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Abstract. In this article, the composite synchronization of three inductor motors with a circular distribution
by a fuzzy PID (proportional–integral–derivative) method in a vibration system is investigated. The compos-
ite synchronization motion is comprised of self-synchronization and controlled synchronization motions. In the
self-synchronization section, the electromechanical coupling dynamical model of the vibration system is estab-
lished by introducing an inductor motor model into the dynamic model. The responses of the vibrating system
are calculated, and the synchronous condition and stability criterion are both derived. With the controlled syn-
chronization section, a master–slave controlling strategy and fuzzy PID method are applied on the controlling
model. The stability of the control system is proved by the Lyapunov stability theory. A series of simulations are
employed to demonstrate the practicability of the designed method. Finally, some experiments are conducted to
verify the effectiveness of the proposed control method in practical application. The proposed control method
exhibits a superior ability to satisfy the control of multiple motors, to be accurate in targeting the rotational speed
arrival, and to be strongly robust against uncertainties and disturbances. The composite synchronization theory
introduces a novel concept to design and develop types of vibration equipment.

1 Introduction

Machines play a very important role in the development of
industrial processes, but the performance of many machines
cannot keep up with the development of the industry. To
solve this problem, various machines have been manufac-
tured, and the vibratory machine is one of them. Because of
the diversity of functions, vibratory machines have an irre-
placeable place in various fields. For example, the ground of
construction foundations, machine finishing, and soil manip-
ulation processes (Goanţă et al., 2022; Hashimoto and John-
son, 2015; Rao et al., 2018). The vibration machine is differ-
ent from traditional machines which rely on rigid or flexible
connections to complete the work. Most vibrating machines
can realize linear motions or swing motions when driven by
a shaft transmission. The key to achieving the above two mo-
tions is controlling the rotation of the shaft. The technology

of the shaft transmission is used in many machines, such as
chair systems and electric vehicles (Wei et al., 2022; Liu et
al., 2017), even though the field of application of shaft trans-
mission technology is so vast. The introduction of a control
method for vibration equipment to achieve an ideal motion
is an extremely complicated problem. The synchronization
of the shaft is one of the problems solved by the control
method. Synchronization is a special physical phenomenon,
which means that shafts have the same physical characteris-
tics of motion, such as speed or acceleration, because the syn-
chronization phenomenon has been extensively researched
by many engineering experts. The theory of synchroniza-
tion has been widely studied and summarized in engineering.
Czolczynski et al. (2012) studied the synchronization of pen-
dulums and discovered transient synchronization among dif-
ferent pendulums. Machines with a multi-shaft synchronous
motion are the future development direction of vibration ma-
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chines; these machines are simpler, cheaper, and have a lower
power consumption. However, these kinds of machines and
equipment have many shortcomings that need to be reme-
died. For example, the working efficiency utilization rate of
vibrating machines cannot meet engineering requirements.
To address this drawback, the rotational speed and phase dif-
ference in the shaft need to be controlled. To solve the prob-
lem of insufficient power of vibration machines, the number
of shafts can be increased to respond to this phenomenon.
However, the volume of vibration machines will be increased
in this way, which will lead to the installation of vibration
machines requiring more space. Blekhman et al. (1997) ex-
plored and contrasted the traits of controlled synchronization
and self-synchronization, respectively. A vibration machine
equipped with a control method is suitable for more working
conditions, which eliminate the above disadvantages of vi-
bration machines. The problem of composited synchroniza-
tion will be investigated in this paper.

The appearance of synchronization is quite frequent. The
synchronization phenomenon is not only an external man-
ifestation but also actually caused by the internal physical
characteristics of objects. Synchronization has experienced
a long development in the field of engineering. Many re-
searchers have launched a series of research on the self-
synchronization of multi-ERs (eccentric rotors) in various vi-
brating systems, and many achievements have been made.
Zhao et al. (2010, 2011a, b) transformed the problem of
synchronization in engineering into a solution of the equa-
tion in the field of mathematics by discussing the character-
istics of the coupling dynamics among motors and the in-
fluence of parametric variation on the vibrating system in
detail. Zhang et al. (2012, 2013a, b, 2014) investigated the
synchronization theory of differently deployed ERs and sup-
ported their studies by experiments. From the above research,
the foundation of the self-synchronization theory has been
laid. Zhang et al. (2019) studied the behavior of two syn-
chronous ERs with different excitation forces. The vibra-
tion system can provide a new form of synchronization by
turning off the power of one motor. Jia et al. (2022) ana-
lyzed the self-synchronization of four circular symmetrical
motors, which provides theoretical guidance for circular vi-
bration equipment. Zhang et al. (2017) investigated the self-
synchronization between two ERs and a cylindrical roller,
opening up a new way of applying vibration machines. Gu
et al. (2018, 2019, 2022) extended the synchronization the-
ory to one motor and two cylindrical rollers, with two motors
and two cylindrical rollers distributed horizontally, and one
motor with three cylindrical rollers distributed circumferen-
tially in a vibration system.

