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Abstract. In this study, the authors propose a solutions map based on a telomere genetic algorithm (TGA)
to improve the efficiency of 4R-linkage synthesis. First, the points on the center curve are obtained by using
projective geometry, and those of the circle curve are obtained by vector elimination. Second, the definition
of the linkage type, assessment of linkage performance, and a method to identify defects in the linkage are
introduced. Third, the solutions map method is proposed that can map the linkage solutions obtained by all
combinations of the points on the center curve to a 3D color-coded surface to represent the distribution of
solutions with different attributes of linkages in the solution domain. Fourth, we use the proposed telomere
operator and pseudo-histogram method to improve the traditional genetic algorithm, and expand the domain of
solutions of the solutions map by using the TGA. Finally, the linkage synthesis software BurLink is developed
based on the solutions map method. The results show that the TGA-based solutions map can quickly locate the
required 4R-linkage solution in the solution domain, and provides engineers with more candidate solutions than
traditional methods.

1 Introduction

The positional synthesis of the 4R linkage is the inverse cal-
culation of its kinematic analysis, i.e., to calculate the param-
eters of linkage according to several specified positions of the
coupler. It is widely used in engineering. The Burmester the-
ory (Cera and Pennestrì, 2018, 2019; Shirazi, 2007) points
out that at most, five accurate positions can be specified in
positional synthesis. Because the number of candidate solu-
tions for a five-position synthesis problem is no more than
six, this can easily lead to a situation where no viable solution
is available, and this renders four-position synthesis more
practical for use in engineering. According to the Burmester
theory, any two center points yield a linkage solution such
that the four-position synthesis problem has ∞2 solutions
in theory. Although there are many combinations of center

points, most solutions involve defects in the circuit, branch,
or order (Baskar and Bandyopadhyay, 2019; Singh et al.,
2017; Tipparthi and Larochelle, 2011), which requires engi-
neers to often spend weeks or even longer on repeated calcu-
lations and analyses to obtain satisfactory linkage solutions.
Therefore, it is important to solve the problem of the poor ef-
ficiency of four-position synthesis. The goal of this study is to
improve the efficiency of synthesis through a computer-aided
method of synthesis. The theories of synthesis and analy-
sis used here are introduced in Sects. 2 and 3, respectively,
and the corresponding methods and software are provided in
Sects. 4 and 5, respectively. The main conclusions are sum-
marized in Sect. 6.

It is easy to determine that three factors affect the syn-
thesis efficiency of the 4R linkage: (i) the lack of effective
methods for identifying defective solutions, (ii) the blind-
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ness of the selection of points on the center curve, and (iii)
the absence of a viable solution owing to the small number
of available solutions in the domain. Previous studies have
thus focused on these issues. To identify defective solutions,
Filemon (1972) used the intersection of opposite sides of op-
posite pole quadrilaterals to divide the center curve into six
segments, and found that the 4R linkage formed by the two
center points in the same segment had the same order of cou-
plers. Similarly, Waldron and Strong (1978), and Gupta and
Beloiu (1998) used region segmentation technology with the
Burmester curve to identify defects in the branch and circuit
of the linkage. Based on the same technology, Sun and Wal-
dron (1981) controlled the transmission angle of the linkage
within a prescribed range while realizing defect-free linkage
synthesis. The most effective method to mitigate the blind-
ness of selection of points on the center curve involves vi-
sualizing the solution domain. McCarthy (2013) and Ruth
and McCarthy (1999) proposed the type map method in their
synthesis software Sphinx (the latest version is SphinxPC).
It can build a mapping between the combination of points
on the center curve and the attributes of linkage type. Af-
ter Sphinx, the analysis of the solution domain has been ex-
tended gradually to other fields of linkage synthesis. In ad-
dition to the early software for linkage synthesis Lincages
(Erdman and Loftness, 2005), Cao and Han (2020), Han and
Cao (2018), and Liu and Han (2021) recently used solution-
domain analysis to solve the problems of the synthesis of
spatial linkages, such as RCCC, 1CS-4SS, and HCCC. In
case no feasible solution is available, approximate motion
synthesis expands the solution domain by introducing errors
that can ensure the existence of the solution at the expense
of accuracy. Many studies have contributed to this field.
Gogate and Matekar (2012) used the evolutionary algorithm
for the approximate motion synthesis of the 4R linkage and
then applied this method to the synthesis of the Watt-I six-
link mechanism (Gogate and Matekar, 2014). Sundram and
Larochelle (2015) solved the mixed exact–approximate syn-
thesis problem based on the constrained nonlinear optimiza-
tion toolbox of MATLAB. Similarly, Ravani and Roth (1983)
used kinematic mapping to transform the problem of approx-
imate motion synthesis into that of curve fitting in the image
space, while Ge et al. (2017) reduced this problem to that
of finding a G-manifold that can best fit points in the im-
age in the least-squares sense. Although previous studies in
different fields have solved one of the above three problems
that lead to poor efficiency of synthesis, they cannot solve all
three at the same time. Integrating different methods may be
an effective approach to solving all of these problems.

