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Abstract. Constraints are one of the main factors that hinder the optimal synthesis of linkages to obtain the
global optimum. At present, the most commonly used constraint handling method is called the penalty function
(PF) method, but this technique has proven to be inefficient and unreliable in path synthesis. In this paper, a
novel and effective constraint handling method called the individual repairing (IR) method is developed for the
optimization model of four-bar mechanisms for path synthesis. The function of the IR method is to check the
conformity of each individual to the Grashof condition, the sequence condition, and the variable range condition
after population initialization and each iteration as well as to repair all unreasonable individuals according to
the corresponding repairing technique to make them all satisfy the constraint conditions. In other words, the
new constraint handling method establishes a transformation method so that each infeasible point in the search
space uniquely corresponds to a feasible point. Based on the IR method, the optimization of path synthesis can
be effectively carried out. Finally, the validity and reliability of the new constraint handling method are verified
using three examples.

1 Introduction

A linkage mechanism is a kind of commonly used mecha-
nism that is employed to realize the motion transformation
and power transmission (Sandor and Erdman, 1984; Erdman
et al., 1984). Among various linkage mechanisms, the four-
bar mechanism is essential and widely used due to its simple
structure, stable output, and the fact that it is easy to control
and maintain (Buśkiewicz, 2019; Kadarno et al., 2021; Lee
et al., 2021; Yildiz, 2021; Zhao et al., 2014).

A class of design tasks for linkage mechanisms is called
path synthesis. The purpose of path synthesis is to find the
optimal dimensional parameters of a mechanism so that a
point on the coupler link can move along a desired curve (Fox
and Willmert, 1967; Han, 1966; Li et al., 2020; Khan et al.,
2015). In general, the desired curve of path synthesis usually
refers to a sequence of precision points. Because of the high
nonlinearity of the problem, the path synthesis task is usu-
ally treated as an optimization problem (Marín and González,
2003). In order to ensure the rationality of the final linkage
solution, three constraints are usually introduced into the op-

timization model of path synthesis of four-bar mechanisms,
including the Grashof condition, the sequence condition, and
the variable range condition. However, the introduction of
constraints leads to a highly discontinuous search space. In
general, constraints are considered to be one of the main fac-
tors hindering the optimal synthesis of linkages to obtain the
global optimum (Angeles et al., 1988; Acharyya and Man-
dal, 2009; Lin, 2010; Peñuñuri et al., 2011; Ebrahimi and
Payvandy, 2015; Sleesongsom and Bureerat, 2018; Bureerat
and Sleesongsom, 2021).

At present, the penalty function (PF) method is the most
commonly used method to deal with the constraint condi-
tions in path synthesis. The principle of the PF method is to
add a very large value to the objective function of individu-
als who do not meet the constraint conditions so that these
individuals will be eliminated in the optimization. However,
this causes the vast majority or even all of the individuals of
the initial population to be eliminated by the penalty func-
tion, especially when dealing with the sequence condition
(Acharyya and Mandal, 2009; Peñuñuri et al., 2011). As a re-
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sult, the PF method usually requires a very large population,
otherwise the optimization will be inefficient or will even fail
(Sleesongsom and Bureerat, 2018; Bureerat and Sleesong-
som, 2021). However, a large population is accompanied by
a sharp increase in the computational cost. In this context, re-
searchers have made some useful explorations. Acharyya and
Mandal (2009) first proposed a method to rearrange the ran-
domly generated input angles in the initial population to re-
duce the probability of individuals being rejected in the next
iteration. Additionally, they proposed a refinement scheme
to ensure that all individuals in the initial population sat-
isfy the Grashof condition by reassigning link lengths to in-
dividuals that do not satisfy the abovementioned condition.
Lin (2010) further introduced the method of rearranging in-
put angles during both population initialization and each it-
eration, so that the sequence condition of input angles could
be ignored until the end of the optimization. Ebrahimi and
Payvandy (2015) developed an innovative technique to gen-
erate the initial population that satisfies the Grashof con-
dition. Sleesongsom and Bureerat (2018) and Bureerat and
Sleesongsom (2021) designed two new individual generation
techniques for the Grashof condition and the sequence con-
dition, respectively, which can ensure the generation of indi-
viduals that satisfy the constraints. However, the individual
generation techniques that they designed did not take the pa-
rameters of the original individual into account and, instead,
generated a completely new individual.