With the development of control technology, controlling
the position, speed, and error in the shaft is no longer a
rare phenomenon, which greatly improves the working en-
vironment of vibration machines. For instance, Chen and
Chen (2012) employed a H∞ control method to gener-
ate a position command, which has an exact motion con-

trol for axles. The command formation simplifies the con-
trol process. Barambones and Alkorta (2014) developed a
controller to provide accurate position control for induction
motor applications, while minimizing the performance im-
pact of system uncertainties. Sun (2003) introduced cross-
coupling technology into the accommodative control struc-
ture, providing a new control method to reduce the error in
the shaft transmission and the error in the shaft position. Li et
al. (2016) proposed a mean deviation coupling method. This
method solves the problem of complex control structure of
motors. Chen et al. (2018) improved the self-adjusting cross-
coupling control structure, reducing the error in the start-up
process and shortening the start-up time of motors. Jia et
al. (2023) introduced the fuzzy PID (proportional–integral–
derivative) method into the vibration system to study the
multi-frequency control synchronization of four motors. The
adaptive-sliding-mode control (ASMC) method was intro-
duced to the vibration system to investigate the question of
the composited synchronization of three ERs distributed hor-
izontally and four ERs distributed symmetrically (Kong et
al., 2018; Kong and Wen, 2018).

The incorporation of control methods into vibration sys-
tems to control the phase difference is less involved in the
studies mentioned above. The organization of the present ar-
ticle is as follows. In Sect. 2, the mathematical model of
vibration system is established by combining the Lagrange
equation. In Sect. 3, the synchronization condition and sta-
bility condition of control synchronization are analyzed. In
Sect. 4, the control method is designed, and the stability of
the control method is discussed. In Sect. 5, a series of exper-
iments and simulations are carried out to further verify the
correctness of the theory. In Sect. 6, some conclusions are
drawn.

2 The mathematical model of the vibratory system

Figure 1 shows the model of three ERs in a vibration system
and three ERs driven by three induction motors separately.

Three motors are fixed on the rigid frame, and the rigid
frame is supported by four springs, which supply the stiff-
ness and damping of the vibration system. Motor 1 and mo-
tor 2 are distributed on both sides of the rigid body symmet-
rically, and motor 3 is installed at the centerline below the
rigid body. Motor 1 and motor 3 rotate clockwise. Motor 2
rotates counterclockwise. x, y, ψ , ϕ1, ϕ2, and ϕ3 are selected
as the generalized coordinate of the vibration system. Set-
ting the counterclockwise rotation as the positive direction
and combining it with Lagrange equations, the motion dif-
ferential equations of the vibration system are expressed as
follows (Kong et al., 2018):
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Figure 1. The model of three ERs in a vibration system.

Mẍ+ fx ẋ+ kxx =

3∑
i=1

τimir
(
ϕ̇2
i cosϕi + ϕ̈i sinϕi

)
Mÿ+ fy ẏ+ kyy =
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i=1
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)
J ψ̈ + fψ ψ̇ + kψψ

=

3∑
i=1

mirli

[
ϕ̇2
i sin(ϕi − τiθi)− ϕ̈i cos(ϕi − τiθi)

]
Ji ϕ̈i + fi ϕ̇i = Tei − TLi, i = 1,2,3

τi =

{
+1 i = 2
−1 i = 1,3 , (1)

with

TLi =mir
[
ÿ cosϕi − τi ẍ sinϕi + liψ̈ cos(ϕi − τiθi)

+τi liψ̇
2 sin(ϕi − τiθi)

]
,

τi =

{
+1 i = 2
−1 i = 1,3 ,

where the installation center of the rigid frame is indicated
by o, and o1, o2, and o3 represent the rotation shaft centers
of the three motors, respectively. The distance between ERs
and rotating shaft of motors is rotation radius of the ERs
expressed by r . θ1, θ2, and θ3 represent the angle between
the rotation center of the three ERs and the x direction, re-
spectively, where θ1+ θ2 = 180◦, and θ3= 270◦. kx , ky , kψ
and fx , fy , fψ represent the stiffness and damping coeffi-
cients provided by the vibration system in the x, y, and ψ
directions, where kψ = l20

(
kxsin2β + kycos2β

)
. The quality

of three ERs is represented by m1, m2 and m3. m0 is the
quality of the spring rigid body, and M is the total qual-
ity of all objects, M =m0+m1+m2+m3. J1, J2 and J3

Table 1. Parameters of the three induction motors.

Parameters Motor 1 Motor 2 Motor 3

Rated power P (kW) 0.2 0.2 0.2
Pole pairs np 3 3 3
Rated frequency f0 (Hz) 35 35 35
Rated voltage U (V) 220 220 220
Rated speed (rpm) 910 910 910
Stator resistance Rs (�) 40.4 40.5 40.6
Rotor resistance referred Rr (�) 12 11.531 12.813
Stator inductance Ls (H ) 1.21275 1.213 1.21275
Rotor inductance referred Lr (H ) 1.222 1.225 1.222
Mutual inductance Lm (H ) 1.116 1.116 1.116
Rated flux linkage λ∗

dr (Wb) 0.98 0.98 0.98
Damping coefficients f1,2,3 (Nms rad−1) 0.005 0.005 0.005

Table 2. Parameters of the vibration system.

