form according to Formula (22):

V̇ =
(
φ̇+ Sφ

)T
H
(
2̈(t)− 2̈d (t)+ Sφ̇

)
+

1
2

(
φ̇+ Sφ

)T
H
(
φ̇+ Sφ

)
+φT

(
Kp+ SKd

)
φ̇

=
(
φ̇+ Sφ

)T [(
Ĥ
(
2̈d − Sφ̇(t)

)
+ Ĉ

(
2̇d − Sφ(t)

)
+ Ĝ+ D̂−Kpφ(t)−Kdφ̇(t)− κ

(
φ̇(t)+ Sφ(t)

)
d2

−C
(
2̇d +φ

)
−G−D−H2̈d +HSφ̇

]
+

1
2

(
φ̇+ Sφ

)T
Ĥ
(
φ̇+ Sφ

)
+φT

(
Kp+ SKd

)
φ̇

=
(
φ̇+ Sφ

)T [(
−1H

(
2̈d − Sφ̇(t)

)
−1C

(
2̇d − Sφ(t)

)
−1G−$D− κ

(
φ̇(t)+ Sφ(t)

)
d2
]

−
(
φ̇+ Sφ

)T (
Kpφ+Kdφ̇

)
+

1
2

(
φ̇+ Sφ

)T (
Ḣ − 2C

)(
φ̇+ Sφ

)
. (40)

According to the dynamic characteristics of the robot
(Eq. 18), we obtain

1
2

(
φ̇+ Sφ

)T (
Ḣ − 2C

)(
φ̇+ Sφ

)
= 0.

According to Formula (20), there is

V =
(
φ̇+ Sφ

)T [
4− κ

(
φ̇(t)+ Sφ(t)

)
d2
]

−
(
φ̇+ Sφ

)T (
Kpφ+Kdφ̇

)
≤
(
φ̇+ Sφ

)T [
d − κ

(
φ̇(t)+ Sφ(t)

)
d2
]

− φ̇TKdφ̇−φ
T SKpφ−φ

T
(
Kp+ SKd

)
φ̇. (41)

Substituting Eq. (41) into Eq. (37), we obtain

V ∼=
(
φ̇+ Sφ

)T [
d − κ

(
φ̇(t)+ Sφ(t)

)
d2
]

−
(
φ̇+ Sφ

)T (
Kpφ+Kdφ̇

)
≤

1
4ι
− ρ3‖φ‖

2 (42)

for all (φ, t) ∈ R2n
×R, where

ρ3 =min
{
µmin (Kd) ,µmin(SKp)

}
. (43)

Uniform boundedness occurs after the argument is called, as
in the explanation given in Chen (1986). By giving any r > 0,

Table 1. Parameter values of the manipulator simulation and exper-
imental model.

Variable Numerical Variable Numerical
value value

m1 (kg) 4.8152 m2 (kg) 0.7134
l1 (N m) 7.561 l2 (N m) 0.116
l1 (m) 0.31 l2 (m) 0.278
lc1 (m) 0.132 lc2 (m) 0.118

and the initial condition ‖φ(t0)‖ ≤ r , there exists the function
d(r):

d(r)=


√
ρ2
ρ1
r if r > R√

ρ2
ρ1
R if r ≤ R

, (44)

R =

√
1

4ι2ρ3
. (45)

Therefore, for all t > t0, there exists ‖φ(t)‖ ≤ d(r) which be-
comes uniformly bounded. Similarly, for all t > t0+T

(
d,r

)
,

there exists d > d > 0 such that ‖φ(t)‖ ≤ d, where

d > d =

√
ρ2

ρ1
R, (46)

T (d,r)=


0 if r ≤ d

√
ρ1
ρ2

ρ2r
2
−(ρ2

1/ρ2)d2

ρ3(ρ1/ρ2)d2
−(1/4ι)

if r > d
√
ρ1
ρ2

. (47)

In order to prove the stability of the system, we must prove
that V < 0. Then the right side of Inequality (42) should
be less than 0. Therefore, upon invoking the standard ar-
guments, Formula (22) can guarantee the uniform bounded-
ness and uniform ultimate boundedness of Model (1). The
uniform boundedness and uniform ultimate boundedness are
guaranteed with the performance in Eqs. (44)–(47). The
tracking error ‖φ(t)‖ can reduced arbitrarily by adjusting ι
in Eq. (45), and the stability of the mechanical system can be
ensured.