The region-based segmentation technology for the
Burmester curve attempts to remove the points on the cen-
ter curve or those in the circle curve that may cause defects
before obtaining the linkage solution. However, this tech-
nology cannot accurately distinguish between defective and
non-defective solutions, and excludes part of the reasonable
linkage solutions while excluding defective solutions. This

significantly reduces the chance of finding feasible solutions.
By contrast, the type map method carries out defect discrimi-
nation once the parameters of linkage have been determined;
thus, it has a higher accuracy than region-based segmenta-
tion technology. Moreover, type map can visualize the so-
lution domain so that engineers can select the center points
according to the type of linkage, thereby avoiding the blind-
ness of the process of linkage synthesis. However, the num-
ber of candidate solutions provided by type map is usually
too small to meet engineering needs. Approximate and accu-
rate position synthesis are subjects in different fields of re-
search. They can be used to solve the four-position synthesis
problem and usually obtain only one linkage solution per cal-
culation, but this solution is obtained by active search in the
solution domain through an optimization algorithm. Theo-
retically, a satisfactory solution can be obtained directly by
adding a sufficient number of constraints to the optimization
model, but this is not feasible in many cases: a mathemati-
cal model with many constraints is too complex to establish,
and strong constraints may also cause the optimization algo-
rithm to fail to converge. To sum up, the type map method can
completely replace the traditional synthesis method based on
region segmentation technology. Therefore, only the possi-
bility of its integration with the problem of approximate-
motion synthesis needs to be considered. To solve the above
three problems that affect the efficiency of synthesis, the con-
cept of error in approximate-motion synthesis is introduced
to accurate-position synthesis in this study to simultaneously
expand and visualize the solution domain. Specifically, a so-
lutions map method based on a telomere genetic algorithm
(TGA) that can analyze and expand the solution domain is
proposed in this study.

2 Position synthesis of 4R linkage

2.1 Generation of center curve

As shown in Fig. 1, the purpose of this study is to design a 4R
linkage, A0A1B1B0, so that a point E on the coupler AB can
pass through four specified positions P1−−P4 in sequence.
The specified positions of the coupler are defined in the pla-
nar rectangular coordinate system and denoted by P (xP, yP,
δ), where xP and yP are the abscissa and the ordinate of point
P , respectively, and δ is the angle of rotation of the coupler.
According to the Burmester theory, the key to solving this
problem is to calculate the curves of the center and circle.
Because the center curve directly reflects the positions of the
fixed hinge A0 and B0, it should be generated first.

For any two positions of the coupler Pi (xPi , yPi , δi) and Pj
(xPj , yPj , δj ), the pole point pij (xpij , ypij ) can be calculated
by the following equation: xpij =

xPi+xPj
2 +

yPi−yPj
2 cot

(
δj−δi

2

)
ypij =

yPi+yPj
2 −

xPi−xPj
2 cot

(
δj−δi

2

) , (1)
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Figure 1. Motion of planar 4R linkage.

when the origin of the coordinate system moves to pole point
p12, the equation of the Burmester center curve C1234 can be
expressed as follows (Zhang, 1983):

(
x2
A0+ y

2
A0

)
(j2xA0− j1yA0)+ (j1k2− j2k1− j3)x2

A0

+ (j1k2− j2k1+ j3)y2
A0+ 2j4xA0yA0

+ (−j1k3+ j2k4+ j3k1− j4k2)xA0

+ (j1k4+ j2k3− j3k2− j4k1)yA0 = 0, (2)

where

k1 = xp13+ xp24; k2 = yp13+ yp24;

k3 = xp13yp24+ yp13xp24; k4 = xp13xp24− yp13yp24;

j1 = xp23+ xp14− k1; j2 = yp23+ yp14− k2;

j3 = xp23yp14+ xp13yp23− k3;

j4 = xp23xp14− yp23yp14− k4. (3)

The center curve C1234 is a third-order circular point curve.
According to projective geometry (Jin and Shi, 1991), the
curve usually has a real focus, and the solution of Eq. (2) can
then be expressed as follows:

 xA0 =−
γ
2

[
1±

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1±

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)] , (4)

where σ is the input variable, and the other variables are de-
fined as:

c =−e/γ ;d = (2j2b4− 2j1b5)/
(
j2

1 + j
2
2

)
;

e = (2j2b5+ 2j1b4)/
(
j2

1 + j
2
2

)
;

γ =± (3j2xF − j1yF + a1)/
√
j2

1 + j
2
2 ;

b4 = j2

(
x2
F + y

2
F

)
/2+ xF (j2xF − j1yF )+ a1xF + a2yF + a4;

b5 =−j1

(
x2
F + y

2
F

)
/2+ yF (j2xF − j1yF )+ a2xF + a3yF + a5;

a1 = j1k2− j2k1− j3;

a2 = j4;

a3 = j1k2− j2k1+ j3;

a4 = (−j1k3+ j2k4+ j3k1− j4k2)/2;
a5 = (j1k4+ j2k3− j3k2− j4k1)/2;

xF = (j1j4+ j2j3)/
(
j2

1 + j
2
2

)
;

yF = (j1j3− j2j4)/
(
j2

1 + j
2
2

)
.

(5)

Note that the sign of γ is “+” only when j2 ≥ 0.
In this case, the shape of the center curve depends on the

value of τ :

τ =
4γ 2d − γ 4

+ 4e2

4γ 2 . (6)

If τ > 0,C1234 is a non-closed curve, if τ = 0,C1234 is a non-
closed curve with one coincident point, and if τ < 0, C1234

is divided into a non-closed curve and an elliptic curve. To
control the distribution density of the generated Burmester
center points, the input variable σ can be parameterized as
follows:

σ = αtan(2k−1) (ϕ) ϕ ∈
[
−
π
2 ,

π
2

)
∪

(
π
2 ,

3π
2

]
, (7)

where α and k are constants.
Note that the order of tan(ϕ) cannot be even. This leads to

σ/α > 0, such that one part of the center curve is repeatedly
calculated and the other part is lost.

To facilitate programming, the range of values of ϕ un-
der any condition is set to −π/2∼ 3π/2 in this study. The
equations based on this are shown in Table 1, and are used to
generate each part of the center curve in turn to ensure that
points of each part of the curve are connected from head to
tail without jumps. Once all points on the center curve have
been calculated, it is necessary to preprocess each point. For
example, points on the center curve outside the set area are
eliminated according to their coordinates, and center points
with too small a spacing between them are eliminated ac-
cording to the Euclidean distance between adjacent points.
Three typical center curves generated by a computer program
based on the above method are shown in Fig. 2.
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Table 1. Generation of center curve C1234.