Parameters Value

m/kg 275
Jp/kg m2 43.5
kx /N m−1 129 332
ky /N m−1 105 334
kψ /Nm rad−1 30 715
fx /Ns m−1 615.5
fy /Ns m−1 618
fψ /Nsm rad−1 180.2
l1/m 0.32
l2/m 0.32
l3/m 0.3
θ1/◦ 30
θ2/◦ 150
θ3/◦ 270
β/◦ 0
m0/kg 6
r/m 0.05

represent the moment of inertia of three ERs, respectively,
where J1 ≈m1r

2, J2 ≈m2r
2, J3 ≈m3r

2, J4 ≈m4r
2. J is

the total moment of inertia of the vibration system, where

J =Ml2e ≈ Jb+
3∑
i=1
mi l

2
i . Jb is the moment of inertia of the

spring rigid. le is the equivalent rotation radius of the system.
Te1, Te2 and Te3 are the electromagnetic torques of three in-
duction motors. TL1, TL2, and TL3 represent the load torques
on three induction motors. The parameters of three motors
and vibration system and the nomenclature of the symbols
are shown in Tables 1 and 2 and Appendix C, respectively.

Three induction motors provide electromagnetic torques
for ERs, respectively. To clarify the motion mechanism of
the vibration system, the state expression of induction motors
can be deduced as follows:
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φ̇dr =−φdr/Tr+
(
ωe− npω

)
φdr+Lmids/Tr

φ̇qr =−
(
ωe− npω

)
φdr−φqr/Tr+Lmiqs/Tr

i̇ds = Lmφdr/σLsLrTr+Lmnpωφqr/σLsLr

−

(
L2

m+RsLrTr

)
ids/σLsLrTr+ωeiqs

+ uds/σLs

i̇qs =−Lmnpωφdr/σLsLr+Lmφqr/σLsLrTr

−ωeids−
(
L2

m+RsLrTr

)
iqs/σLsLrTr

+ uqs/σLs. (2)

In the electric machine theory, the d and q axes, respectively,
are represented by the subscripts d and q. The flux linkage
consists of ϕdr and ϕqr. Because of the features of the induc-
tor motor, its inner structure is a short circuit, so ϕdr is a con-
stant, and φqr = 0. ids and iqs represent the stator current. uds
and uqs are the stator voltage. Rs and Rr are the resistance of
stator and rotor. Ls and Lr are the self-inductance coefficient
of the stator and rotor. Lm is the mutual inductance coeffi-
cient, and Tr is the rotor time constant, where Tr = Lr/Rr. σ
indicates the leakage coefficient, where σ = 1−L2

m/(LsLr).
np is the number of pole pairs of the induction motor. ωe rep-
resent the synchronous angular velocity. ω is the mechanical
angular velocity.

According to the state equation of the induction motor, the
electromagnetic torque of each motor is obtained as follows:

Te =Kiqs, (3)

where K = (3/2)np(Lm/Lr)λdr.

3 The control synchronization of three induction
motors

In this section, the scheme and theory of control synchroniza-
tion of the vibration system are discussed. Figure 2 shows
the control synchronization scheme, which shows the method
used in each step of applying the control synchronization.

The control synchronization is based on self-
synchronization, and the control part adopts a master–slave
control scheme. Motor 1 is the master motor, with motor 2
implementing a self-synchronization motion by using the
voltage/frequency (V/F) open-loop control algorithm with
the same input frequencies. Therefore, ER 1 and ER 2 can
rotate with same frequencies. Motor 3, as the slave motor,
follows motor 1 by using the control method so that motor 1
and motor 3 can achieve a control synchronization with a
zero-phase difference. As mentioned above, the composite
synchronization of the three ERs is finally realized.

Under the action of the control method, ϕ1 = ϕ3.
If ERs 1 and 2 are in a condition of self-synchronization,

then the average phase and phase difference in the two ERs

Figure 2. Flow diagram of the control system.

are ϕ and 2α, respectively. The phase of the two ERs can be
represented as follows:

ϕ1 = ϕ+α

ϕ2 = ϕ−α. (4)

When three ERs reach the synchronous state, then the rota-
tion speeds of the ERs are equal, namely

ω0 =

2π∫
0

ϕ̇1dt/T0 =

2π∫
0

ϕ̇2dt/T0 =

2π∫
0

ϕ̇3dt/T0

= constant, (5)

where T0 represents a single cycle of the motion system.
By introducing the time-varying coefficients ε1 and ε2, the

rotation speed of two ERs can be described as follows:

ϕ̇1 = ϕ̇+ α̇ = (1+ ε1)ω0

ϕ̇2 = ϕ̇− α̇ = (1+ ε2)ω0. (6)

Equation (7) expresses the angular accelerations of ERs 1
and 2 as follows:

ϕ̈1 = ε̇1ω0

ϕ̈2 = ε̇2ω0. (7)

When the system is in a synchronous state, then ε1 ≈ ε2 ≈ 0,
so ε̇1 ≈ ε̇2 ≈ 0. ϕ̇1 ≈ ϕ̇2 ≈ ω0 and ϕ̈1 = ϕ̈2 = 0 can be ob-
tained. Ignoring the higher-order trace of the system, the re-
sponses of the system in different directions can be derived
as follows:

x =−rmr/µx
[
−(η1− η3)cos(ϕ1+ γx)

