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Abstract. Based on the bidirectional evolutionary structural optimization (BESO) method, the present article
proposes an optimization method for a thermal structure involving design-dependent convective boundaries. Be-
cause the BESO method is incapable of keeping track of convection boundaries, virtual elements are introduced
to assist in identifying the convection boundaries of the structure. In order to solve the difficult issue of element
assignment under a design-dependent convection boundary, label matrixes are employed to modify the heat
transfer matrix and the equivalent temperature load vector of elements over topology iterations. Additionally,
the optimization objective is set to minimize the maximum temperature of the structure in order to deal with the
objective reasonableness, and the p-norm method is then used to fit the objective function to calculate sensitiv-
ity. Finally, several cases, including 2D and 3D structures under various heat transfer boundary conditions, are
provided to illustrate the effectiveness and good convergence of the proposed method.

1 Introduction

Structural topology optimization, as an effective method of
structural weight reduction, has been paid more and more
attention in recent years. However, a lightweight design for
a thermal structure under various boundary conditions still
faces great challenges (Deaton and Grandhi, 2015; Zhu et
al., 2015), namely because studies under first-type (Dirichlet
boundary) and second-type (Neumann boundary) boundary
conditions are more common than those under convection
(Robin boundary) boundary conditions (Zhou et al., 2016).

Previous topology optimization of thermal structure con-
sidering the Robin (third-type) boundary (i.e., the convec-
tion boundary) has mostly been founded on density-based
and level set methods. In density-based optimizations, it is
necessary to create explicit boundaries by setting a cutoff
value for elements’ density; some classical manners to do this
have been proposed, including the following: the hat func-
tion (Iga et al., 2009; Dede et al., 2015), the peak interpo-

lation method (Yin and Ananthasuresh, 2001), the element
connection parameter method (Ho Yoon and Young Kim,
2005) and convection interpolation (Bruns, 2007; Alexander-
sen, 2011). However, the choice of the truncation value of
the above methods depends heavily on the experience of the
designer, and an inappropriate cutoff value may result in ill-
defined boundaries, such as “islands” (i.e., isolated solid ma-
terials). Some studies have been based on the explicit bounds
of the level set method in order to realize the implementation
of convection boundaries (Ahn and Cho, 2010; Coffin and
Maute, 2015; Li et al., 2022). However, the level set method
has the disadvantage of initialization dependence; thus, the
location of convection boundaries will greatly affect the opti-
mization results. More importantly, the above studies did not
consider the fact that a structure boundary might be partly
convective (Hu et al., 2008; Wang and Qian, 2020; Yan et
al., 2021). Hence, it is necessary to identify whether a bound-
ary is convective, adiabatic or partly convective. However,
the difficulty here is that the solid or fluid region is updated
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Figure 1. Change in the design-dependent convection boundary
with iteration.

during the iterations. As a result, the convection boundary
changes with the iteratively altered structural boundary, as
shown in Fig. 1.

Bidirectional evolutionary structural optimization (BESO)
methods are also one of the main methods for topol-
ogy optimization. They have the advantage of good con-
vergence and initialization independence (Radman, 2021)
and have been widely used in structural heat transfer (Xia
et al., 2018), frequency (Gan and Wang, 2021), acoustics
(Pereira et al., 2022) and material microstructure optimiza-
tion design (Qiao et al., 2019), among others. In addition,
BESO-type methods can provide a clear, explicit boundary
(Da et al., 2018), which has been employed to solve the
transmissible load problem (Fuchs and Moses, 2000; Yang et
al., 2005) and the pressure load problem (Picelli et al., 2015,
2017). However, according to the heat transfer equation, the
convective boundary is more complex than the transmissible
or pressure load, as the convective boundary affects not only
the equivalent temperature load but also the heat transfer ca-
pacity of the structure itself. Therefore, the current BESO
method needs to be further investigated with respect to the
design-dependent convection boundary in order to improve
its applications to more complicated boundary conditions.

This article is devoted to the topological optimization of
thermal structures considering the design-dependent convec-
tion boundary based on the BESO method. The remainder of
the paper is structured as follows: in Sect. 2, the difficulties
involved with thermal topology optimization considering the
convection boundary are outlined; in Sect. 3, the correspond-
ing solution method is proposed, including the identification
of the convection boundary and the assignment of the con-
vection matrix; in Sect. 4, the selection of the topology op-
timization objective is discussed, and the corresponding sen-
sitivity is analyzed; and, finally, in Sect. 5, numerical cases
with various boundary conditions are analyzed to verify the
effectiveness and good convergence of the proposed method.