In this paper, a novel and effective constraint handling
method called the individual repairing (IR) method is in-
troduced. The principle of the IR method is to develop the
corresponding repairing technique for each constraint condi-
tion of the optimization model, so as to ensure that all of the
individuals in the optimization always meet the constraints.
The design of these repairing techniques follows the same
criterion, which is to transform the original unreasonable in-
dividual into a unique corresponding reasonable individual.
In other words, the IR method transforms every infeasible
point in the search space into a unique corresponding feasi-
ble point. This is the difference between this study and other
relevant studies and is also the main innovation described in
this work. Based on the new constraint handling method, the
optimization of path synthesis can be effectively carried out.

In Sect. 2, the kinematics analysis and the classic opti-
mization model of four-bar mechanisms for path synthesis
are described. Section 3 then introduces three repairing tech-
niques corresponding to the three constraint conditions of the
classic optimization model of four-bar mechanisms for path
synthesis. Following this, Sect. 4 shows the optimization re-
sults using the new IR method through three classical path
synthesis tasks. Finally, the conclusions of the paper and the
plan for future work are presented in Sect. 5.

Figure 1. The planar four-bar mechanism and its parameters.

2 Problem formulation

2.1 Kinematics analysis

The schematic diagram of a planar four-bar mechanism is
shown in Fig. 1. The mechanism is represented by nine inde-
pendent design variables:

X = [l1, l2, l3, l4, r,α,θ,x0,y0]. (1)

Here, l1 is the length of the fixed link AD, l2 is the length of
input link AB, and l3 and l4 represent the lengths of coupler
link BC and output link CD, respectively. The coupler point
P is a point on the coupler link BC which generates a contin-
uous curve, and r and α determine the position of P relative
to the coupler link BC. x0, y0 and θ determine the offset and
rotation angle of the fixed link AD relative to the coordinate
system xoy, respectively.

Based on the variable definition shown in Fig. 1, the posi-
tion of the coupler point P can be formulated as follows:{
Px = l2 cos(φ+ θ )+ r cos(α+β + θ )+ x0
Py = l2 sin(φ+ θ )+ r sin(α+β + θ )+ y0

, (2)

where the variable β represents the angle between the cou-
pler link BC and the fixed link AD.

Actually, the variable β is a dependent variable, and
Freudenstein (1954) provides the relation equation of the
variable β, the input angle φ, and the dimensional parame-
ters of the mechanism.

K1+K2 cosφ+K3 cosβ = cos(φ−β), (3)

where
K1 =

l24−l
2
3−l

2
2−l

3
1

2l2l3
K2 =

l1
l3

K3 =
l1
l2

. (4)

The following simplified equation can then be derived:

β = 2arctan
−B ±

√
B2− 4AC
2A

, (5)
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where A= (K2+ 1)cosφ+K1−K3
B =−2sinφ
C = (K2− 1)cosφ+K1+K3

. (6)

The two solutions of Eq. (5) represent two respective
branches of the four-bar mechanism. In summary, the Eq. (2)
can be simplified as follows:

P = f (X, φ). (7)

2.2 Classic optimization model

The path synthesis problem is usually considered to be an
optimization problem, and an objective function is specified
to minimize the difference between the desired curve and an
actual generated curve. The tracking error is the most com-
monly used objective function to quantify this difference,
and it is defined as the sum of the squares of the Euclid-
ian distances between the target points and the same num-
ber of comparison points on the generated curve. In order
to obtain these comparison points, the classical model intro-
duces N input angles as optimization variables in addition to
the nine design variables of the four-bar mechanism, where
N is equal to the number of target points. In addition, the
Grashof condition, the sequence condition, and the variable
range condition are used as constraint functions in the classic
optimization model of four-bar mechanisms for path synthe-
sis. Therefore, the optimization variables of the classic model
usually include the following:

X0 = [l1, l2, l3, l4, r, α, θ, x0, y0, φ1, φ2,. . ., φN ]. (8)

As a result, the classic model can be defined as follows:

min
subject to

fobj =

{∑N
i=1
[
(Gxi −D

x
i )2

+(Gyi −D
y
i )2]}

(a) l2 <min(l1, l3, l4) && l2
+max(l1, l3, l4)< sum(l1, l3, l4)
−max(l1, l3, l4) ,

(b) φj < φmod(j+1,N ) < .. .