+η2 cos(ϕ2+ γx)
]

y =−rmr/µy
[
(η1+ η3) sin(ϕ1+ γy)

+η2 sin(ϕ2+ γy)
]

ψ =−rmr/(µψ le)
[
η1rl1 sin(ϕ1+ θ1+ γψ )

+η2rl2 sin(ϕ2− θ2+ γψ )+ η3rl3 sin(ϕ3− θ3+ γψ )
]
, (8)
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where ω2
x = kx/M , ω2

y = ky/M , ω2
ψ = kψ/J ,

ξx = fx/(2
√
kxM), ξψ = fψ/(2

√
kψM), ηi =mi/m0,

µx = 1−ω2
x/ω

2
0, µy = 1−ω2

y/ω
2
0, µψ = 1−ω2

ψ/ω
2
0,

rli = li/le, tanγx = 2ξxωx/(µxωx), tanγy = 2ξyωy/(µyωy),
tanγψ = 2ξψωψ/(µψωψ ), rm =m0/M , i = 1,2,3.

Integrating in the least common period from 0 to 2π with
the variable of ϕ, the last equation of Eq. (1) can be expressed
as follows:

J1ω0ε̇1+ f1 (1+ ε1)ω0 = T e1− T L1

J2ω0ε̇2+ f2 (1+ ε2)ω0 = T e2− T L2, (9)

with

T L1 =m0r
2ω0

[
a11ε̇1+ a12ε̇2+ b11ε1+ b12ε2+ κ1

]
T L2 =m0r

2ω0
[
a21ε̇1+ a22ε̇2+ b21ε1+ b22ε2+ κ2

]
, (10)

where aij , bij , and κi (i, j = 1, and 2) are listed in Ap-
pendix A.

The electromagnetic torques and load torques of the in-
duction motors are applied to Eq. (9). Thus, Eq. (11) can be
obtained.

Aε̇ = Bε+ ν, (11)

where

A=

 a′11 a′12 0
a′21 a′22 0
0 0 1

 ,
B=

 b′11 b′12 b′13
b′21 b′22 b′23
ω0/2 −ω0/2 0

 .
ε = (ε1,ε2,ε3)T , ε̇ = (ε̇1, ε̇2, ε̇3)T , ν = (ν1,ν2,ν3)T . a′ij , b′ij ,
and νi (i = 1, 2, 3 and j = 1, 2, 3) are listed in the Ap-
pendix B.

3.1 Synchronization condition

When the vibrating system realizes the stable synchroniza-
tion motion, then ε = 0 and ε̇ = 0 are obtained. When com-
bined with Eq. (11), the condition of two ERs realizing self-
synchronization can be deduced as ν = 0, which can be ex-
pressed as follows:

Te01 = f1ω0+m0r
2ω0κ1, Te01 ≤ TeN1

Te02 = f2ω0+m0r
2ω0κ2, Te02 ≤ TeN2. (12)

TeN1 and TeN2 represent the rated electromagnetic torques of
motor 1 and motor 2, respectively.

3.2 Stability condition

When two ERs are in the state of self-synchronization, then
we can work out the average angular velocity ω0 and the av-
erage phase difference 2α0 from Eq. (12). By combining it

Figure 3. RFOC or the rotor-flux-oriented control.

with Eq. (11), Eq. (13) can be obtained as follows:

Aε̇ = Bε. (13)

It is easy to find det(A) 6= 0, so Eq. (13) can be rewritten as
follows:

ε̇ = Dε, (14)

with D= A−1B.
From |λI −D| = 0, the characteristic equation of Eq. (14)

is deduced as follows:

λ3
+ d1λ

2
+ d2λ+ d3 = 0, (15)

where λ represents the eigenvalues. di (i = 1,2,3) are the co-
efficients of Eq. (15). In order to realize the stability of vibra-
tion system, all real parts of λ should be negative; if not, the
stability of vibration system is impossible to achieve. Ac-
cording to the Hurwitz theory, the premise of stability can
also be expressed as follows:

d2 > 0,d3 > 0,d1d2 > d3. (16)

4 Design of the fuzzy PID method

The master–slave control strategy was selected for its relia-
bility and validity. Motor 1 is the master motor, and motor 3
is the slave motor. Fuzzy PID and rotor-flux-oriented control
(RFOC) are added to the vibration system to implement the
control synchronization between motors 1 and 3. ωt is the tar-
get speed of motor 1, so the speed of motor 1 can be obtained.
ω1 is divided into two channels. The first is the target speed
of motor 2, and the other is transmitted to the dynamic cou-
pling model of the vibration system. The scheme of RFOC is
illustrated in Fig. 3.