τ Generation order Range of ϕ Coordinates of C1234

τ > 0 I
(
π
2 ,arctan

(
−
e
γ +
√
τ
))  xA0 =−

γ
2

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
II

(
arctan

(
−
e
γ +
√
τ
)
+π, 3π

2

)  xA0 =−
γ
2

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
III

(
−
π
2 ,arctan

(
−
e
γ −
√
τ
))  xA0 =−

γ
2

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
IV

(
arctan

(
−
e
γ −
√
τ
)
+π, π2

)  xA0 =−
γ
2

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
τ = 0 I

(
π
2 ,arctan

(
−
e
γ

))  xA0 =−
γ
2

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
II

(
arctan

(
−
e
γ

)
,−π2

)  xA0 =−
γ
2

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
III

(
3π
2 ,arctan

(
−
e
γ

)
+π

)  xA0 =−
γ
2

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
IV

(
arctan

(
−
e
γ

)
+π, π2

)  xA0 =−
γ
2

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
τ < 0 I

(
π
2 ,−

π
2
)  xA0 =−

γ
2

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1+

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
II

(
3π
2 ,

π
2

)  xA0 =−
γ
2

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]
yA0 = σ

[
1−

√
1− 4(d + 2cσ )

(
γ 2+ 4σ 2

)]

Figure 2. Center curves generated by a computer. (a) τ<0. (b) τ = 0. (c) τ>0.
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2.2 Computation of points on the circle curve

Considering that it is difficult to generate the circle curve
from the center curve by using the geometric method, the tra-
ditional vector elimination method (Liang and Chen, 1993) is
improved so that it can generate the circle curve according to
the coordinates of the points on the center curve. According
to this method, the RR links (i.e., A0A1−A1E in Fig. 1)
satisfy the following equation in motion:

r5 cosδ0
[(
xA0− xPi

)
cos2δi − yPi sin1δi

]
+ r5 sinδ0

[(
xPi − xA0

)
sin1δi − yPi cos1δi

]
− yPiyA0+

1
2

(
y2
A0− r

2
2 + r

2
5

)
+ yA0r5 sinδ0 cos1δi + yA0r5 cosδ0 sin1δi

+

[
1
2

(
x2

Pi + y
2
Pi + x

2
A0

)
− xA0xP i

]
= 0, (8)

where δ0 is the initial angle of the link A1E and 1δi = δi −
δ1. We define the following:

f0i =
(
xA0− xPi

)
cos1δi − yPi sin1δi;

f1i =−
(
xA0− xPi

)
sin1δi − yPi cos1δi;

f2i =−yPi ;f3i = 1;f4i = cos1δi;f5i = sin1δi;

Fi =
1
2

(
x2

Pi + y
2
Pi + x

2
A0

)
− xA0xPi ;

ϑ0 = r5 cosδ0;ϑ1 = r5 sinδ0;

ϑ2 =
1
2

(
y2
A0− r

2
2 + r

2
5

)
;ϑ3 = yA0;

ϑ4 = yA0r5 sinδ0;ϑ5 = yA0r5 cosδ0;

ϑ4 = ϑ1ϑ3;ϑ5 = ϑ0ϑ3. (9)

By substituting the above formulae into Eq. (8), the fol-
lowing equation is obtained after simplification:

f31 f21 f41 f51
f32 f22 f42 f52
f33 f23 f43 f53
f34 f24 f44 f54



ϑ2
ϑ3
ϑ4
ϑ5



=


−f01 −f11 −F1
−f02 −f12 −F2
−f03 −f13 −F3
−f04 −f14 −F4


 ϑ0
ϑ1
1.

 (10)

After the numerical computation of matrix inversion, the
above equation is transformed into
ϑ2
ϑ3
ϑ4
ϑ5

=

A1 B1 C1
A2 B2 C2
A3 B3 C3
A4 B4 C4,


 ϑ0
ϑ1
1,

 (11)

where Ak , Bk , and Ck are elements of the matrix.
In previous research (Liang and Chen, 1993; Zhao, 2009),

Eq. (11) has been decomposed into several sub-formulae that

can be merged into a high-order equation with only one vari-
able by elimination:

E1ϑ
3
1 +E2ϑ

2
1 +E3ϑ1+E4 = 0, (12)

where E1−E4 are coefficients related to Ak , Bk , and Ck .
After solving the equation by dichotomy or Newton’s it-

erative method, the values of all variables can be obtained
in a step-by-step manner based on the relationships between
them. Note that because it is difficult to unify the symbolic
definition in Fig. 1 and the algebraic definition in Eq. (9),
there are significant differences between Eqs. (11) and (12)
as derived in the literature, but the principle of vector elimi-
nation considered is consistent. Although this method can of-
fer a direct solution for the coordinates of points on the center
curve and the circle curve, rectangular coordinates that can-
not reflect the trend of the Burmester curve are used to gener-
ate the points on the center curve. For example, this method
needs to first specify the abscissa of the point on the center
curve, where this coordinate can be taken arbitrarily on the
plane and its value is independent of the shape of the center
curve. It is thus difficult to parameterize the calculation pro-
cess and avoid jumps when the point on the center curve is
generated. This is also why we use the projective geometry
method to calculate the coordinates of the point on the cen-
ter curve. As the center curve has been generated, the vector
elimination method is modified in this study. The improved
solution process is as follows (Eqs. 13–16):

The following equation is equivalent to Eq. (11): ϑ2 = A1ϑ0+B1ϑ1+C1
ϑ4 = A3ϑ0+B3ϑ1+C3 = ϑ1ϑ3
ϑ5 = A4ϑ0+B4ϑ1+C4 = ϑ0ϑ3,

(13)

According to the second and third sub-formulae of
Eq. (13), the expressions containing ϑ0 and ϑ1 are obtained
as follows:{

(B3−ϑ3)ϑ1+A3ϑ0+C3 = 0
B4ϑ1+ (A4−ϑ3)ϑ0+C4 = 0, (14)

Further, ϑ0 and ϑ1 are obtained as follows:{
ϑ0 =

C4(B3−ϑ3)−C3B4
A3B4−(A4−ϑ3)(B3−ϑ3)

ϑ1 =
(ϑ3−A4)ϑ0−C4

B4
.