< φmod(j+N−1,N ),

(c) xi ∈ [Li, Ui], ∀xi ∈X0,

(9)

where (Gxi ,G
y
i ) is the position of the actual generated preci-

sion points for comparison, (Dxi ,D
y
i ) is the prescribed posi-

tion of the target point, φj =min{φ1,φ2, . . .,φN }, mod(m,n)
is the remainder of the quotient ofm/n(set mod(m,m)=m),
xi is the ith parameter inX0, and Li and Ui are the lower and
upper limits of the variable xi , respectively.

Constraint conditions (a)–(c) in Eq. (9) represent the
Grashof condition, the sequence condition, and the variable
range condition, respectively. It should be noted that this pa-
per uses the crank–rocker mechanism as the research object,

so the link AB is directly defined as the shortest link in con-
straint (a). In addition, it should be mentioned that the pur-
pose of the sequence condition is to restrict the rotation di-
rection of the crank so that it cannot be rotated backwards.
Currently, some literature forces input angles to be arranged
in increasing order, which overdefines the sequence condi-
tion and may lead to a reduced potential for the optimiza-
tion to obtain the optimal solution. As far as we know, a
reasonable expression for the sequence condition was first
proposed by Cabrera et al. (2002), but they miswrote the
comparison symbol in the formula. The correct definition of
the sequence condition is represented in constraint (b). Fi-
nally, constraint (c) ensures that all optimization variables are
within their respective predetermined reasonable ranges.

3 Individual repairing (IR) method

Although it is the most common constraint handling method
in path synthesis, the PF method has been proven to be inef-
ficient and to have poor repeatability (Sleesongsom and Bu-
reerat, 2018; Bureerat and Sleesongsom, 2021; Acharyya and
Mandal, 2009; Lin, 2010; Peñuñuri et al., 2011; Ebrahimi
and Payvandy, 2015). Actually, using PF methods to deal
with constraint functions will result in most or all of the indi-
viduals in the initial population being eliminated by penalty
functions, especially when dealing with the sequence condi-
tion.

The probability that a uniform random sequence is already
sorted is 1/n! (Peñuñuri et al., 2011). Therefore, the prob-
ability of randomly generated individuals meeting the se-
quence condition is 1/(n− 1)!. A simple example is illus-
trated here. For the path synthesis task with six target points,
3 000 000 individuals were randomly generated by a uniform
distribution to form the initial population. Among them, the
proportion of individuals conforming to the Grashof condi-
tion is 12.4944 %, the proportion of individuals conforming
to the sequence condition is 0.8356 %, and the proportion of
individuals conforming to both constraints is 0.1039 %. This
means that the vast majority of randomly generated individ-
uals do not satisfy the constraint conditions. In this case, the
PF method will lead to the majority or even all of the indi-
viduals in the initial population being eliminated, resulting in
the inefficiency or even failure of the optimization. In addi-
tion, it is easy to understand that even if the optimization is
successful, the optimization completed by a few initial indi-
viduals conforming to the constraints will not have satisfac-
tory repeatability. This is especially problematic when there
are more target points.

Therefore, a new constraint handling method called the
IR method is developed in this section. The principle of the
IR method is to develop different individual repairing tech-
niques corresponding to each constraint condition, so as to
repair the individuals that do not meet the constraint con-
dition after the initial population generation and each iter-
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Figure 2. The flow of the linkage repairing technique.

ation. The repairing techniques corresponding to the con-
straint conditions of the optimization model for path synthe-
sis of four-bar mechanisms are described below.

3.1 Grashof condition repairing technique

The Grashof condition is a constraint on the link lengths of
a four-bar mechanism. Its purpose is to ensure the existence
of a crank in the four-bar mechanism. In this work, a link-
age repairing technique is proposed to transform all of the
non-Grashof linkage solutions into reasonable solutions in
the optimization process. The flow of the linkage repairing
technique is shown in Fig. 2.

As shown in Fig. 2, the linkage repairing technique is
mainly divided into two steps, making the link lengths meet
the two respective inequality constraints of the Grashof con-
dition as shown in Eq. (9). The function of the first step is
to ensure that link AB becomes the shortest link, which is
easy to understand. The function of the second step is to en-
sure that the sum of the shortest link and longest link is less
than the sum of the other two links, which may be difficult
to intuitively understand. The principle of the second step is
presented in Fig. 3.