2 Problem statement

For the heat transfer problem, there are three types of ther-
mal boundary conditions (Palani and Ganesan, 2007): the

first-type boundary (S1), called the Dirichlet condition, cor-
responds to a given fixed temperature on the system; the
second-type boundary (S2), namely the Neumann condition,
corresponds to a given heat flux on the boundary; and the
third-type boundary (S3), the Robin condition, corresponds
to a given convection coefficient and the ambient tempera-
ture on the boundary. These boundary conditions can be ex-
pressed as follows:

qT = T on S1;

kx
∂qT

∂x
nx + ky

∂qT

∂y
ny + kz

∂qT

∂z
nz = qf on S2;

kx
∂qT

∂x
nx + ky

∂qT

∂y
ny + kz

∂qT

∂z
nz = hc

(
T∞− qT

)
on S3.

(1)

Here, T is temperature given on S1, qT is the nodal temper-
ature of the structure and T∞ is the ambient temperature. kx ,
ky and kz represent the thermal conductivity in the respec-
tive x, y and z directions. nx , ny and nz are the cosine of the
normal line outside the boundary. qf is the given heat flux on
S2, and hc is the convection coefficient on S3.

When the boundary conditions are satisfied, the steady-
state heat equation of discrete elements is obtained using the
finite element method (FEM):

Ke
Tqe

T = P e
T, (2)

where Ke
T is the element heat transfer matrix, qe

T is the tem-
perature vector of element nodes and P e

T is the equivalent
temperature load vector of element nodes. The specific forms
of Ke

T and P e
T are as follows:
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P e
T =

∫
S2e
qfN

TdS2e +

∫
S3e
hcT∞NTdS3e . (4)

Here, N is the shape function matrix. It should be noted that
the internal heat source intensity is not considered in this ar-
ticle.

According to Eq. (3), the first term on the right of the equa-
tion represents the contribution of conductivity, and the sec-
ond term represents the contribution of convection. Accord-
ing to Eq. (4), the first and the second terms on the right of the
equation reflect the equivalent temperature load generated by
given heat flow and given convection, respectively. Further,
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Eqs. (3) and (4) can be expressed as follows:

Ke
T =Ke

T+He
h, (5)

P e
T = P e

f +P e
h. (6)

Here,

Ke
T = kKe

T
0
= k

∫
�e
∇NT
∇Nd�e, (7)

He
h = hcHe

h0 = hc

∫
S3e

NTNdS3e , (8)

P e
h = hcP

e
h

0
= hc

∫
S3e

T∞NTdS3e . (9)

In the above expressions, Ke
T

is the elemental heat transfer

matrix of thermal conductivity, Ke
T

0 is the identity matrix
form of Ke

T
, k is the thermal conductivity, P e

T is the ele-
ment equivalent temperature load, P e

f is the element equiva-
lent temperature load of the heat flux, He

h is the element heat
transfer matrix of convection, He

h
0 is the identity matrix form

of He
h, P e

h is the element equivalent temperature load of con-
vection and P e

h
0 is the identity vector form of P e

h.
Moreover, the element heat transfer matrix and the equiva-

lent temperature load vector of element nodes are assembled
using the FEM to form the heat transfer matrix and the tem-
perature load vector of structure nodes:

KTqT =
(
KT+HT

)
qT = P T = P h+P f, (10)

where KT is the heat transfer matrix, KT is the heat transfer
matrix without convection, HT is the convection heat transfer
matrix, P T is the equivalent temperature load vector, P f is
the equivalent temperature load generated from the heat flux
and P h the equivalent temperature load generated by convec-
tion. When convection is excluded, P h = 0.

In the BESO method, when the value of topological vari-
ables is 1, the corresponding elements are solid elements
(SEs); when the value is a small quantity, such as 0.001 (not
0 to avoid singularity), the corresponding elements are non-
solid elements with very poor properties (Huang and Xie,
2010). If the design-dependent convection boundary is con-
sidered, the boundaries can be classified into two types: con-
vective boundaries and adiabatic boundaries. Therefore, in
this article, the nonsolid elements should be further subclas-
sified into fluid elements (FEs) and void elements (VEs). As a
result, the convection boundary can be identified from the in-
terfaces between the SEs and the connected FEs (Deshmukh
and Warkhedkar, 2013; Chamkha et al., 2017).

However, due to the variation in the FEs, the VEs and
the SEs with optimization iteration, it is necessary to take
measures to keep track of the iteratively changed convec-
tion boundary. Additionally, according to Eq. (10), the as-
signment of KT and P T also needs extra treatments.