4 Simulation and experimental results

It is assumed that the manipulator linkage is homogeneous
and the mass is concentrated in the central position. For
the simulation and the subsequent experiments, we used
the nominal parameters listed in Table 1 and the controller
described in Sect. 2, where the learning-based feedback
gain is automatically adjusted: C1 = diag(500,100), C2 =

diag(1000,100), learning frequency ω1 = 8.5 rad s−1, ω2 =

6.3 rad s−1, ω3 = 10 rad s−1, and ω4 = 5.7 rad s−1.
We began the process of gain learning with the nomi-

nal values of kp1nominal = 10, kp2nominal = 10, kd1nominal = 5,
and kd2nominal = 5, and by adopting a constant search ampli-
tudemkp1 = 5×10−3,mkp2 = 5×10−3,mkd1 = 0.25×10−2,
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Figure 1. Cost function and learning iteration.

Figure 2. Angle of joint 1 under a step reference signal.

and mkd2 = 0.25× 10−2. As shown in Fig. 1, the learned
cost function is displayed, which rapidly decreases with it-
eration number at the initial time and reaches a very low
value after 500 iterations. At this point, the optimal control
parameters for the system have also been obtained: Kp =

diag[1200;300], Kd = diag[120;20].
To ensure relative parity between numerical simulations

and experiments, we used the identical set of system settings
for both the algorithm with self-adjusting learning feedback
gain (PD with robustness and feedback, PDRF) as well as
the standard method and with the robust control without the
feedback gain (known as PDR). This was done in order to
increase the control efficacy of the system component com-
pared to the standard PD control method.

4.1 Simulation experiment

4.1.1 Step signal tracking simulation

The 2-DOF manipulator was programmed to follow the step
signal with an amplitude of 10◦ in the angle variable. Fig-
ures 2 and 3 depict the displacement simulation contours of
the two manipulator joints. As can be seen from the figures,
under the conditions of similar dynamic performance, the
transient tracking effect of the two joints under the control

Figure 3. Angle of joint 2 under a step reference signal.

Figure 4. Simulation results of joint 1 sinusoidal signal displace-
ment tracking under different control modes.

of PDRF is better than that under the control of PDR and
PD. The advantage of PDRF is not only in tracking speed
but also in tracking effectiveness. Therefore, we can see the
effectiveness of the learning feedback and the robustness of
the algorithm.

4.1.2 Sinusoidal signal tracking simulation

The following description of the 2-DOF manipulator’s pre-
dicted trajectory is offered for the purpose of conducting an
investigation of the effectiveness of the control algorithm in
terms of its ability to maintain a steady state while tracking a
sinusoidal signal.

21d =
π

6
sin
(π

2

)
, 22d =

π

6
sin
(π

2

)
(48)

Figures 4 and 5 depict, respectively, the joint 1 and joint 2
trajectory tracking curves of the three different control meth-
ods. Under the same conditions and with the same controller
parameters, all three of the control algorithms have the abil-
ity to track rapidly and continue to be stable fairly quickly.
After the system’s tracking effect stabilizes, the simulation
figure’s enlarged portion reveals that the PDRF controller
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Figure 5. Simulation results of joint 2 sinusoidal signal displace-
ment tracking under different control modes.

outperforms the PD controller and PDR controller in terms
of steady-state tracking, exhibiting the lowest error. This
demonstrates both the effectiveness of the learned feedback
gain and the robustness of the controller.

Figure 6. Software and hardware of the collaborative robot system.