Assuming that the link length values are arranged on a pos-
itive line as shown in Fig. 3, the second inequality constraint
of the Grashof condition can be transformed into a more
graphical representation: the thick dashed line representing
the average length M1 of the longest and shortest links must
be to the left of the thin dashed line representing the aver-
age length M2 of the remaining two links. For linkages that
do not satisfy this inequality constraint, Fig. 3 shows an in-
genious repairing technique that takes x =M1 as the axis of
symmetry and then redefines the values of lm and ln.

Figure 3. Schematic diagram of the linkage repairing technique.

Figure 4. Schematic diagram of the angle repairing technique.

In contrast to the work of Ebrahimi and Payvandy (2015),
Sleesongsom and Bureerat (2018), and Bureerat and
Sleesongsom (2021), the linkage repairing technique devel-
oped in this study is based on the parameters of the irrational
linkage solution itself, rather than regenerating another com-
pletely unrelated linkage solution. Based on this new tech-
nique, the repaired linkage solution is more likely to remain
competitive in the next iteration.

3.2 Sequence condition repairing technique

Similar to the studies of Acharyya and Mandal (2009),
Lin (2010), and Ebrahimi and Payvandy (2015), this study
also adopted the method of rearranging input angles in in-
creasing order to ensure that all individuals meet the se-
quence condition in the optimization process. However, in
contrast to the method of Acharyya and Mandal (2009) and
Ebrahimi and Payvandy (2015), who randomly selected an
input angle as the first angle, and the method of Lin (2010),
who selected the smallest input angle as the first angle, this
study keeps the original first input angle unchanged. Figure 4
shows the schematic of the angle repairing technique used in
this study.

Assuming that a randomly generated set of input angles is
arranged on a positive line, the angles’ arrangement is likely
to be chaotic, as shown in Fig. 4. The function of the angles
repairing technique is to give this set of angles a new order
so that the angles are neatly arranged on the positive line ac-
cording to the sequence condition.
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Figure 5. Schematic diagram of the variables repairing technique.

3.3 Variable range condition repairing technique

In the iterative process of population, some parameters of
some individuals are likely to break through the predeter-
mined range. At present, the commonly used optimization
technique is to set the parameter value of the breakthrough
range as the boundary value, but there is no relevant research
on path synthesis to describe this handling technique of the
variable range condition. Figure 5 illustrates the principle of
this variable range repairing technique in detail.

Similarly, suppose that a parameter value and its corre-
sponding boundary value of an individual in the population
are arranged on a positive line as shown in Fig. 5. The prin-
ciple of variables repairing technique is to set parameters be-
yond the upper boundary as the upper boundary and param-
eters beyond the lower boundary as the lower boundary.

3.4 Application of the IR method in optimization

Based on the three individual repairing techniques shown
above, the elitism of population was guaranteed during
the whole optimization procedure. Finally, the application
method of these repairing techniques in the path synthesis
of four-bar mechanism is shown in Fig. 6.

In Fig. 6, the variableNp represents the population number
and Imax represents the maximum iteration number.

4 Numerical examples

In order to verify the validity and reliability of the new con-
straint handling method, three classic path synthesis tasks are
discussed in this section, including one path synthesis task
without prescribed timing and two path synthesis tasks with
prescribed timing. Additionally, three classical optimization
algorithms are selected to search for the optimal solution.
The parameters of these optimization algorithm are set as fol-
lows:

1. for the genetic algorithm (GA), Cp= 0.8 and Mp= 0.2;

2. for the particle swarm optimization (PSO), w = 0.7,
c1 = 1.49, and c2 = 1.49;

3. for the differential evolution (DE), F = 0.5 and
Cp= 0.9.

Here, the parameters Cp, Mp, w, c1, c2, and F represent
the crossover probability, the mutation probability, the inertia

factor, the global learning weight, the local learning weight,
and the scaling factor, respectively. Additionally, the popu-
lation number Np is set to 100, and the maximum iteration
number Imax is set to 1000. Finally, results from other stud-
ies using the same optimization algorithms were compared
with the results of this study.

4.1 Example 1: six target points and 15 optimization
variables

This example is a path synthesis task without prescribed tim-
ing for a straight-line path with six target points. The range
of the design variables in this example is defined as follows:

l1, l2, l3, l4 ∈ [0, 60]; r ∈ [0, 85];

x0, y0 ∈ [−60, 60]; α, θ ∈ [0, 2π ].