3 Convection boundary identification and its
assignment

This section is dedicated to realizing the identification of the
convection boundary in the design domain during the itera-
tion processes (in Sect. 3.1) and to assigning the correspond-
ing convection contribution matrix (in Sect. 3.2).

3.1 Identification of the convection boundaries

In 2D structures, convection can be classified into two cat-
egories: (1) top and bottom convection (TBC), in which the
direction is vertical to the structure surface, and (2) side con-
vection (SC), in which the direction is parallel to the structure
surface (Alexandersen, 2011). In the TBC case, all sides of
an element will be influenced by convection, and the struc-
tural boundaries in such problems are all convective. In the
SC case, convection affects partial sides of an element, and it
is necessary to further confirm whether a boundary of the ele-
ment is convective. Compared with the optimal design under
TBC, the optimal design under BC requires an extra scheme
to identify convective boundaries (rather than merely based
on the geometry boundary); therefore, the latter design it is
more complex and will be investigated in this article. In 3D
structures, there is only one type of convection; it is similar to
SC in 2D structures, but the difference is that the convection
affects partial planes of an element. Hence, the convection
boundary identification method for SC proposed later in this
article can be applied to both 2D and 3D structures.

As the BESO method cannot keep track of convective
boundaries (Qiao et al., 2019), virtual elements are intro-
duced in this article in order to distinguish FEs from non-
solid elements. Using convection acting on the surface of a
2D structure as an example, a schematic diagram is shown in
Fig. 2 that outlines the following specific steps:

i. In the design domain, the identifier of the solid elements
is labeled “1” and that of the nonsolid elements is la-
beled “2”.

ii. A layer of virtual elements around the design domain
are added, and their identifier is marked as “0”. It is
noted that these virtual elements do not participate in
FEM calculations.

iii. All elements are then “traversed”. If the identifier of an
element is 2 and the identifier of any adjacent element
is simultaneously 0, the identifier is changed to 0; if
this is not the case, the identifier remains at its original
value. To ensure identification, it is necessary to carry
out this process enough times. The number of times that
this process is carried out is related to the number of
elements with an initial identifier of 2. As there is the
possibility that only the last element of the traversal is
marked as 0 and that the identifiers of all the preceding
elements are 2, we can only guarantee the validity of the
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element identifier conversion by ensuring that the mini-
mum number of iterations is the same as the number of
initial elements marked as 2.

iv. All of the virtual elements are deleted. The remain-
ing elements with an identifier value of 2, 1 and 0 are
void elements, fluid elements and solid elements, re-
spectively.

In each topology iteration, steps (i)–(iv) are repeated to dis-
tinguish the FEs and VEs. The corresponding physical con-
vection boundaries then exist at the interfaces between SEs
and FEs.

3.2 Assignment of the convection matrixes

After the identification of the convection boundary of solid
elements, it is necessary to further modify the element heat
transfer matrix and temperature load vector influenced by
convection.

Because convection only affects part of the boundary of
the element, this paper introduces label matrixes to achieve
the assignment of the matrixes related to convection. There
are two parameters that affect convection: the convection co-
efficient and the ambient temperature. The label matrix of the
convection coefficient is denoted as the G matrix. The label
matrix of ambient temperature is denoted as the M matrix.
In this article, the elements used in 2D structure are quadri-
lateral elements, and the elements used in 3D structure are
hexahedral elements. Therefore, the number of elements of
G matrix and M matrix in 2D and 3D structures is 4 and 6,
respectively:

G =
[
G1 G2 · · · Gn

]T
;

M =
[
M1 M2 · · · Mn

]T
.

(11)

Here, n= 4 in a 2D structure and n= 6 in a 3D structure.
If a component (such as G1) of matrix G or M is marked

as 1, the convection and the ambient temperature are taken
into account for an element boundary. On the contrary, 0
means that the convection and the ambient temperature are
not considered for an element boundary. Accordingly, em-
ploying the G and M matrixes, Eqs. (8) and (9) can be rewrit-
ten as follows:

He
h = hcHe0

h = hc
∑n

i=1
Gi

∫
0i

NTd0i

(n= 4 in 2D,n= 6 in 3D) ; (12)

P e
h = hcP

e0
h = hc

∑n

i=1
T∞GiMi

∫
0i

NT d0i

(n= 4 in 2D,n= 6 in 3D) . (13)

Here, 0 is the element boundary.
For the reader’s understanding, using the convection acting

on the surface of a 2D structure as an example, the steps re-
lated to the assignment of the convection matrix to elements
by label matrixes are summarized as follows:

i. If an element is nonsolid element (its identifier is 0 or
2), the G and M matrix of this element is a 0 matrix. If
it is a solid element, go to the next step.

ii. Check the identifier of its neighboring elements coun-
terclockwise from the left edge, and then fill the G and
M matrixes with 0 or 1 in turn.

iii. The element heat transfer matrix and the element tem-
perature load vector considering convection are ob-
tained by Eqs. (12) and (13).