When the PID parameters are not chosen, then the fuzzy
PID approach is extremely beneficial because the fuzzy PID
approach can adjust the parameters adaptively according to
the state of the vibration system. The control system adopts
two input and three output values; two input values are the
systematic error (e) and the rate of error change (ec). Three
output values are kp, ki , and kd . When the values of kp, ki ,
and kd are chosen, then the vibration system is controlled
successfully.
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4.1 The stability analysis of the fuzzy PID method

Realizing the same speed of the motors is the premise of
the control part. The speed of the motors should be one of
the control targets. First, the speed of the induction motor is
selected as the state variable. Setting ω = ϕ̇, Eq. (1) can be
rewritten as follows:

Jiω̇i + fωi =KT iui +Wi (i = 1,2,3), (17)

where KT 1 = Lm1φrd1/Lr1, KT 2 = Lm2φrd2/Lr2, KT 3 =

Lm3φrd3/Lr2, u1 represents i∗qs1, u2 represents i∗qs2, and u3
represents i∗qs3, W1 =−TL1, W2 =−TL2, and W3 =−TL3.
The speed error can be obtained by the difference between
the real-time rotational speed (ω) and the given speed (ωt).

e = ωt−ω (18)

Subsequently, the tracking error in the motors can be ex-
pressed as E= (e, ė)T . It is not absolutely accurate to control
the rotation speed with the control method. From Eqs. (17)
and (18), the control rate can be expressed as follows:

u= J/KT

[
−f̂ (x|θf )+ ω̇t+KTE+ (fω−W )/J

]
, (19)

where f̂ (x|θf )= θTf ξ (x), K= [kp,ki]T , so the accommoda-
tive rate of the system can be set as

θ̇f =−γET Pbξ (x). (20)

P is a positive definite matrix to ensure that the weight coef-
ficient θf is bounded and the optimal weight coefficient θ∗f
is the subset of the convex set �f . Thus, θ∗f can be deduced
as follows:

θ∗f = argmin
θf ∈�f

[
sup|f̂ (x|θf )− f (x)

]
. (21)

By applying Eq. (19) to Eq. (17), the dynamic expression of
the system can be expressed as follows:

Ė=3E+b
[
f̂ (x|θf )− f (x)

]
, (22)

where

3=

(
0 1
−kp −ki

)
, b=

(
0
1

)
.

By substituting Eqs. (18) and (19) into Eq. (20), the ap-
proximate error equation of the system can be expressed as
follows:

Ė=3E+b
[(
θf − θ

∗

f

)T
ξ (x)+0

]
, (23)

where 0 = f̂ (x|θ∗f )− f (x).
To obtain the minimum result of E and θf − θ∗f , the Lya-

punov function can be expressed as follows:

V= ET PE/2+
(
θf − θ

∗

f

)T (
θf − θ

∗

f

)
/(2ζ ), (24)

where ζ is a positive number. P is a positive definite matrix
and is suitable for the criterion of the Lyapunov equation.

3T P+PA=−Q (25)

Setting V1 = ET PE/2, V2 = (θf − θ∗f )T (θf − θ∗f )/(2ζ ),
so V̇1 =−ETQE/2+ (θf − θ∗f )TET Pbξ (x)+ET Pb0,
and V̇2 = (θf − θ∗f )T θ̇f /ζ . According to V̇= V̇1+ V̇2,
V̇=−ETQE/2+ET Pb0 is obtained. Then, we need to find
out the appropriate values of 0, which can make the value of
V̇ within V̇≤ 0.

4.2 The stability analysis of the control system

ϕ1 is the target phase of motor 3; therefore, the phase dif-
ference between motor 1 and motor 3 can be expressed as
follows:

ẽ = ϕ1−ϕ3. (26)

Applying the method mentioned above, the stability of the
phase difference between motor 1 and motor 3 can be proved.

5 Results and discussion

5.1 Simulation results of composite synchronization

In order to guarantee the practicability of the control method,
a series of simulation studies are carried out on compos-
ite synchronization through MATLAB/Simulink. The self-
synchronization part includes motor 1 and motor 2, and the
control synchronization part includes motor 1 and motor 3.
The initial speed of the three motors is 0, and their frequen-
cies are all set as 35 Hz. The simulation time is 40 s. At
the beginning, the control synchronization motion is unsuc-
cessfully implemented without the proposed control method.
Based on this result, the control synchronization simulation
is carried out by introducing the fuzzy PID control method
into the vibration system, and the simulation results are ob-
tained based on η1 = η2 = η3= 0.5, l1 = l2= 0.32 m, and
l3= 0.3 m. As demonstrated in Fig. 4a, motor 1 and mo-
tor 2 reach the self-synchronization state gradually. Motor 3
subsequently reaches the control synchronization under the
proposed control method. Their speed curves almost coin-
cide around about 70 rad s−1, showing the shape of the sine
waves. Moreover, the amplitude of ω2 is the largest and that
of ω1 and ω3 are approximately same. As demonstrated in
Fig. 4b, when 0< t < 6, ϕ1−ϕ2 changes between−7 and 3◦,
while 6< t < 10; ϕ1−ϕ2 decreases from −1 to −18◦ and,
when 10< t < 35, ϕ1−ϕ2 increases from −18 to 25◦. Fi-
nally, the phase difference in motors 1 and 2 varies at around
25◦, which indicates that the self-synchronous motion is real-
ized. In Fig. 4c, when 0< t < 3, ϕ3−ϕ1 rises from 0 to 50◦,
while, when 3< t < 7, ϕ3−ϕ1 decreases from 50 to−5◦, and
then it settles down at around 0◦. Motor 1 and motor 3 imple-
ment the control synchronization motion with a zero-phase
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difference. From Fig. 4f, the variations in the load torque of
three ERs are shown. When the motors are in a stable state,
the electromagnetic torques of three motors and load torques
of the motors are almost equal. Because the electromagnetic
torques are the function of ω, the curves of the electromag-
netic torques and rotation speed have the same varying ten-
dency. In Fig. 4d–e, the vibration system responses in the x,
y, and ψ directions are shown.