The target points are

Di =
{
(20, 20); (20, 25); (20, 30); (20, 35);

(20, 40); (20, 45)
}
.

The optimization variables are

X0 =
[
l1, l2, l3, l4, r, α, θ, x0, y0, φ1, φ2, φ3,

φ4, φ5, φ6
]
.

Table 1 shows the optimization results of the new method
proposed in this study using the three optimization algo-
rithms for Example 1. In addition, the results from Acharyya
and Mandal (2009) using the same optimization algorithms
are also shown in Table 1. It is worth noting that the orig-
inal literature does not show the tracking error; instead, it
shows the square root of the tracking error. As can be seen
from Table 1, the results obtained by adopting the IR method
are better than those obtained using other constraint handling
methods in previous work under the same optimization algo-
rithm. Figure 7 shows the coupler curve of the linkage solu-
tions obtained in this study for Example 1.

4.2 Example 2: six target points and nine optimization
variables

This example is a path synthesis task with prescribed timing
for a semicircular arc path with six target points. The range
of the design variables in this example is defined as follows:

l1, l2, l3, l4 ∈ [5, 50]; r ∈ [0, 70];

x0, y0 ∈ [−50, 50]; α, θ ∈ [0, 2π ]; and

φi =

[
π

6
,
π

3
,
π

2
,

2π
3
,

5π
6
, π

]
.

The target points are

Di =
{
(0, 0); (1.9098, 5.8779); (6.9098, 9.5106);

(13.09, 9.5106); (18.09, 5.8779); (20, 0)
}
.
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Figure 6. Schematic diagram of the application of the IR method with different optimization algorithms.

Table 1. Linkage solutions and structural errors obtained in previous work and in this study for Example 1.

Items Acharyya and Mandal (2009) This study

GA PSO DE GA PSO DE

l1 28.77133 31.15501 35.02074 59.872763 59.773883 52.835237
l2 5.00000 5.00000 6.404196 3.298685 15.000139 38.326176
l3 35.36548 23.84561 31.60722 7.794386 50.323659 46.117030
l4 59.13681 45.80352 50.59949 57.905560 52.089966 47.017087
r 14.85037 43.16960 46.46126 25.684854 36.695059 7.376249
α (rad.) 1.570796 0.44310 1.106544 2.187849 6.174492 2.734335
θ (rad.) 5.287474 0.419837 0.000000 5.751193 0.835326 5.960828
x0 29.91329 59.99999 60.00000 42.637044 21.210247 −10.897282
y0 32.60228 17.91696 18.07791 27.043827 −6.069651 42.266521
φ1 6.283185 4.842412 6.283185 6.117190 4.897992 6.174433
φ2 0.318205 0.404684 0.264935 0.578030 5.317514 6.280820
φ3 0.638520 0.657415 0.500377 0.990195 5.650686 0.092750
φ4 0.979950 0.922086 0.735321 1.372455 5.957097 0.185154
φ5 1.412732 1.247066 0.996529 1.792472 0.000025 0.280859
φ6 2.076254 2.298727 1.333549 3.214281 0.517108 0.382803

Error 1.212161 0.298620 0.015065 0.190457 0.021008 0.008009
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Figure 7. Coupler curves obtained in this study for Example 1.

Figure 8. Coupler curves obtained in this study for Example 2.

The optimization variables are

X0 = [l1, l2, l3, l4, r, α, θ, x0, y0].

Table 2 shows the optimization results of the new method
proposed in this study using the three optimization algo-
rithms for Example 2. Similarly, it can be seen from Table 2
that the error of the linkage solutions obtained by the IR
method is smaller than the error of the linkage solutions ob-
tained by previous work (Acharyya and Mandal, 2009) using
the same three optimization algorithms. Figure 8 shows the
coupler curve of the linkage solutions obtained in this study
for Example 2.

4.3 Example 3: 18 target points and 10 optimization
variables

This example is a path synthesis task with prescribed tim-
ing for a path with 18 target points. The range of the design
variables in this example is defined as follows:

Figure 9. Coupler curves obtained in this study for Example 3.

l1, l2, l3, l4 ∈ [5, 50]; r ∈ [0, 70];

x0, y0 ∈ [−50, 50]; α, θ ∈ [0, 2π ]; and

φi = φ1+
π

9
× (i− 1) , i = 1, . . ., 18.