4.2 Experimental results

To verify the controller’s capability of achieving high-
precision trajectory tracking for the collaborative manipula-
tor, we conducted experimental verification using a 2-DOF
collaborative robot, a control system, a personal computer
running MATLAB/Simulink, and a DC power supply, as
shown in Fig. 6. We used the exact same experimental param-
eters that were used in the computational simulations so that
we could be certain that the suggested approach would be
effective. Experiments that included tracking step responses
and tracking sinusoidal signals were carried out so that the
transient tracking performance and the dynamic tracking per-
formance of the controller could be evaluated, respectively.

Figure 7. The experimental results of step signal tracking in joint 1.

Figure 8. The experimental results of step signal tracking in joint 2.

4.2.1 Step signal tracking experiment

The results of tracing the step signal are reflective of the tran-
sient performance of the controller. In light of the findings of
the simulation, the 2-DOF manipulator is allowed to trace a
step response signal that is 10 degrees in increments. Fig-
ures 7 and 8 depict the step response curves of the two joints
under the three algorithms, respectively. When monitoring
step signals, the PDRF algorithm demonstrates a faster re-
sponse and a reduced steady-state error. However, there are
errors during the state of dynamic change, and the learn-
ing process is a self-adjusting one. Additionally, the PDR
algorithm shows a smaller steady-state error, while the tra-
ditional PD algorithm performs the worst among the three
algorithms. The primary cause of the steady-state error is the
system’s uncertainty. Figures 7 and 8 also show that the ro-
bust feedback terms of PDR and PDRF are effective. The
errors of the robust terms are all less than 0.025, while the
errors of the PD algorithm are greater than 0.025. Therefore,
based on comparative analysis, it is concluded that PDRF can
attain a steady state faster while ensuring accuracy.
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Figure 9. Comparison of experimental results of sinusoidal trajec-
tory tracking for joint 1 under different controls. (a) Experimental
tracking results. (b) Tracking error. (c) Input voltage.

4.2.2 Sinusoidal tracking experiment

Figures 9 and 10 show the results of joint 1 and joint 2 under
sinusoidal tracking signals, respectively, which include the
tracking trajectory results, the tracking errors, and the control
input of the robot system. Experiments involving the tracking
of sinusoidal signals are used to validate the dynamic track-
ing performance of the controller.

Figure 10. Comparison of experimental results of sinusoidal trajec-
tory tracking for joint 2 under different controls. (a) Experimental
tracking results. (b) Tracking error. (c) Input voltage.

The experimental results show that the improved algo-
rithm can guarantee the tracking effect. It can also be seen
from these results that the steady-state error under PDRF
control is less than that under PDR and PD control, within
0.05◦ in both joints, which means that PDRF control can ob-
tain better steady-state performance. However, we can also
see from Figs. 9c and 10c that a better control effect requires
greater control input cost. Fortunately, the increase in cost
is not particularly large and is within the acceptable range.
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Therefore, the control algorithm can be applied and realized
in practical engineering control.

In comparison to PDR and PD controllers, our proposed
algorithm (PDRF) guarantees speedier convergence and su-
perior tracking performance, as demonstrated by the exper-
imental results. 2-DOF experimentation verifies the robust-
ness of 2-DOF towards uncertainty and the efficacy of au-
tonomous adjustment of learning feedback gain.

5 Conclusions

In this paper, a robust uncertain position control algorithm for
collaborative robots with automatic adjustment of the learn-
ing feedback gain is proposed to improve trajectory track-
ing performance. Under the PD control framework, a robust
controller is designed based on the model and error, and the
feedback gain is automatically adjusted by learning, so as
to iteratively adjust the feedback gain and optimize the ex-
pected performance of the system. Secondly, a new robust
control method with simple structure, self-adjusting param-
eters, and engineering practicability is proposed based on
the feedback dynamic model. Theoretical analysis demon-
strates that the new control method satisfies the conditions
of uniform boundedness and uniform ultimate boundedness.
Thirdly, simulations and experiments are conducted, and the
novel control method demonstrates the desired performance,
indicating that the proposed control method can considerably
enhance the trajectory tracking performance of collaborative
robots with uncertainties. In the next work planned, we will
continue to improve and refine our method, add inequality-
based error constraints, and apply and validate our proposed
control algorithm on six-axis robots and other mechanical
systems.
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