Due to the fact that, for the vibration direction, depending
on the excitation force generated by the motors, the ampli-
tudes of the responses in the y direction are larger than those
in the x and ψ directions. The scope of responses in the y di-
rection is from −2 to 2 mm. The amplitude of the responses
in the x direction is smaller than that in the y direction, which
means that the vibration system can realize vibration in the y
direction. From the above analyses, the simulation of a com-
posite synchronization motion is realized successfully. The
proposed control method shows an excellent performance in
the simulations, and the vibration motion in the y direction
is achieved.

In order to study the influence of different factors on the
control system. The quality of three ERs is changed to 4 kg,
namely ηi = 0.67. In Fig. 5a, the rotational speeds of three
motors are shown, and three speed curves almost coincide to
70 rad s−1. Comparing with the Fig. 4a, the rotational speed
of three motors is not changed. From Fig. 5b, the phase
difference in motor 1 and motor 2 is shown. The values
of ϕ1−ϕ2 stabilize around 32◦ finally, which means that
self-synchronous motion is realized. In Fig. 5c, the curve of
ϕ3−ϕ1 is displayed. The values of ϕ3−ϕ1 stabilize around 0◦

ultimately. It means that the change in the quality of ERs will
not affect the synchronization of zero-phase difference. The
arbitrariness of the proposed control method is illustrated. In
Fig. 5d–e, the responses of the vibration system in the x, y,
and ψ directions are shown. The values of the responses in
the y direction vary from about −3 to 3 mm. With the in-
crease in the ERs quality, the response in the y direction is
larger than that in Fig. 4d. From Fig. 5f, the load torques of
three ERs are shown.

Obviously, with the increase in the quality of three mo-
tors, the load torques have been improved obviously. From
the simulation results, with the increase in the quality of
ERs, the response of the vibration system in the y direction
have obviously enhanced, but the self-synchronous phase
difference is increased apparently. The increase in the self-
synchronization phase difference is not the desired result in
this paper.

In order to study the influence of the installation position
of three motors on a vibration system, the distance between
the rotation center of the motors and the center of mass of
the vibration system is changed, namely l1 = l2 = l3= 0.4 m.
The simulation results are as follows. In Fig. 6a, three mo-
tors are started smoothly, and their speed eventually reached
about 70 rad s−1. In Fig. 6b, the curve of ϕ2−ϕ1 is shown.
The values of ϕ2−ϕ1eventually reached about 34◦, which

means that the synchronous motion of motor 1 and motor 2
is achieved, but the self-synchronization phase difference has
changed obviously, compared with Fig. 5b. From Fig. 6c, the
phase difference in motor 3 and motor 1 is shown. The val-
ues of ϕ3−ϕ1 are ultimately reached at 0◦, which once again
proves the ability of the control method to resist varying pa-
rameters. In Fig. 6d–e, the responses in different directions
are shown. The response in the ψ direction is still small,
floating at around 0◦. The values of the responses in the y
direction vary from −2 to 2 mm and are larger than those in
the x direction. In Fig. 6f, the load torques of three motors are
changed slightly. The values of the load torque of the three
motors change from −1 to 1 Nm.

The installation position of the motors has a certain influ-
ence on the response of the vibration system and the self-
synchronous motion state. With the increase in the installa-
tion distance of three motors, the responses in the y direction
have not enhanced, but the self-synchronization phase differ-
ence has increased. There is no favorable influence on the
vibration system with the increase in the installation distance
of motors. The proposed control method still shows the abil-
ity to resist the changes in various parameters.

Based on the above simulation conclusions, the quality of
three ERs is selected as 4 kg, namely ηi = 0.67. The installa-
tion position of motors 1 and 2 is unchanged, but the installa-
tion distance of motor 3 is reduced, namely l1 = l2= 0.32 m,
and l3= 0.2 m. The simulation results are as follows. In
Fig. 7a, the speed of three ERs is about 70 rad s−1. From
Fig. 7b, the phase difference of ϕ1−ϕ2 stabilizes at 20◦. The
values of ϕ1−ϕ2 are smaller than those in the above simula-
tions, which means that the synchronization state of the sys-
tem is more stable. Under the influence of the circumferen-
tial distribution of the three motors, the self-synchronization
phase differences of ϕ1−ϕ2 always exist in the simulations.
However, the self-synchronization with a zero-phase differ-
ence can be realized (in theory) by adjusting parameters. In
Fig. 7c, the control synchronous phase difference of ϕ1−ϕ3
still reaches 0◦. This is undoubtedly the control effect of the
proposed control method on the system. In Fig. 7d, the re-
sponses in the x and y directions are shown. The responses
in the y direction vary from −3 to 3 mm, which means that
the vibration motion in the y direction is stronger than that
in previous simulations. The response in the x direction is
smaller than that in the y direction. In Fig. 7e, the responses
in the ψ direction are not equal to 0◦. From Fig. 7f, the load
torques of three motors are shown. The curves of the load
torque are similar to those in Fig. 5f, which indicates that the
load torques are mainly influenced by the quality of the ERs.