The target points are

Di =


(0.5, 1.1); (0.4, 1.1); (0.3, 1.1); (0.2, 1);
(0.1, 0.9); (0.005, 0.75); (0.02, 0.6);
(0, 0.5); (0, 0.4); (0.03, 0.3); (0.1, 0.25);
(0.15, 0.2); (0.2, 0.3); (0.3, 0.4); (0.4, 0.5);
(0.5, 0.7); (0.6, 0.9); (0.6, 1)

 .
The optimization variables are

X0 = [l1, l2, l3, l4, r, α, θ, x0, y0, φ1].

Table 3 shows the optimization results of the new method
proposed in this study using the three optimization algo-
rithms for Example 3. Additionally, this example has also
been studied by Cabrera et al. (2002) and Peñuñuri et
al. (2011) using the GA and DE algorithms, respectively.

As can be seen from Table 3, the results obtained by adopt-
ing the IR method are better using the same optimization al-
gorithms. Figure 9 shows the coupler curve of the linkage
solutions obtained in this study for Example 3.

5 Conclusions

In this paper, different constraint handling methods are dis-
cussed in detail, and a new constraint handling method based
on the idea of individual repairing is proposed for the path
synthesis of four-bar mechanisms. The function of the new
method is to transform individuals that do not meet the con-
straints into the individuals that meet the constraints in time,
so as to ensure the success and effectiveness of the opti-
mization. More precisely, the principle of the new constraint
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Table 2. Linkage solutions and structural errors obtained in previous work and in this study for Example 2.

Items Acharyya and Mandal (2009) This study

GA PSO DE GA PSO DE

l1 50.000000 49.994859 50.000000 46.708666 30.594392 49.999202
l2 9.164414 5.000000 5.000000 10.242772 2.326187 1.453396
l3 16.858082 5.915643 5.905345 24.358503 2.378136 1.454160
l4 50.000000 49.994867 50.000000 46.464121 30.555384 49.999966
r 38.458978 18.925715 18.819312 50.850501 13.346511 12.251352
α (rad.) 0.002343 0.000000 0.000000 6.115540 6.283170 6.283185
θ (rad.) 0.877212 0.467287 0.463633 1.398690 0.432376 0.328582
x0 32.328282 14.472475 14.373772 49.998698 11.477908 10.746899
y0 −29.537054 −12.494409 −12.444295 −30.914128 −5.320837 −3.718896

Error 10.055318 5.547239 5.520688 7.195559 2.665684 1.676753

Table 3. Linkage solutions and structural errors obtained in previous work and in this study for Example 3.

Items Cabrera et al. (2002) Peñuñuri et al. (2011) This study

GA DE GA PSO DE

l1 3.057878 1.08913 23.592008 2.137358 1.058790
l2 0.237803 0.42259 0.476490 0.341195 0.425581
l3 4.828954 0.96444 1.668684 0.486898 0.944797
l4 2.056456 0.58781 23.905760 1.997033 0.577871
r 2.003475 0.581069 0.888519 0.326521 0.554013
α (rad.) 1.177913 0.831816 0.000113 5.128309 0.792913
θ (rad.) 1.002168 0.32195 5.803712 3.469284 0.336728
x0 1.776808 0.27892 −0.030425 0.509889 0.262429
y0 −0.641991 0.11673 −0.156170 0.736264 0.143922
φ1 0.226186 0.86323 1.477457 3.383511 0.837502

Error 0.034839 0.0104565 0.034460 0.013726 0.009912

processing method is to build a converter based on the con-
straints of the optimization model, so as to transform any in-
feasible point in the search space into a unique correspond-
ing feasible point. Experimental results show that, compared
with other constraint handling methods, the proposed method
can obtain better linkage solutions using the same optimiza-
tion algorithm for the same path synthesis task. The core in-
novation of this research is the constraint handling method
based on the idea of individual repairing, which is universal
in theory and can be matched with different optimization al-
gorithms, so as to be applied to other constrained engineering
optimization problems. In the future, it is planned to extend
the constraint handling method based on the idea of individ-
ual repairing to the kinematics synthesis of six-bar mecha-
nisms, eight-bar mechanisms, and other mechanisms in the
field of mechanical design, including not only path synthesis
but also motion synthesis and function synthesis.
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