(15)

Once the coordinates of point A0(xA0, yA0), i.e., the
Burmester center point, have been determined, ϑ0, ϑ1, and
ϑ3 (= yA0, see Eq. 9) can be solved. By substituting ϑ0 and
ϑ1 into the expressions of Eq. (9), r5 and r2 can be written as
follows: r5 =

√
ϑ2

0 +ϑ
2
1

r2 =

√
r2

5 + y
2
A0− 2ϑ2

, (16)

where ϑ2 is given by the first sub-formula of Eq. (13).
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Table 2. Classification of 4R linkages.

No. T1 T2 T3 Linkage type

1 − − − Crank rocker
2 + + − Rocker crank
3 + − + Double crank
4 − + + Grashof double rocker
5 + + + 0–0 double rocker
6 − + − 0–π double rocker
7 + − − π − 0 double rocker
8 − − + π −π double rocker

When the coordinates of points A0 and Pi as well as the
link lengths r2 and r5 are known, the coordinates of the point
in the circle curve at position i (i = 1,2,3,4) can be calculated
as A1i (xA0+uw1−vw2, yA0+uw2+vw1) (Liang and Chen,
1993), where

w1 = xPi − xA0,w2 = yPi − yA0,w3 = w
2
1 +w

2
2,u

=
w3+ r

2
2 − r

2
5

2w3
,v =±

√
r2

2
w3
− u2. (17)

Note that the variable v has two solutions. For the correct
solution, the rotational angle of the linkA1E should be equal
to δ0+1δi . The solution process does not involve the solu-
tion of the higher-order equation.

3 Analysis of solutions

3.1 Linkage type classification

According to the method proposed by Martin and Mur-
ray (2002), the 4R linkage can be classified into eight types
based on the signs of T1, T2, and T3, as shown in Table 2,
where T1 = |r2| + |r3| − |r1| − |r4| = 0
T2 = |r2| − |r3| + |r1| − |r4| = 0
T3 = |r2| − |r3| − |r1| + |r4| = 0.

(18)

3.2 Performance evaluation of linkage

As a discontinuous attribute, the linkage type is often not the
only objective of linkage synthesis. It is thus also necessary
to consider the values of continuous attributes, such as the
link length, transmission angle, acceleration, and force, or
their weighted values in the design of the linkage mechanism
(Jia et al., 2021; Trejo et al., 2015; Wilhelm et al., 2017).
For convenience of understanding, this study takes the trans-
mission angle as the index to assess the performance of the
linkage. As shown in Fig. 3, if the mass of each link and the
friction of the revolute joint are neglected, the coupler A1B1
becomes a two-force link, and the acute angle γ between

Figure 3. Transmission angle of the 4R linkage.

links A1B1 and B0B1 is the transmission angle. The larger
the angle γ is, the greater is the force Ft of the driving force
F in the direction of its velocity, and the better is the trans-
mission performance of the 4R linkage. Therefore, when the
coupler is in the four given positions, its minimum transmis-
sion angle γmin can be used as an index for the evaluation of
the transmission-related performance of the 4R linkage.

3.3 Defect discrimination

For each 4R linkage synthesized according to the Burmester
theory, we need to discriminate among three kinds of de-
fects, i.e., defects in the circuit, branch, and order, as shown
in Fig. 4.

1. Identifying circuit defects. If the driving link A0Ai is
not fully rotatable, its range of motion is divided into
n sectors based on the limited positions; see Fig. 4a.
If the rotation angles of the driving link corresponding
to the specified positions of the coupler are in different
sectors, the 4R linkage has a circuit defect. In this case,
the angles of rotation of the driving link at the limited
positions (θ∗2 ) and the specified positions (θ2i ) should be
calculated:

θ∗2 = θ1± arccos

(
r2

1 + r
2
2 − (r4± r3)2

2r1r2

)
, (19)

and

θ2i = arctan2(yA1i − yA0i,xA1i − xA0i) . (20)

Because the domain of definition of the arccosine func-
tion is [−1,1], the number of solutions of θ∗2 in Eq. (19)
may be zero, two, or four. There will be no circuit de-
fect in the linkage if all four angles θ2i are located in the
same sector defined by θ∗2 .

2. Identifying branch defects. As shown in Fig. 4b, the cou-
pler of the 4R linkage usually has two forms of assem-
bly, i.e., A0A1B1(1)B0 and A0A1B1(2)B0. It is difficult
for the coupler of the 4R linkage to move from one form
to another without jamming. If the planar 4R linkage is
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placed in the X–Y plane of the 3D coordinate system
O-XYZ, the following equation can be used to identify
branch defects:

Vi (xvyvzv)= B0B1i ×B1iA1i . (21)

Only if all the four components of the z axis of Vi (i.e.,
zv) have the same sign (“+” or “−”) when the driving
link is located at the specified positions of the coupler,
the linkage solution is valid such that it does not contain
a branch defect.