From the above simulation results, the influence of the
quality of ERs and the motor installation position on the
vibration system are discussed, respectively. Through many
simulation tests, the ideal motion state of the vibration sys-
tem shows that, with bigger responses in the y direction and
a smaller self-synchronization, the phase difference can be
obtained.
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Figure 4. Simulation results of the composite synchronization (η1 = η2 = η3= 0.5, l1 = l2= 0.32 m, and l3= 0.3 m). (a) Speed, (b) phase
difference between motors 1 and 2, and (c) phase difference between motors 1 and 3. (d) Responses in the x and y directions. (e) Response
in the ψ direction. (f) The load torques of the three motors.

Figure 5. Simulation results of the composite synchronization (η1 = η2 = η3= 0.67, l1 = l2= 0.32 m, and l3= 0.3 m). (a) Speed, (b) phase
difference between motors 1 and 2, and (c) phase difference between motors 1 and 3. (d) Responses in the x and y directions. (e) Response
in the ψ direction. (f) The load torques of three motors.

Mech. Sci., 14, 143–158, 2023 https://doi.org/10.5194/ms-14-143-2023



L. Jia et al.: Composite synchronization motion of three induction motors in a vibration system 151

Figure 6. Simulation results of the composite synchronization (η1 = η2 = η3= 0.5, and l1 = l2 = l3= 0.4 m). (a) Speed, (b) phase difference
between motors 1 and 2, and (c) phase difference between motors 1 and 3. (d) Responses in the x and y directions. (e) Response in the ψ
direction. (f) The load torques of three motors.

Figure 7. Simulation results of the composite synchronization (η1 = η2 = η3= 0.67, l1 = l2= 0.32 m, and l3= 0.2 m). (a) Speed, (b) phase
difference between motors 1 and 2, and (c) phase difference between motors 1 and 3. (d) Responses in the x and y directions. (e) Response
in the ψ direction. (f) The load torques of three motors.
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Figure 8. Experimental equipment. (a) Vibration test bench, (b) programmable logic controller, (c) acceleration sensor, (d) frequency
converter, (e) photoelectric encoder, and (f) signal acquisition instrument. (g) Flow chart of experiment.

5.2 Composite synchronization experiment

In this section, based on the simulations, the composite syn-
chronization experiments are given to prove the correct-
ness of the theoretical analysis and the numerical simu-
lations based on η1 = η2 = η3= 0.5, l1 = l2= 0.32 m, and
l3= 0.3 m. Figure 8a shows the vibration test bench driven by
three ERs. Motor 2 rotates counterclockwise, and motors 1
and 3 rotate clockwise. The three motors are distributed cir-
cumferentially. Four symmetrical springs link the vibration
test bench to the ground, and the vibration test bench can re-
alize the vibration motion in different directions. In Fig. 8b,

the programmable logic controller (PLC) is shown. The PLC
(Siemens S7-200) is the core of the control synchronization,
which can accomplish the control of the phase difference in
ERs. Figure 8c shows the acceleration sensor. Three acceler-
ation sensors are installed in the horizontal direction and on
the sides of the vibration test bench, respectively, to measure
the acceleration of the test bench. The frequency converter
(Siemens MM440) is shown in Fig. 8d. Figure 8e shows
the photoelectric encoder, which converts mechanical vari-
ables into photoelectric signals, and the signal acquisition
instrument is shown in Fig. 8f. The scheme of the compos-
ited synchronization experiment of the three motors is shown
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Figure 9. Experimental results of the composite synchronization (η1 = η2 = η3= 0.5, l1 = l2= 0.32 m, and l3= 0.3 m). (a) Speed, (b) phase
difference between motors 1 and 2, and (c) phase differences between motors 1 and 3. (d) The acceleration in the x direction, (e) the
acceleration in the y1 direction, and (f) the acceleration in the y2 direction.

in Fig. 8g. The equipment in the experimental flow chart is
mainly composed of a personal computer, a PLC, a converter,
an acceleration sensor, and a data acquisition machine.

