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Safety in human—robot physical interaction and cooperation is of paramount interest. In this work, a
human-humanoid interaction and cooperation scenario is considered. The robot arm is controlled by a propor-
tional derivative (PD) controller in combination with an inherently fault-tolerant sliding-mode controller. During
normal operation, if any of the joints of the robot arm develops a fault, the robot arm end effector may go into
chaotic and dangerous motion. If such a scenario occurs, it poses a serious danger to the human in the loop as well
as the robot. In this paper, an adaptive chaos sliding-mode controller is proposed to recover the tracking of the
end effector when a fault occurs in any of the actuators. This tracking restoration is very important to complete a
safety-critical task. The proposed scheme may help in addressing some safety issues arising from a joint failure,
allowing it to finish the task at hand and stop it from going into a dangerous situation. The scheme is tested in
simulation on the four degrees of freedom (DOF) model of the Bristol Robotics Laboratory (BRL) robot arm.
Simulation results show efficient tracking recovery after a joint actuator failure. The controller demonstrated
good performance in terms of tracking and stability when dealing with different joint actuator failures.

Although robots have been around for decades, their integra-
tion into social environments and physical interaction with
human beings is still relatively new and very challenging.
For researchers and robot manufacturers, the main concern
with robot—human interaction is ensuring the reliability of the
robot and the safety of the human (Khan et al., 2018, 2010b;
Li et al., 2023). In human—robot physical interaction tasks,
the human is inside the robot’s motion space, and any ran-
dom and uncontrolled move can be catastrophic. Therefore,
in the social domain, various layers of safety are required to
protect humans in the vicinity of the robot.

In recent years, the subject of safe robot-human interac-
tion has received its share of attention, and a vast amount of
literature has been compiled on the subject. Among the main
control algorithms and methods are those based on compli-
ance control and cooperative control. However, with all the
care being taken, robots are still prone to sudden failures in
their actuators and/or sensors, which poses a great challenge,
as many safety related issues arise from these faults. For in-

stance, when one of the joint actuators of a robot arm fails
completely, the robot arm starts to move haphazardly and
chaotically, which could harm the humans with whom the
robot interacts.A human-robot cooperative scenario, such as
passing a cup of a hot coffee or a sharp object to a human,
can make the situation even worse in the face of actuator
failure. For these reasons and many other concerns, the re-
search topic of robotic actuator fault detection and isolation
has become quite popular among roboticists and researchers
around the world. It is of paramount importance to minimize
safety issues that arise due to faulty actuators in human—
robot cooperation (HRC) and physical human-robot interac-
tion (pHRI). In the event of an actuator failure, it may be vital
to safely complete the task at hand or safely degrade without
causing any safety hazard (English and Maciejewski, 1996;
Paviglianiti et al., 2010; Saleem et al., 2023; Anjum et al.,
2022).

Actuators and sensors are essential elements of any robotic
system, whether it is meant for social or industrial applica-
tions. Any deficiencies in these components may lead to a



degradation in the performance of the robot and even its in-
stability (Khan et al., 2017; Van et al., 2023; Islam et al.,
2023). Some of the most common of these failures are locked
joint faults, free swinging, actuator saturation, and ramp ac-
tuator faults (Mclntyre et al., 2005; Visinsky et al., 1994;
Xiao et al., 2020; Zahaf et al., 2020).

Recently, the work by Wang and Zhang (2018) presented
a fuzzy logic-based controller for actuator failures. In this
work, active (controller with online actuator adaptive strate-
gies to address unknown actuator faults) and passive tech-
niques (preprogrammed controller) are used to deal with ac-
tuator failures. In the work by Chen et al. (2017), a fault con-
trol method for networked cooperation systems or robots was
proposed. Their control scheme does not require fault detec-
tion or isolation, but it effectively deals with partial actuator
or communication link faults using an adaptive control strat-
egy for which a detailed stability of the proposed algorithm
was provided. In the work by Kashiri et al. (2016), a position
control strategy was proposed for a manipulator with a pas-
sively compliant actuator, which can be used to deal with un-
expected scenarios. For example, a robot may be able to deal
with unplanned or unintended physical interactions with the
environment or power failures of actuators, or it can demand
position discontinuities.