3. Identifying order defects. If the driving link of the 4R
linkage cannot pass through the four specified positions
in the order “1-2-3-4,” it has an order defect. If the driv-
ing link is fully rotatable, the order “1-2-3-4” is equiva-
lent to the orders “2-3-4-1,” “3-4-1-2,” “4-1-2-3,” “4-3-
2-1,” “3-2-1-4,” “2-1-4-3,” and “1-4-3-2.” The defect-
free linkage satisfies ϕ12<ϕ13<ϕ14 or ϕ12>ϕ13>ϕ14,
where ϕ1i is the angle of rotation of the driving link
when it rotates from position 1 to position i in the
anti-clockwise direction. If the driving link is partly ro-
tatable, see Fig. 4c, only “1-2-3-4” and “4-3-2-1” are
valid orders because the driving link cannot move from
one circuit to another. In this case, the rotational an-
gles of the driving link need to satisfy the condition
ϕt2<ϕt3<ϕt4 or ϕt2>ϕt3>ϕt4, where ϕt i is the angle
of rotation of the driving link when it rotates from any
limited position to the specified position i in the anti-
clockwise direction.

4. Organizational rules. When circuit defects occur, the
coupler link cannot pass through any of the four speci-
fied positions in any condition; when branch defects oc-
cur, it cannot pass through the four specified positions
without external intervention; when order defects occur,
the coupler link can pass through four specified posi-
tions but in the wrong order. Therefore, circuit defects
are more severe than branch defects, which are more se-
vere than order defects. To reduce the amount of requi-
site calculation, we stipulate that if a linkage has circuit
defects, the programs no longer continue to identify its
branch and order defects, and if the linkage has branch
defects, the programs no longer continue to identify its
order defects.

4 Basic solutions map method

4.1 Principle of solutions map method

The principle of the solutions map proposed in this paper is to
map all linkage solutions to a 3D color-coded surface based
on linkage type to visualize the distribution of the solutions.
There are three steps to generate the solutions map:

1. Generation of Burmester curve. By using projective ge-
ometry, N center points can be obtained when the pa-
rameter ϕ changes from−π/2 to 3π/2 (Sect. 2.1). Note
that the number of center points N∗ is usually less than
N because of the preprocessing of the center points.
For example, center points beyond the designated area
or those with spacing that is too small between them
should be excluded. Of course, designers can also ad-
just the distribution of the center points by changing the
value of α or k in Eq. (7). After pretreatment, each cen-
ter point is assigned a unique index (from 1 to N∗) for
subsequent calculation. Finally, for each center point,
four circle points corresponding to the four specified po-
sitions are calculated (Sect. 2.2).

2. Generation of type map. According to the Burmester
theory, a solution of the 4R linkage for four specified
positions can be determined by any two center points
and the corresponding circle points. To describe the dis-
tribution of the solution, the x axis and y axis of the
rectangular coordinate system are both divided into N∗

parts to form a grid array of sizeN∗×N∗. If i and jεN∗

are defined, the grid coordinates (i, j ) represent the link-
age solution obtained by combining the center points i
and j . For each linkage solution, it is necessary to cal-
culate the linkage type (Sect. 3.1) and fill the grid (i, j )
with the color corresponding to it, as shown in Table 3.

3. Generation of solutions map. In total, nine linkage types
can be color-coded when the types of defective linkages
are considered. To describe the continuously changing
attributes of the linkages, type map can be placed in
the X–Y plane of the 3D coordinate system. Then, the
z-axis of the coordinate system can be used to express
the attributes of the linkage introduced in Sect. 3.2. For
example, given the task of position synthesis shown in
Table 4, the solutions map generated according to the
above steps is shown in Fig. 5.

The solutions map consists of the following parts:

a. Mountain range. The surface of the solutions map
is shaped like a mountain, and any point on the
mountain corresponds to a synthesis-based solution
of the 4R linkage for the four specified coupler po-
sitions. In addition, the color and height of points on
the mountain represent the type and performance of
the linkage solution, respectively.

b. Sea level. There is a sea-like plane across the moun-
tain range that can move up and down along its
height (i.e., the z axis of the coordinate system)
of the solutions map. The height of the sea level
represents the performance of the linkage solution,
i.e., the solution corresponding to the mountain part
above the sea level is better than the part below it.
With a rise in the sea level, the linkage solution with
poor performance is submerged.
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Figure 4. Linkage defects in the circuit, branch, and order. (a) Circuit defect. (b) Branch defect. (c) Order defect.

c. Buoy. The buoy is a location tool used to select
a linkage solution from the solutions map. It can
move freely in the X–Y plane, and its intersection
with the mountain range corresponds to a linkage
solution.

The method proposed here, based on the solutions map,
has the characteristics of a geographical map. The con-
cept of the raster and layer in the Geographic Infor-
mation System (GIS) can thus be used to organize the
data. Raster data consist of location and attribute data.
As shown in Fig. 6, any grid in the solutions map is lo-
cated by its row and column numbers, and corresponds
to a linkage solution. As mentioned before, the row and
column numbers are index numbers of points on the
center curve. Based on this, the attributes of the solu-
tions map can be divided into two types: discontinuous
attributes (such as linkage and defect types) and contin-
uous attributes (such as link length, transmission angle,
acceleration, force, or their weighted values). Discon-
tinuous data consist of a finite number of values that
can be enumerated, and the values of continuous data
are arbitrary within a certain range. Each discontinuous
attribute is stored in the corresponding layer through the
matrix, and elements of the matrix are represented by
color codes corresponding to the attribute values. Con-
tinuous attributes are also stored in a layer through the
matrix, and the elemental value of the matrix is the nor-
malized performance index of the linkage. The discon-
tinuous attributes can be represented by type map while
the continuous attributes can be represented by the ele-
vation map. The solutions map can be obtained by su-
perimposing the two maps. Introducing the concept of
the layer not only facilitates data management, but also
makes the attributes of solutions map easy to query.

4. Solution selection. Defective solutions in the solutions
map can be marked with a specific color (such as
white), and solutions that yield poor performance (such
as the solution with the minimum transmission angle
γmin<20◦ at the four given positions) can be excluded
by moving the sea level so that the area of the feasible

solution in the solutions map can be located. Consider
the position synthesis task shown in Table 4 as an exam-
ple. Under the guidance of the color code of the solu-
tions map, three groups of linkage solutions of different
types can be selected by moving the buoy, as shown in
Fig. 7 and Table 5.