Due to the design dependence of convective boundaries,
steps (i)–(iii) need to be repeated in each iteration.

4 Implementation of topology optimization

4.1 Selection of the optimization objective

In the BESO method, the objective function and constraints
of optimization are expressed as follows:

Find: x = (x1,x2, . . .xe)

Minimize: Ob

Subject to: qT
T KT = P h+P f

V ∗−
N∑
i=1
Vexe = 0

xe = (0.001,1).

(14)

Here, Ob is the optimization objective, Ve is the volume of
each element, x is the topological variable and xi is the topo-
logical variable of element. For more details on the frame-
work of the BESO method, the reader is referred to Huang
and Xie (2008).

The optimization objective in this article is exclusively in-
volved with the thermal field. It is initially assumed that the
temperature field and load are related to topological vari-
ables; thus, the objective function depends on the tempera-
ture field, temperature load and topological variables, namely

qT = qT(x)

P T = P T(x)

Ob= Ob(qT(x),P T(x)).

(15)

As the gradient of the node temperature with respect to the
element topology variable is solved as an implicit function, a
Lagrangian multiplier is introduced in order to eliminate this
term (Deb and Srivastava, 2012; Wah et al., 2000):

minL= Ob+ λT (qT
TKT−P T

)
. (16)

For this problem, the gradient of the objective function can
be obtained:

∇L=

(
∂Ob
∂qT
+ λTKT

)
∂qT

∂x
+

(
∂Ob
∂P T
− λT

)
∂P T

∂x

+ λT ∂KT

∂x
qT. (17)
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Figure 2. Identification of the convection boundaries.

In previous works, the optimization goal has usually been set
to minimize the thermal compliance of the structure (Picelli
et al., 2017; Zhou and Li, 2008) – that is, Ob= P TqT. This
is because, under a fixed heat flow, minimizing the objective
function is equal to maximizing the structural heat transfer
matrix, namely

minP TqT =minP T
TP T/KT→minP TqT =max KT. (18)

However, according to Eqs. (12) and (13), the existence of
convection boundaries means that the structure has both a
design-dependent heat transfer matrix and nonconstant ex-
ternal load. According to Eq. (18), minimizing the thermal
compliance cannot guarantee that the maximum thermal con-
duction capability is obtained. Thus, the effectiveness of the
objective function in Eq. (18) is open to discussion under a
design-dependent convection boundary.

In the present article, the optimization objective is set to
minimize the maximum temperature in the structural tem-
perature field, which can directly reflect the thermal conduc-
tion capability of structures. However, the maximum temper-
ature is a scalar with no gradient. Thus, the p-norm method
(Zhai et al., 2018) with a gradient is used to fit the maximum
temperature. The objective function can be expressed as fol-
lows:

Ob=‖ qT ‖p→ Ob= (LT
Tq

p
T)1/p, (19)

where LT is a unit vector used to calculate the summation
and p is the value of the norm. In order to illustrate the ad-
vantages of minimizing the maximum temperature as an ob-
jective function in topology optimization considering design-
dependent convection boundaries, a comparison of the topo-
logical results with the maximum temperature and the ther-
mal compliance as the respective objective functions is made
in Sect. 5.

4.2 Sensitivity analysis

For the BESO method, sensitivity determines the “birth and
death” of elements (Xu et al., 2020), which can be solved by
the gradient of the objective function (Huang and Xie, 2009).
From Eq. (17), the corresponding Lagrangian adjoint matrix
of the objective function is

λT
=−(q1/p

T )T(LT
TqT)−(p−1)/p/KT. (20)

Denoting q∗T =−λ, the general equation of sensitivity is

∇L= (q∗T)T ∂PT

∂x
− (q∗T)T ∂KT

∂x
qT. (21)

The material interpolation model adopted in this article
is the Solid Isotropic Material with Penalization (SIMP)
model (Tavakoli and Davami, 2008). Then, compared with
the sensitivity without considering design-dependent con-
vection