In addition to control schemes developed specifically to
be fault-tolerant, some existing control methods are implic-
itly fault-tolerant including some sliding-mode schemes (Ed-
wards et al., 2000; Yan and Edwards, 2007). According to
Mekki et al. (2015), sliding-mode controllers can effectively
deal with unmatched uncertainties and structural deficien-
cies. A direct consequence of this property is that it helps
reduce the effect of actuator faults or failures. A fault-tolerant
sliding-mode-based controller was proposed in the work by
Freddi et al. (2018a) (see also Freddi et al., 2018b) with
an application to a dual robot arm system. The developed
scheme was shown to have the ability to detect joint torque
faults and compensate for them at the kinematic level to im-
prove the tracking performance of the controller. Another
important fault-tolerant control scheme was proposed in the
work by Ma and Yang (2016). This controller is model based
and deals with both actuator and sensor faults simultaneously
using an adaptive sliding-mode observer that estimates the
parameters related to these faults.

Researchers have also considered dissipative control
schemes that deal with the influence of actuator faults. For
instance, a controller was proposed in the research work by
Tao et al. (2017) aimed at Takagi—Sugeno fuzzy systems with
Markov jumping parameters. The theoretical analysis was
supported by a robot arm’s simulation results dealing with
actuator faults.

More recently, many researchers such as Zhang et al.
(2023), Sacchi et al. (2023), and Van et al. (2023) have pro-
posed various schemes to deal with faults in actuators. How-
ever, most of these techniques are complex, and especially
the reinforcement learning and other neural-network-based

schemes are not very suitable due to their high degree of
complexity and high computational requirements. In many
instances, those schemes can only be applied if high compu-
tational power is available. In most cases, these techniques
have been applied only to one to two degrees of freedom sys-
tems.

As mentioned above, sliding-mode control schemes are in-
herently fault-tolerant and very popular for controlling robot
manipulators despite excessive chattering and aggressive be-
havior. However, alone it cannot fully overcome the actua-
tor fault. The adaptive chaos control element combined in
this work with the sliding-mode controller has shown greater
efficiency overcoming chaotic behavior and recovering the
tracking.

In this paper, a redundant robot arm controlled by a
sliding-mode controller to follow a desired trajectory is con-
sidered. If for some reason one of the actuators is subjected
to a fault during operation and becomes free swinging, then
the end effector ends up following a chaotic trajectory as de-
picted in simulation results shown (for instance, see Fig. 5).
In order to overcome this unsafe and unpredictable chaotic
behavior, an adaptive chaos controller is proposed in this
work to control the chaotic behavior and recover the track-
ing performance using the remaining joints. The proposed
controller employs an energy dissipative element (Tereshko,
2009). This energy dissipative chaos controller is completely
model-free and its gain parameters are tuned by means of
adaptive laws taking into account the instantaneous posi-
tion and velocity errors. To the best of the author’s knowl-
edge, this adaptive energy dissipative tangent hyperbolic-
based function, with auto-tuning of the gains and combined
with the sliding-mode controller, is novel and has not been
attempted previously in the literature.

If we compare the scheme proposed here with the liter-
ature cited above, the scheme here is very simple but very
effective for redundant humanoid robot arm joints actuators
failure. The assumption of redundancy is very realistic in this
case, as the majority of the humanoid robotic arms are multi-
redundant anthropomorphic arms. For instance, in our case,
the robot arm has seven joints; i.e., shoulder flexion, shoulder
abduction, humeral rotation, elbow flexion, wrist rotation,
wrist abduction, and wrist pronation. For simplicity, only
four joints were employed here in this work. This overall
scheme exploits the inherent robustness and fault tolerance
of the sliding-mode controller and the simplicity of the en-
ergy dissipative element. Hence, the main reasons for propos-
ing this energy altering technique to control the chaotic mo-
tion of the robot arm after joint failure are its simplicity, ease
of implementation, model-free nature, and excellent tracking
and stabilizing performance. This makes it a good contender
for dealing with actuator faults.