The flowchart of the solutions map method is shown in
Fig. 8. In view of the limitations of space, the generation of
the coupler curve and the kinematic and dynamic analyses of
the linkage are not the main contents of this paper, and are
thus not discussed here.

4.2 Problems in basic solutions map

Although the solutions map can quickly locate the required
types of linkage solutions and greatly improve the efficiency
of synthesis, most 4R linkages synthesized based on the
Burmester theory have kinematic defects, where this limits
the number of available solutions. In many extreme cases,
the given task of position synthesis has no solution. Consider
the synthesis task given in Table 4 as an example. After ex-
cluding various defective solutions, the number of available
solutions in the solutions map is 5694, accounting for only
10.86 % of the total number of solutions, 52 441, as shown in
Fig. 9. Note that the solutions in the same region of the solu-
tions map are usually highly similar, which renders options
that are very limited. Therefore, it is necessary to expand the
solution domain to improve the probability of obtaining fea-
sible solutions.

5 TGA-based solutions map method

5.1 Optimization model

In the context of the problem of approximate motion syn-
thesis, the coupler curve of the 4R linkage only needs to
pass approximately through the given four positions. Simi-
larly, although accurate positional information needs to be
specified in position synthesis, it is only needed for calcula-
tion. In engineering applications, errors are usually allowed
in some given positions P (xP, yP, δ). For example, in the de-
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Table 3. Color encoding according to linkage type.

Figure 5. Solutions map for the position synthesis of the 4R linkage.

Table 4. Position synthesis task.

Position Abscissa Ordinate Rotation angle
/m /m /◦

P1 1.1 0 0
P2 1.45 0.8 8
P3 1.6 1.4 21
P4 2.1 3.1 65

sign of the material-handling mechanism, only the accuracy
of the starting and final positions of the manipulator need to
be considered, and the two middle positions are only set to
avoid obstacles such that errors in the middle positions are al-
lowable. Similar examples are common, where this blurs the
boundary between accurate position synthesis and approxi-
mate motion synthesis. Note that accurate position synthesis
involves solving specific engineering problems. If the prob-
lem itself allows for the existence of errors, it is feasible to
expand the solution domain by introducing errors, without
caring about whether the problem has been transformed into
that of approximate motion synthesis. For convenience of ex-
pression, the ranges of errors of xP, yP, and δ are denoted by
±2x, ±2y, and ±2δ, respectively, as shown in Table 6.

When the positional information changes within the allow-
able range of error, a solutions map with different proportions
of the feasible solutions can be obtained to expand the solu-
tion domain. This is a typical optimization problem, and its

mathematical model can be described as follows:

X = [λ1,λ2,λ3, . . .,λ10,λ11,λ12]T

s.t λ1 ∈
[
xp1−2x1,xp1+2x1

]
,

λ2 ∈
[
yp1−2y1,yp1+2y1

]
,

λ3 ∈ [δ1−2δ1,δ1+2δ1] :
λ10 ∈

[
xp4−2x4,xp4+2X4

]
,

λ11 ∈
[
yp4−2y4,yp4+2y4

]
,

λ12 ∈ [δ4−2δ4,δ4+2δ4]
max0 (X) 6�

∗X
6�(X)

, (22)

where X is the solution vector, and its elements consists of
12 position parameters λ to describe information on the four
given positions, 0 is the objective function,�∗ and� are the
numbers of available solutions (without kinematic defects),
and total solutions in the solutions map corresponding to the
solution vector X, respectively.

The larger the objective function 0 is, the larger is the pro-
portion of feasible solutions in the solutions map, and the
greater is the number of available solutions that can be se-
lected. The task of optimization involves obtaining a larger
objective function value of 0 by optimizing the solution vec-
tor X. This study uses the genetic algorithm to expand the
domain of solutions of solutions map, and its fitness function
9 can directly use the objective function 0, i.e., 9 = 0.

5.2 Genetic algorithm based on telomere operator

The genetic algorithm (Nachaoui et al., 2021; Oliveira et
al., 2022) is an optimization method to simulate the mech-
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Figure 6. Model of the raster of the solutions map.

Figure 7. Linkage solutions obtained from the solutions map. (a) Solution 1 (0−π double rocker). (b) Solution 2 (π − 0 double rocker).
(c) Solution 3 (double crank).

anism of natural evolution. The standard genetic algorithm
consists of three basic operators: selection, crossover, and
mutation. However, practical applications have shown that
when the population is small, such an algorithm is premature.
Although increasing the population can yield better results,
the required population is different in different problems, and
the calculation time is directly proportional to the size of the
population. In previous work, catastrophe strategy has often
been used to avoid the premature convergence of the genetic
algorithm. This method simulates a major destruction event
in natural evolution, eliminates all solutions except the opti-

mal solution, and restarts the algorithm. Catastrophe strategy
is effective for specific problems but its computational effi-
ciency is very low. To improve the global search ability of
the genetic algorithm, a new operator called the telomere is
proposed here.

As shown in Fig. 10, telomeres are DNA-protein com-
plexes at the end of eukaryotic chromosomes. Their function
is to protect the chromosomal structure and control the cell-
division cycle. Every time a cell divides, the length of telom-
eres decreases. When telomeres are exhausted, the cells will
gradually stop dividing due to the destruction of the DNA
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Table 5. Coordinate-related information of the linkage solutions.

Solution ID Point coordinates (Abscissa/m, Ordinate/m) Linkage type γmin/deg

A0 A1 B0 B1

1 (2.56047, −1.33283) (−0.42227, 0.06935) (−0.67032, 2.31346) (−0.41089, 1.98080) 0−π double rocker 38.29059
2 (−0.59232, 3.15632) (−0.20345, 2.88538) (−0.64224, 2.32030) (−0.36253, 1.98212) π − 0 double rocker 33.31090
3 (−0.25936, 2.90638) (0.26972, 2.57717) (−0.27455, 2.68865) (0.24369, 2.33214) Double crank 37.30242

Figure 8. Flowchart of the solutions map method.