(
αe = x

(pe−1)
e k

∣∣∣(qe
T
∗)TKe

T
0(qe

T)T
∣∣∣ ) and the sensitiv-

ity of thermal compliance (αe = x
(pe−1)
e k

∣∣∣(qe
T)TKe

T
0(qe

T)T
∣∣∣),

the sensitivity considering design-dependent convection can
be obtained as follows:

αe = x
pe−1
e

∣∣∣k(qe
T
∗)TKe

T
0(qe

T)T
+hc(qe

T
∗)THe

h
0(qe

T)T

−hc(qe
T
∗)TP e

h
0
∣∣∣, (22)

where pe is the power law of the penalty. In Eq. (22), the
right side of the equation consists of three parts that represent
the sensitivity of the heat transfer coefficient, the convection
matrix and the equivalent temperature load vector to the ob-
jective function, respectively. The detailed derivation process
is presented in Appendix A.
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Figure 3. The optimal flowchart for thermal structures with a con-
vective boundary.

5 Case analysis and discussion

Based on the work in Sects. 3 and 4, some typical cases of
thermal structures with convective boundary conditions are
analyzed in this section, and the topological optimization
flowchart is shown in Fig. 3.

The convection boundary condition, also known as the
mixed boundary, can be combined with both the first-type
boundary and the second-type boundary to solve the tem-
perature field. In order to illustrate all of the types of
structural optimization designs under convection conditions,
topological optimization problems considering combination
boundary conditions including design-dependent convection
boundaries are classified into three categories:

1. structural optimization under a combination of convec-
tion boundaries and the first-type boundary conditions,
i.e., the S13 problem;

2. structural optimization under a combination of convec-
tion boundaries and the second-type boundary condi-
tions, i.e., the S23 problem;

3. structural optimization under a combination of con-
vection boundary, first-type boundary and second-type
boundary conditions, i.e., the S123 problem. The S123
problem is a hybrid of the S13 problem and the S23 prob-
lem.

In addition, it should be noted that convection, includ-
ing forced convection and natural convection, is a complex
boundary condition. The convection coefficient is influenced
by the velocity and properties of the fluid as well as by the
shape and properties of solid structures (Yang et al., 2013).
Although the convection coefficient maybe varies, a constant
convection coefficient is specified during topology iterations,
as this article mainly focuses on the method of topology op-
timization for a thermal structure. The materials properties
and topology parameters are listed in Table 1.

5.1 The S13 problem

In this subsection, the thermal structure optimization results
under a combination boundary conditions including convec-
tion and the temperature constraint are discussed. The design

Figure 4. Initial conditions for the S13 problem.

domain is a 0.5 m× 0.5 m flat plate with a thickness of 1 cm,
and the number of elements is 50× 50. The first boundary
condition is applied to the geometric center of the design do-
main. The convective fluid elements are distributed around
the design domain, and the newly generated cavities within
the structure during topology optimization have no fluids and
are adiabatic boundaries. The initial conditions are shown in
Fig. 4.

In this case, as the ambient temperature (100 ◦C) is higher
than the structure temperature (0 ◦C), the convection bound-
aries mainly provide the equivalent temperature loads to the
structure. With the optimization iterations, the optimal pro-
cesses based on the present proposed method with the max-
imum temperature as the objective function and the thermal
compliance as the objective function are presented in Fig. 5a
and b, respectively.

From Fig. 5a and b, with the iteration proceeding, it can
be seen that the value of the objective function increases,
which is a typical characteristic of BESO (Huang and Xie,
2008). The final maximum temperature and thermal compli-
ance reached based on the proposed method with the max-
imum temperature as the objective function are 77.44 ◦C
and 14.83 kJ, respectively, as shown in Fig. 5a. Compara-
bly, the final maximum temperature and thermal compliance
reached with thermal compliance as the objective function
are 80.12 ◦C and 14.17 kJ, respectively, as shown in Fig. 5b.
These results obtained with the two optimization objectives
are very close, which is due to the fact that the final bound-
aries of convection in this case are the same as the initial
boundaries, thereby satisfying the condition of a constant
convection boundary in Eq. (18), and taking the thermal com-
pliance as the optimization objective is still valid. However,
using the maximum temperature as the optimization objec-
tive is still meaningful because the maximum temperature of
the optimized configuration for this objective is lower.

Additional numerical instability appeared in iteration 5–
7 in Fig. 5a, which was caused by the increase in the con-
vection area. As seen in Fig. 6, in iteration 5, the generated
topological cavities are disconnected with the outer surface
of the structure, and convection only acts on the same part
on the surface as that under the initial conditions. However,
in iteration 6, the inner cavities propagate to connect with
the outer surface, resulting in the convection areas extending
to the boundary of the cavities. The increase in the convec-
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Table 1. Parameters for the numerical calculations.