The remainder of the paper is arranged as follows. In
Sect. 2, the problem formulation of the paper is presented
in which the general structure of a robot’s dynamics is de-
scribed. In Sect. 3, Cartesian sliding-mode control of the hu-



manoid BERT2 arm is presented. An adaptive energy dissi-
pative element has been combined with the Cartesian sliding-
mode controller to form a novel, robust, and fault-tolerant
control scheme. In Sect. 4, simulation results are included
and discussed. Finally, Sect. 5 concludes the paper with some
remarks.

The BERT2 robot arm contains seven degrees of freedom
(DOF) (Fig. 3). Of these, only four are employed in this
study, namely, the shoulder flexion (joint 1), shoulder abduc-
tion (joint 2), humeral rotation (joint 3), and elbow flexion
(joint 4). The robot arm dynamic model can be described as

1(0)8 +W(0,6) + 1g(0) = 79, (1

where 6 € R**! is a vector containing the four joint angles,

n € R¥# s the arm’s positive definite and symmetric inertia

matrix, ¥ € R**! is the Coriolis/centripetal vector represent-

ing viscous and nonlinear damping forces, 1o € R**! is the

gravity vector, and 75 € R**! is the input torque vector.
Cartesian space is modeled as

Nee(@)Xce +Wee(6,6) + g (6) = p, 2)

where .. = (Jg)]‘lng)_l is the Cartesian inertia matrix.
The Cartesian centripetal/Coriolis force vector is given by
Ve = J]W — . Jo.

The Cartesian gravity force vector is given by g. =
J_gTug. The end-effector Cartesian force is p = J_GT 79. The
vector, X¢e = [x,z]7, is the Cartesian position in the X—Z
plane. The Jacobian matrix, Jy, is derived from the kinemat-
ics Xcc = H(9), where H is the transformation, i.e., Jy =
8Xcc/86.

The Cartesian velocity vector is given by Xcc = Jg6. The
pseudo-Jacobian inverse (inertia-weighted) matrix, Jo, is
given by Jo = 11_1J9T(J91]_1J9T)_1 (Khatib, 1987; Nemec
and Zlajpah, 2000).

In this work a fault-tolerant sliding-mode controller is
proposed which employs an adaptive (self-tuned) energy-
dissipating element to deal with an actuator fault in the hu-
manoid robot during a human-robot physical interaction.

In this section, first a sliding-mode scheme for the dynam-
ics of the end effector in Eq. (2) to deal with uncertainty is
presented. Then, an adaptive scheme which is based on the
sliding-mode controller is constructed to address the chaos
control problem.

In this section, the Cartesian space controller for the BERT2
robot arm to follow a certain desired trajectory is described.

Reaching phase

\ Steady State

Reaching phase
=0 /
Sliding Surface

Sliding surface and sliding variable.

The Cartesian proportional derivative (PD) sliding-mode
controller (SMC) is employed here due to the robustness and
fault-tolerant nature (Ahmad Taher Azar, 2015; Shtessel et
al., 2014; Ahmad et al., 2023; Anjum et al., 2022; Saleem
et al., 2023). The SMC scheme is considered to be one of
the most widely used nonlinear control techniques due to its
remarkable characteristics including high accuracy, robust-
ness, and ease of tuning and implementation. As mentioned
before, sliding-mode controller has gained a lot of popularity
lately for controlling robotic manipulator due to its proven
fault tolerance.

A sliding-mode controller is normally designed in two
parts. First, a sliding surface is defined in the system’s state
space to satisfy certain design specifications as shown in
Fig. 1. Then, a suitable control law is selected with the aim
of making the system states attracted to this surface.