Table 6. Allowable errors in the position synthesis task.

Position Abscissa/m Ordinate m Rotation angle/deg

P1 xP1 ±2x1 yP1 ±2y1 δ1±2δ1
P2 xP2 ±2x2 yP2 ±2y2 δ2±2δ2
P3 xP3 ±2x3 yP3 ±2y3 δ3±2δ3
P4 xP4 ±2x4 yP4 ±2y4 δ4±2δ4

structure. Therefore, the telomere is also known as the mi-
totic clock. In the standard genetic algorithm, not all indi-
viduals participate in the crossover and mutation operations.
Their participation depends on the probabilities of crossover
and mutation. Some old individuals thus have no chance of
producing new individuals in successive generations of evo-
lution. The core idea of the telomere operator is to eliminate
these old and useless individuals, and replace them with new
ones. Its basic principles are as follows:

1. A variable κ , describing the “telomere length”, is
added at the end of each solution vector, that is, X =

[λ1,λ2, . . .,λ12,κ]
T .

2. The initial length of the telomere is M , and its length κ
decreases by 1 in each evolutionary generation. When

its length is less than zero, the individual is eliminated
and replaced with a randomly generated individual.

3. If the crossover or mutation operation can produce a
new individual that is different from the parent, the
length of the telomere of the new individual is reset to
M .

In applications, the performance of the telomere operator
can be further improved by the following methods:

1. The initial length of the telomere is variable. If the fit-
ness of the optimal individual in the current genera-
tion does not change compared with that in the previous
generation, M =M − 1; if M is less than zero, M = 0.
Note that because the condition for individual elimi-
nation is κ<0 (not κ = 0), M = 0 does not mean that
all individuals are regenerated. This method assumes
that the length of the telomere is affected by environ-
mental stress. When evolution slows down, the algo-
rithm strengthens individual extinction and regeneration
caused by the telomere.

2. When the old individual is eliminated, a new individ-
ual is produced by it through non-uniform mutation
(Chauhan et al., 2021; Ma, 2021). This method has a
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Figure 9. Distribution of solutions without kinematic defects in the solutions map.

Figure 10. Biological structure and algorithmic simulation of the telomere.

strong capability of global search in the early stage, and
changes to local fine search in the later stage. The posi-
tion of mutation s (s = 1,2, . . .,12) of the old individual
is randomly selected, and its element λs is updated using
the following equation:

λs =

{
λs+1k (g, Umax− λs) , if r1k ≤ 0.5
λs−1k (g, λs−Umin) if r1k > 0.5 , (23)

and

1k (g, χ )= χ ·
(

1− r(
1− g

G )b
2k

)
, (24)

where Umax and Umin are the upper and lower limits of
λs, respectively, r1k and r2k are independent and identi-
cally distributed random variables that obey a uniform
distribution in the interval [0,1], and g and G are the
current generation and total number of generations of
the genetic algorithm, respectively.

Based on the above algorithm, we take 2xi = 0.1, 2yi =
0.1, and 2δi = 5◦ (i = 1− 4) to optimize the solutions map

shown in Fig. 9, and the result is shown in Fig. 11. It shows
that the proportion of available solutions after optimization
increases from 0.108579 to 0.871961.

To further verify the effectiveness of the telomere oper-
ator, the results of optimization of the standard genetic al-
gorithm (GA) and the telomere genetic algorithm (TGA)
were compared with populations of Ps = 20 and Ps = 40,
respectively, as shown in Table 7. Each group of optimiza-
tion tests was repeated 20 times, and the parameters used in
the calculation were as follows: total number of generations
Gt = 30, crossover probability Pc = 0.6, mutation probabil-
ity Pm = 0.1, and initial telomere length M = 3. In addition,
float encoding, traditional roulette wheel selection, arithmeti-
cal crossover, a non-uniform mutation operator, and the elitist
strategy were used by both the GA and the TGA during cal-
culations. To compare their performance, the average ζav was
used to measure the overall fitness values obtained by the al-
gorithm while the average deviation ζad was used to express
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Figure 11. Genetic algorithm-based optimization of solutions map based on the telomere operator.

fluctuations in these values:

ζav =

∑20
i=1yi

20
, (25)

ζad =

∑20
i=1 |yi − ζav|

20
, (26)

where yi is the best fitness of the algorithm in the ith test.
Table 7 shows that when the population was 40, the perfor-
mance of the TGA was equivalent to that of the GA. The av-
erage fitness and average deviation values of both were close.
However, when the population was 20, the GA struggled to
converge to the global optimal solution and there were large
fluctuations in the data, while the TGA could still calculate
normally. Its average fitness was 0.08449 higher than that of
the GA and the average deviation in it was only 17.8 % of that
in the GA. The telomere operator can thus avoid the prema-
ture convergence of the GA, especially when the population
is small. This means that the TGA can use a small population
to obtain approximately optimal results to save a significant
amount of computing time.

The typical fitness curves of the GA and TGA are shown
in Fig. 12. Under normal circumstances, the optimal fitness
value of the population rapidly improves in the initial stage
of calculation of the genetic algorithm. Consider the curves
of convergence “GA (1)” of the standard genetic algorithm
and “TGA (1)” of the telomere genetic algorithm as exam-
ples: the initial fitness values of GA (1) and TGA (1) were
below 0.2, but both increased to more than 0.7 within the
first three generations. However, another form of the curve
of convergence is also very common, where the GA pre-
maturely falls into the local optimal solution. Consider the
curves of convergence “GA (2)” of the GA and “TGA (2)”
of the TGA as examples: when the GA falls into the local
optimal solution, all individuals in the population are highly
similar and the crossover operation can no longer produce
a new solution. Although GA (1) jumped out of the local
optimal solution through the mutation operation in the 20th
generation, it fell into another local optimal solution and fi-
nally failed to achieve global convergence. By sharp contrast,

Figure 12. Typical convergence curves of the GA and TGA.