P T0 hc T∞ k V ∗ pe rmin ER
(W) (◦C) W (m2 ◦C)−1 (◦C) W (m ◦C)−1 (%)

S13 100 0 100 100 100 50 150 1.5 0.03
S23 100 0 1000 0 100 50 150 1.5 0.03
S123 1000 0 10 0–200 100 50 150 1.5 0.03

Note that “rmin” denotes the filter radius and “ER” represents the evolutionary rate. Detailed information on rmin and ER
are given in Huang and Xie (2010).

Figure 5. Optimal process for the S13 problem for different opti-
mization objectives: (a) optimization objective of maximum tem-
perature and (b) optimization objective of thermal compliance.

tion area means that convection provides more heat to the
structure, leading to a rise in the temperature of the struc-
ture. For this problem, the proposed optimization method in
the present article, based on the BESO strategy, can correct
the inappropriate element elimination according to the sen-
sitivity information. In the following iteration 7, the internal
cavity boundaries are modified to disconnect from the ex-
ternal surface, and the optimization iterations appear stable.
The resulting configuration and corresponding temperature
field are shown in Fig. 7.

In Fig. 7a, the outer surface (convection areas) of the
structure remains unchanged, which is reasonable to reduce
the convection areas (as mentioned earlier). A similar phe-

Figure 6. Connectivity between the internal cavities and the outer
surface of the structure in iterations 5 to 7: (a) iteration 5, (b) itera-
tion 6 and (c) iteration 7.

Figure 7. (a) Final topology configuration and (b) the correspond-
ing temperature field of elements (obtained by averaging the tem-
perature of element nodes).

nomenon was also pointed out by Wang and Qian (2020).
Furthermore, the boundaries of the internal cavities are adi-
abatic, and the temperature in the cavities’ body is 0 ◦C, as
shown in Fig. 7b. Compared with the S12 problem (convec-
tion boundary replaced by thermal flux, as shown in Fig. 8a),
the similarity of the topological iteration curves (as shown
in Fig. 8b) and the final configuration (as shown in Fig. 8c)
illustrates that the essence of the convection boundary under
the S13 condition is to provide heat to the structure. More-
over, the convergence of the proposed method (32 iterations)
is comparable to that of the traditional BESO method (36 it-
erations).

5.2 The S23 problem

In this subsection, the optimization of the thermal structure
under a combination of boundary conditions including the
convection boundary and the heat flux is discussed. For the
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Figure 8. Initial conditions and optimization results for the S12
problem: (a) initial condition for the S12 problem; (b) optimal pro-
cess for the S12 problem; (c) final configuration for the S12 problem.

Figure 9. Initial conditions for the S23 problem.

initial structure, there is an equivalent temperature load P
in the center and periphery convection boundaries; other con-
ditions are the same as the case in Sect. 5.1, as shown in
Fig. 9.

In this case, as the ambient temperature (0 ◦C) is lower
than the structure temperature with a heat source (P =
100 W) in the central structure, the convection boundary is
to functionally dissipate heat. The optimal iterative processes
and the structural evolution using the proposed method with
the maximum temperature as the objective function and the
thermal compliance as the objective function are shown in
Fig. 10a and b, respectively.

From Fig. 10a, when taking the maximum temperature as
the objective function, the distance between the convective
boundary and the heat source becomes closer and closer with
proceeding iterations (as shown in Fig. 11), which results
in a reduction in the initial structural maximum temperature
(92.62 ◦C) to the final value of 88.42 ◦C, and the correspond-
ing thermal compliance decreases from 9.26 to 8.84 kJ.

However, as shown in Fig. 10b, when taking thermal com-
pliance as the optimization objective, the iterative curve con-

Figure 10. Optimal process for the S23 problem for different op-
timization objectives: (a) optimization objective of maximum tem-
perature and (b) optimization objective of thermal compliance.