Through three pulse encoders, the frequencies of the three
motors are adjusted. The pulse encoder transmits the signal
to the personal computer by connecting with PLC. At the
same time, the PLC adjusts the motion state of the vibration
test bench through a converter. Three acceleration sensors are
placed on the vibration test bench to measure the acceleration
in the y1, y2, and x directions, and through data acquisition
and signal processing, the acceleration information is col-
lected on the personal computer. The pulses are obtained by a
Hall effect sensor detecting the switching signal for every lap
of the three ERs. The pulses are converted to the calculation
data by the pulse coder and PLC. The frequencies of three
motors are set as 35 Hz, coinciding with the simulation val-
ues. From Fig. 9a, the rotational speeds of three motors are
shown. When t ≈ 8 s, then three motors are started simulta-
neously. While t ≈ 12 s, ω1, ω2 and ω3 reach stable values
and fluctuate around 73 rad s−1. The phase difference in mo-
tors 1 and 2 is shown in Fig. 9b. At the beginning, motors 1
and 2 are in a stationary state, and the values of ϕ1−ϕ2 are
chaotic. When the time is at 25 s, the synchronization state
is stable, and the self-synchronization phase has difference
values that fluctuate around about 33◦. Although there is a
certain error with the simulation results in Fig. 4b, the er-
ror may be caused by the external working environment. The
self-synchronization motion between motor 1 and motor 2

is achieved. In Fig. 9c, the phase difference in motors 1 and
3 is shown. Under the disturbance factor of the motor pa-
rameters and the parameters of the vibration test bench, the
control synchronization phase difference is chaotic at the be-
ginning. When the time is at about 30 s, ϕ1−ϕ3 stabilizes
at about 0◦. Motor 1 and motor 3 operate the control in a
synchronous motion with an approximate zero-phase differ-
ence, which validates the effectiveness and necessity of the
proposed controller to implement control synchronization.

The excitation force generated from three motors affects
the characteristics of the vibration system, and the vibration
system affects the motors by altering the load torques of the
motors. The vibration motion of the system is directly caused
by the responses in the x, y, and ψ directions. From Fig. 9d–
f, the amplitudes of acceleration are shown. The accelera-
tions of ÿ1 and ÿ2 are about 12 m s−2, and ẍ is about 7 m s−2.
The reason for this phenomenon is that the addition of an
excitation force for three motors in the y direction causes ÿ
larger than ẍ. Because motor 1 and motor 2 are installed on
the vibration test bench symmetrically, so ÿ1 ≈ ÿ2.

From the above analysis, the experiment results are almost
in accord with the simulation results in Fig. 4, which firmly
confirms the practicability of the proposed control method.

https://doi.org/10.5194/ms-14-143-2023 Mech. Sci., 14, 143–158, 2023



154 L. Jia et al.: Composite synchronization motion of three induction motors in a vibration system

6 Conclusions

In this article, the composite synchronization of three induc-
tor motors with a circular distribution by a fuzzy PID method
in a vibration system is investigated. The fuzzy PID method
proposed is based on a master–slave strategy that has been
established. The stability analysis, based on the Lyapunov
theorem of the controlling method, is certified. The phase
differences in the self-synchronization and controlled syn-
chronization are measured and compared based on simula-
tion and experiment results. The vibration direction is deter-
mined by the direction of the resultant forces provided in the
vibration system. Numerical simulations and experiment re-
sults illustrate that motor 1 and motor 2 can realize the stable
self-synchronization motion. Motors 1 and 3 can realize the
controlled synchronization with zero-phase difference. It is
indicated that the controlling method proposed has a strong
robustness in the composite synchronization motion against
some internal perturbations and external time-varying distur-
bances. Through changing the characteristic parameters in
the simulations, the results indicate that the response ampli-
tude can be influenced by the parameters li and mi . To ob-
tain the trajectory of straight line in the y direction, which is
needed for the engineering, the phase difference between mo-
tors 1 and 2 should be reduced, and mi should be increased.
When the parameters l1 and l2 are determined, l3 should be
reduced.
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Appendix B
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Appendix C: Nomenclature of the symbols

mi The mass of each ER
Jp The moment of inertia of the rigid body
J The moment of inertia of the vibration system
kx , ky , kψ The damping coefficients of the vibration system in the x, y, and ψ directions
r The eccentric radius of the three motors
M The mass of the total vibration system
fx , fy , fψ The stiffness coefficients of the vibration system in the x, y, and ψ directions
l1, l2, l3 The distance between the center of the body and the rotating center of the motors
Ji The moment of inertia of the inductor motor
d, q The d and q axes in the rotor-field-oriented coordinate
Ls The self-inductance of the stator
Lr The self-inductance of the rotor
Subscript s The stator
Subscript r The rotor
Lm The mutual inductance of the stator and rotor
φsd The flux linkages of the stator in the d axis
φsq The flux linkages of the stator in the q axis
φrd The flux linkages of the rotor in the d axis
φrq The flux linkages of the rotor in the q axis
Rs The stator resistance
Rr The rotor resistance
isd The current of the stator in the d axis
isq The current of the stator in the q axis
ird The current of the rotor in the d axis
irq The current of the rotor in the q axis
ω The mechanical speed
ωs The synchronous electric angular speed
φ̇sd , φ̇sq , φ̇rd , φ̇rq The derivation of φsd , φsq , φrd , φrq
σ The leakage factor
Tr The rotor time constant
usd The voltage of the stator in the d axis
usq The voltage of the stator in the q axis
urd The voltage of the rotor in the d axis
urq The voltage of the rotor in the q axis
np The number of pole pairs of the induction motor
·
∗ The given values or obtained from the given values
ω1, ω2, ω3 The speeds of the three motors
ϕ1, ϕ2, ϕ3 The phases of the three motors
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