For controlling the BERT2 humanoid robot arm, a simple
sliding-mode control is employed (Ahmad Taher Azar, 2015;
Shtessel et al., 2014). As mentioned above, four joints of the
BERT2 humanoid arm have been employed for simulating
this scheme, i.e., elbow flexion, shoulder flexion, humeral ro-
tation, and shoulder abduction joints.

The SMC Cartesian control law is introduced here. In this
paper, the SMC variable o is defined as (Spurgeon, 2014)

o = ECC + K, Ecc, (3

where E. denotes the Cartesian position error vector given
by Ece = [Xq — Xcc] with Xg = [x4, zq]” . It should be noted
that the robot’s end effector with the x—z plane is controlled,
and thus the vertical y direction is ignored for simplicity.
Also note that the matrix-valued parameter K, is a full rank
2 x 2 real matrix with positive elements tuned experimentally
or heuristically to achieve the best tracking performance. The
control law for the SMC is, then, defined as

7
(ol +&)

The scalars &, € R?*2 is the proportional gain, and vg €
R?*2 is the derivative gain. A large positive value of I" should

Pec= KpEcc+VdEcc+F 4)



be selected to minimize the effect of uncertainty and for ro-
bust behavior of the controller (Edwards et al., 2000; Bucak,
2020).

Typically, this SMC control method has a high-frequency
switching nature, which in mechanical systems such as the
one at hand may lead to an oscillatory behavior (chattering).
To minimize this chattering problem, the scalar £ is intro-
duced in the control law (Shtessel et al., 2014). Since the
robot end effector is moved in the X—Z plane only, there are
two redundant degrees of freedom. This redundancy can be
taken advantage of in order to overcome the chaotic and hap-
hazard behavior arising as a result of actuator failures (Ed-
wards et al., 2000; Bucak, 2020).

Figure 2 shows the tracking performance of the SM con-
troller (Eq. 4) given a smoothed multi-step desired position
X4(n). The results show a close to perfect tracking of the
desired trajectory, which agrees with the well-established re-
sults as reported in many studies throughout the related liter-
ature.

Dynamical systems have been used for centuries to model
real-life natural phenomena and engineered systems. The sta-
bility of these systems has always been a major concern,
starting from the works of Lagrange (1736-1813) and Henri
Poincaré (1854-1912) on the movement and dynamics of ce-
lestial bodies to more cutting-edge and modern complex sys-
tems. It was noticed that some dynamical systems exhibited
a strange behavior in that they have a bounded solution with
a seemingly very unpredictable behavior even if there is a
small variation in the initial condition. For this reason, they
became known as chaotic systems.

In recent years, chaos has found its way into numerous
applications within the robotics field including mobile robots
and robotic manipulators (Petavratzis et al., 2023; Yang et al.,
2023; Khan et al., 2019). A good summary of some of these
applications can be found in the work by Zang et al. (2016).

In this paper, a chaotic motion scenario of the end effec-
tor due to the actuator fault is considered. More specifically,
the robot arm end effector exhibits a chaotic behavior if one
of the four joints under control is subjected to a complete
failure. This is easy to observe as will be shown in the next
section. In order to overcome this chaotic behavior, a sta-
bilization controller based on the energy altering technique
presented in Tereshko (2009) is employed (see also Khan et
al., 2019), in conjunction with the SMC control law (Eq. 4).

Khan et al. (2019) have implemented a model reference
compliance controller (Khan et al., 2010b, a, 2011a, b, c;
Jallani et al., 2011; Herrmann et al., 2016; Khan and Jalani,
2016; Spiers et al., 2016) for master slave robot cooperation
to deal with an actuator fault. In contrast to the work by Khan
et al. (2019), in this work, the chaos element is adaptive and
self-tuned. This makes it more beneficial to deal with the sit-
uation more effectively. In addition, this avoids a trial-error

process in selection of § and K,. Moreover, the main con-
trol scheme here is sliding-mode-based which is proven to
be more fault-tolerant.