Figure 11. The change in distance between the convection bound-
ary and the heat source (getting closer and closer) as well as the
change in the corresponding structural temperature field (based on
the average temperature of element nodes) with proceeding itera-
tions.

tinues to oscillate during the volume fraction reduction phase
(iterations 1–23). When the volume fraction reaches the tar-
get value (iterations 23–68), the overall variation trends in the
maximum temperature and thermal compliance of the config-
uration both increase with proceeding iterations. Finally, the
final maximum temperature converges to 98.35 ◦C, which is
5.73 ◦C higher than the initial value. The corresponding final
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Figure 12. Comparison of configurations for isotropic and or-
thotropic thermal conductivity: (a) isotropy with kx = 100, ky =
100; (b) orthotropy with kx = 100, ky = 60.

thermal compliance converges to 9.84 kJ, which is a 0.54 kJ
increase compared with the initial value. This is due to the
fact that the convective boundaries are changing iteratively in
this case, which no longer satisfies the condition of constant
convective boundaries in Eq. (18), causing the minimum of
the thermal compliance not to equal the maximum of the heat
transfer capability and, thus, an unreasonable final configura-
tion. In contrast, it is obvious that the optimization objective
of the maximum temperature proposed in this paper can still
lead to a good topological optimal configuration.

As the thermal conductivity of the structure is isotropic
(according to Table 1 with kx = ky = 100), the thermal resis-
tance is the same in all directions and, thus, the optimization
configuration is going to be circular (as shown in Fig. 12a).
If the thermal conductivity of the structure is orthotropic
(i.e., kx = 100, ky = 60), the thermal resistance of the di-
rection with high conductivity is smaller. In order to reach
the best heat dissipation for the whole structure, more struc-
tural elements with high thermal conductivity are reserved.
Conversely, less structural elements are retained in the direc-
tion of low thermal conductivity. Thus, the final configuration
tends to be elliptical, as shown in Fig. 12b.

As mentioned in Fig. 10, the design dependence of con-
vection boundaries has an influence on the final optimal con-
figuration. If the design-dependent convection boundary be-
comes a fixed boundary, with the G matrixes of the internal
elements of the structure set as a constant zero matrix during
iterations (see Fig. 13a), the iterative curves (see Fig. 13b)
and topological configurations (see Fig. 13c) resemble those
(see Fig. 13e, f) under fixed temperature constraints (see
Fig. 13d), which illustrates that the essence of the convection
boundary under the S23 condition is to dissipate heat from
the structure. Moreover, compared with the optimal process
curves, the convergence of the proposed method (36 itera-
tions) is comparable to that of the traditional BESO method
(36 iterations).

5.3 The S123 problem

In this subsection, the optimization of the thermal structure
under a combination of conditions including the convection
boundary, temperature constraint and heat flux are discussed,

i.e., the S123 problem. The design domain is a rectangular
4 m×2 m×1 m parallelepiped, and the number of the corre-
sponding elements is 40× 20× 10. The geometric center of
the design domain has an equivalent temperature load P . The
left plane of the design domain has the convection boundary,
and the four corners of the right plane have temperature con-
straints; the remainder boundaries are adiabatic boundaries.
In order to illustrate two cases, namely that the convection
boundary (1) acts as a cooling boundary to dissipate heat or
(2) provides heat to the structure, the ambient temperature
T∞ is set to 0 and 200 ◦C, respectively. The initial conditions
and topology results are shown in Fig. 14a.

In Fig. 14, when T∞ = 0, the topology process (as shown
in Fig. 14b) resembles that under S23 conditions, and the
proposed method can decrease the temperature of the struc-
ture by lessening the distance between the design-dependent
convection boundaries and the heat source (Fig. 14c). When
T∞ = 200, the topological process resembles that under S13
conditions, as shown in Fig. 14d, and the proposed method
can decrease the rise in structural temperature through
design-dependent convection boundaries in the remaining
original convection areas (Fig. 14e). Therefore, it can be con-
cluded that the topological variations in convection bound-
aries are related to the relative temperature of the convection
to structure for the S123 problem.

6 Conclusion

The present study emphasizes a topology optimization
method under design-dependent convection conditions. The
main conclusions are as follows:

1. A topology optimization method for a thermal structure
with design-dependent convection boundaries is pro-
posed by introducing auxiliary elements to identify the
design-dependent convection boundary, employing la-
bel matrixes to assign convection-concerned matrixes
and utilizing a more appropriate optimal objective to ad-
dress the design-dependent loads and heat transfer prop-
erties induced by convection changes.

2. The effectiveness of the proposed topological method is
illustrated using cases with complex thermal boundary
conditions (the S12, S13 and S123 problems). For all of
the simulated cases, the proposed method can give rea-
sonable topological configurations, and the correspond-
ing convergence is comparable to that of the traditional
BESO method.