It should be noted that a lot of work has been done in the
area of chaotic dynamical system stabilization. In fact, the
amount of related studies has grown at an exponential rate
ever since the late 1980s. Perhaps the most successful and
practical of all the proposed controllers are those falling un-
der the energy altering class, which employs experimentally
obtained information from the time domain data of the ob-
servable variables for guiding the controller. One of the ear-
liest methods is the Ott—Grebogi—Yorke (OGY) method (Ott
etal., 1990). For stabilizing an unstable periodic orbit (UPO),
the OGY method introduces a little perturbation in the con-
trol parameters of the system. The OGY method has been
researched extensively and many different forms have been
proposed such as the quasi-continuous OGY (Hubinger et al.,
1994).

Another controller proposed in the work by Tereshko
(2009) employs the principal of energy dissipation, i.e., alter-
ing the time-averaged compound kinetic and potential energy
of oscillation in order to achieve the desired behavior through
a hyperbolic tangent term. This controller is described by the
rather simple following formula:

g(X) = K, tanh(8X), 5)

with appropriately selected scalars K; and g > 0. The
scheme was proposed initially in Tereshko (2009) for typ-
ical chaotic oscillatory systems. For instance, Duffing non-
linear oscillators and the Van der pol system were stabilized
through this. However, later on, it was demonstrated (Chen
et al., 2017) that, in general, other faulty chaotic systems can
also be stabilized with the hyperbolic tangent term. The aim
here is to add the following feedback term:

p, = —Ktanh(BE..), (6)

to the control law (Eq. 4) in order to suppress the chaotic
behavior observed when a joint fails.

The main difficulty with the control law (Eq. 6) is the tun-
ing of the parameters K; and f§, as any small change may
render the controller useless. The main novelty of this study
is the adaptive control of these two parameters in order to
ensure the chaotic behavior is minimized. Hence, the overall
control law is given by

Pacc =P — Kttanh[ﬁEcc], @)

where the instantaneous parameters K; and § are calculated
based on the adaptive laws

B=—rsB+Kp Xee (8)
[ Xcel

and

Ki= —hx K+ Kg 2 9)

I Xeell”
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Figure 2. Cartesian sliding-mode control.

Robot Arm

Figure 3. Human-robot physical interaction scenario.

respectively. Note that the four parameters Ag, Ag, Kg, and
Kk are appropriately chosen positive scalars. In the next
section, simulation results for the adaptive chaos controller
given by Eq. (7) are presented and discussed. The block dia-
gram of the overall scheme is shown in Fig. 4.

The main result is stated in the following theorem.

Theorem 1. The adaptive chaos control law presented in
Eq. (7) is capable of recovering the tracking performance of

https://doi.org/10.5194/ms-14-209-2023

the end effector of the robotic system in Eq. (2) in the pres-
ence of a fault.

Proof. The proof follows the standard derivation of
sliding-mode control presented in Ahmad Taher Azar (2015)
and Shtessel et al. (2014). The convergence of parameters in
the adaptive chaos control law in Eq. (7) is derived similarly
from Tereshko (2009).

|

The term given by Eq. (6) is inherently stable, as this is
an energy dissipative term, while the proportional deriva-
tive plus slide mode control’s stability has been proved in
many publications including the work by Ahmad Taher Azar
(2015) and Shtessel et al. (2014).

As mentioned above, sliding-mode control is by nature
a fault-tolerant scheme. Adding the energy dissipation term
can enhance fault tolerance further. In comparison to the pre-
vious work, this is a simple technique to minimize the impact
of failure and provide an immediate safeguard against insta-
bility which may arise from an actuator fault. Therefore, the
aim is to enhance the safety of the human and robot during a
human-robot interaction scenario.

4 Results and discussion

The suggested scheme has been tested in simulation on the
Bristol Robotics Laboratory’s humanoid BERT robot arm

Mech. Sci., 14, 209-222, 2023
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Cartesian control (controlling, x, and z.) employing four
joints of the robot arm using the sliding-mode controller only
(see Fig. 2). In Fig. 5a, it is shown that if one joint (elbow
flexion joint, i.e., joint 4) fails, the robot arm end-effector
motion will go into chaos. In most cases, this chaotic motion
is bounded. However, it may also become unstable in some
cases. Figure 5b shows the phase space which confirms the
chaotic nature of the end-effector motion. The control signals
(control torques) for all the four joints are shown in Fig. 6.
The control torques (for the healthy joints) become very chat-
tery and increase in magnitude after the actuator failure; i.e.,
the shoulder flexion joint where the control input torque be-
comes zero.

Figure 7a and b show the results when the adaptive chaos
controller (sliding mode and energy dissipative element) is
in action while a joint fails at + =5s. It is evident that the
adaptive chaos controller recovers the trajectory and the end
effector follows the demand trajectory as before in the sit-
uation where elbow flexion joint is free swinging due to a
fault. The control signals are shown in Fig. 8. It is obvious
that the chattering and the magnitude of healthy joints con-
trol reduced significantly when adaptive chaos controller el-
ements are combined with the sliding-mode controller. Fig-
ure 7c and d shows convergence of the terms 8 and K, re-
spectively.

Figure 9a shows the results for a multi-step demand. After
an actuator fails, robot arm motion become chaotic (see also
Fig. 9b for phase space). Control signals or input torques of
the joints are shown in Fig. 10.

In Fig. 11a and b, results are shown when the adaptive
chaos controller is employed after joint failure occurs (See

(Xcc, Xcc) kinematics

Fig. 9c for B and Fig. 11d for K, estimates). In this case
also, the controllers are capable of recovering the trajectory
tracking. The control signals are shown in Fig. 10.

The results shown in Figs. 5-12 are mainly based on the
actuator fault that occurred in joint no. 4, i.e., the elbow flex-
ion joint. However, any joint can fail during the normal op-
eration of the robot arm. The performance of the proposed
controller in terms of full restoration of tracking depends on
how critical the failed joint is. For instance, if a joint or the
link connected to that joint has a greater role to reach a par-
ticular location in the Cartesian space, then the failure of the
joint may significantly degrade the tracking performance. If
there is another healthy joint which can complete the track-
ing task at hand, then tracking performance and overall be-
havior will be less affected. As mentioned above, redundant
robotic arms in this case will be able to deal with the ac-
tuator fault more efficiently using this simple but effective
scheme. Figures 13 and 14 show tracking when the shoulder
flexion joint and shoulder abduction joint become faulty, re-
spectively, while Fig. 15 shows the tracking when two joints,
i.e., shoulder flexion and shoulder abduction joints, become
faulty. In these cases, the controller successfully keeps the
robot arm stable, and the tracking performance does not de-
grade significantly.

Similar to any other mechanical system, the occurrence of
faults in actuators or sensors during the operation of a hu-
manoid robot is not uncommon. However, unlike industrial
robots, the occurrence of faults in humanoid robots is more
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Faulty shoulder flexion and shoulder abduction joints.

dangerous and may lead to catastrophic outcomes, especially
in terms of the safety of the humans interacting with the
robot. In this paper, a scenario is presented where a humanoid
robot arm is in cooperation with a human when suddenly
one of the four joints being used fails completely and the
end effector goes into a frenzy. The robot is controlled by
a sliding-mode (SMC) Cartesian controller that drives the
end effector towards a desired position in the x—z plane by
means of four joints: shoulder flexion, shoulder abduction,
humeral rotation, and elbow flexion. Once the failure occurs,
the controller adds a new term to the SMC term that works
to alter the energy of the system by means of a hyperbolic
tangent-based function, thereby stabilizing the end effector
and recovering the desired trajectory tracking. The proposed
controller exploits the redundancy in the number of joints to
mitigate the chaotic response. This scheme is effective for
containing an adverse situation arising from an actuator fail-
ure. However, the tracking recovery will only be possible if
robot has redundancy i.e., more actuators are available than
what is required to complete a task. Also, different joint fail-
ures will have different impacts on performance.
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