3. In the S13 problem, as the design-dependent convection
boundaries provide heat to the structure, the proposed
method can reduce the temperature increase without ex-
panding the convective boundary areas (e.g., the tem-
perature dropped sharply from 83.19 to 70.31 ◦C from
iteration 6 to iteration 7, as shown in Figs. 5a and 6).
In the S23 problem, the design-dependent convection

https://doi.org/10.5194/ms-14-223-2023 Mech. Sci., 14, 223–235, 2023



232 Y. Guo et al.: Topology optimization for thermal structures

Figure 13. Comparison of the results for the fixed S23 and S12 problems: (a) initial conditions for the fixed S23 problem; (b) optimal process
for the fixed S12 problem; (c) configuration for the fixed S23 problem; (d) initial conditions for the S12 problem; (e) optimal process for the
S12 problem; (f) configuration for the S12 problem.

Figure 14. Initial conditions and optimization results for the S123 problem under different ambient temperatures: (a) initial conditions;
(b) optimal process under T∞ = 0; (c) optimal configuration under T∞ = 0; (d) optimal process under T∞ = 200; (e) optimal process under
T∞ = 200.

boundaries function to dissipate heat from the structure.
The proposed method can decrease the structural tem-
perature by lessening the distance between convection
boundaries and the heat source (the second-type bound-
ary). In the S123 problem, as a comprehensive combina-
tion of three types of boundaries, the convection bound-
aries’ performance with respect to providing loads or
dissipating heat depends on the relative temperature of
the convection to the structure.

4. In the S13 problem, with constant convection bound-
aries, although taking the thermal compliance as the op-
timization objective is valid, a lower maximum temper-
ature of the structure can be reached when taking the
maximum temperature as the objective (77.44 ◦C vs.
80.12 ◦C with the former objective). In the S23 prob-
lem, with varying convection boundaries, from the iter-
ative process and calculation results, it is obvious that
the optimization objective of the maximum temperature
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proposed in this paper can still lead to a good topolog-
ical optimal configuration with both a lower tempera-
ture of 88.42 ◦C and a thermal compliance of 8.84 kJ,
whereas the thermal compliance objective is invalid be-
cause of the nonequivalence of the thermal compli-
ance minimum and the heat transfer capability max-
imum under varying convective boundary conditions,
which can result in an obviously higher temperature of
98.35 ◦C and a thermal compliance of 9.84 kJ, as seen
from Fig. 10.

Appendix A: The detailed derivation process of the
sensitivity considering design-dependent convection

Without convection, the equivalent temperature load is inde-
pendent of topological variables, and Eq. (21) can be simpli-
fied as follows:

∇L=−(q∗T)T ∂KT
∂x

qT. (A1)

When considering convective heat transfer, P T is no longer a
fixed value, which is related to the change in the topological
variable x. In this circumstance, Eq. (21) can be transformed
into

∇L= (q∗T)T ∂P h

∂x
− (q∗T)T ∂KT

∂x
qT. (A2)

The corresponding discrete forms of Eqs. (A1) and (A2) are
as follows:

∇L=−
∑n

i=1
(qe

T
∗)T

∂Ke
T

∂xi
(qe

T)T
; (A3)

∇L=
∑n

i=1

(
(qe

T
∗)T

∂P e
hc

∂xi
− (qe

T
∗)T ∂Ke

T
∂xi

(qe
T)T
)
. (A4)

Under the SIMP penalization model, from Eq. (7), the heat
transfer matrix without convection of elements can be ex-
pressed as follows:

Ke
T(x)= xpekKe

T
0
. (A5)

The sensitivity αe without convection is then obtained, i.e.,

αe =

∣∣∣∣∇Le

pe

∣∣∣∣= x(pe−1)
e k

∣∣∣(qe
T
∗)TKe

T
0(qe

T)T
∣∣∣ . (A6)

Combined with the SIMP model, Eqs. (5) and (13) are rewrit-
ten as follows:

Ke
T(x)= xpe

e kKe
T

0
+ x

pe
e hcHe

h
0
; (A7)

P e
h(x)= xpehcP

e
h

0
. (A8)

Taking the derivatives of Eqs. (A7) and (A8), we have

∂Ke
T

∂x
= pex

(pe−1)
(
kKe

T
0
+hcHe

h
0
)
, (A9)

∂P e
h

∂x
= pex

(pe−1)hcT∞P e
h

0
. (A10)

The sensitivity αi considering convection is then derived as
follows:

αe = x
pe−1
e

∣∣∣k(qe
T
∗)TKe

T
0(qe

T)T
+hc(qe

T
∗)THe

h
0(qe

T)T

−hc(qe
T
∗)TP e

h
0
∣∣∣. (A11)
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