TGA (2) could still generate new solutions with the help of
the telomere operator after falling into the local optimal so-
lution, jumping out of the local optimal solution many times
until it achieved global convergence. We can glean impor-
tant information from TGA (2): a large number of local opti-
mal solutions may be distributed in the solution domain of
optimization problems of the solutions map, where this is
similar to the domain of solutions of multi-modal functions.
Based on this assumption, we think that increasing the popu-
lation size helps to expand the search scope of the algorithm.
However, the telomere operator, which can enable the algo-
rithm to jump repeatedly between local optimal solutions,
can achieve a similar effect and is clearly more efficient.

5.3 Obtaining solutions maps with more options

In general, the GA can only obtain a solution with the high-
est fitness after convergence. However, a solutions map with
a high fitness does not necessarily mean that a satisfactory so-
lution can be obtained. In the problem of synthesis of linkage
positions, the evaluation of the solution is multi-faceted. In
addition to the absence of kinematic defects, the linkage solu-
tion needs to satisfy geometric constraints, such as the length
of the linkage and position of installation, as well as the re-
quirements of mechanical performances, such as kinematics
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Table 7. Comparison of results of optimization of the GA and TGA.

Test ID GA TGA

Population size Ps = 20 Population size Ps = 40 Population size Ps = 20 Population size Ps = 40

1 0.378284087 0.887477551 0.859090909 0.8671
2 0.817448388 0.855398792 0.861760409 0.845305991
3 0.613193772 0.869659864 0.855567713 0.845143802
4 0.861171983 0.839647487 0.843101211 0.855937872
5 0.821052145 0.858483205 0.796739304 0.851473923
6 0.853298844 0.841573854 0.855367901 0.848620113
7 0.840459184 0.850110973 0.874886779 0.849397852
8 0.847413578 0.84416583 0.786193848 0.870360735
9 0.773501544 0.854957248 0.874674882 0.859487866
10 0.784233056 0.808170066 0.856443491 0.829259711
11 0.842877782 0.845972703 0.849732774 0.88055293
12 0.833070234 0.86542606 0.869961169 0.846781928
13 0.817854605 0.86427258 0.878960503 0.872874434
14 0.843851564 0.789867145 0.815854592 0.858446046
15 0.843543015 0.842710005 0.849264198 0.855105105
16 0.879003463 0.871948289 0.844423079 0.849507736
17 0.532483775 0.849771901 0.880223457 0.862379808
18 0.553477321 0.835394965 0.849298469 0.85831176
19 0.870815177 0.854970504 0.858034393 0.873742496
20 0.679760639 0.885496831 0.817084298 0.865140604
ζav 0.764339708 0.850773793 0.848833169 0.857246536
ζad 0.106449895 0.0160353 0.018960268 0.009593132

and dynamics. Therefore, even if the proportion of available
solutions of the optimized solutions map is very high, the
solutions it provides may still be completely rejected in the
subsequent analysis due to limitations imposed by other con-
ditions of evaluation. A more feasible method is to generate
multiple solutions maps to provide designers with more can-
didate solutions. If the optimal solutions map cannot provide
a satisfactory solution, we can continue to search for feasible
solutions in other solutions maps. Niche technology is used in
this study to obtain multiple solutions maps through a single
optimization. This can help to maintain the diversity of the
population in the GA to prevent all individuals from converg-
ing to the same solution. Current niche technologies include
the sharing function and the crowding mechanism (Che et
al., 2021; Liu et al., 2020). This study uses the sharing func-
tion method. The sharing function 3 is used to measure the
similarity between solutions:

3
(
Xi ,Xj

)
=


1− 51(Xi ,Xj )

∈1
if 51 < ∈1,52 ≥ ∈2

1− 52(Xi ,Xj )
∈2

if 51 ≥ ∈1,52 < ∈2

1− 51(Xi ,Xj )52(Xi ,Xj )
∈1∈2

if 51 < ∈1,52 < ∈2
0 else

,

(27)

where 51 represents the genotypic distance between solu-
tion vectors Xi and Xj , 52 represents the phenotypic dis-
tance between them, and µ1 and µ2 are the maximum in-

dividual distances of the genotype and the phenotype in the
niche technology, respectively.

The modified fitness function 9∗ can then be expressed
as:

9∗ (Xi)=
9 (Xi)∑Ps

j=13
(
Xi,Xj

) , (28)

when the value of the sharing function between an individual
and all other individuals is large, its fitness is reduced to pre-
vent the individual with the highest fitness from assimilating
the entire population and maintain the diversity of the popu-
lation. Therefore, niche technology can be used to obtain the
optimal solution as well as a series of local optimal solutions
that are different from one another.

In Eq. (27), the measurement of similarity by the shar-
ing function depends on two distance functions, 51 and 52.
Genotypic similarity between individuals is represented by
51. For a real-coded solution vector, 51 can be expressed
by the Euclidean distance:

51 (X1,X2)=
√

(X1−X2) (X1−X2)T . (29)

In this study, 51 is not necessary because we attend more
to the similarity of phenotypes than genotypes. By contrast,
52 is important for representing (phenotypic) similarity. In
the traditional sharing function method, 52 is usually ex-
pressed by a fitness distance. However, the fitness function
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9 here represents the proportion of available solutions in
the solutions map, and not the similarity between solutions
maps. Therefore, a pseudo-histogram method for measuring
the similarity between solutions maps is proposed. The his-
togram is used to describe the frequency distribution of dif-
ferent colors in an image. The solutions map has the charac-
teristics of an image, and as a result, the histogram method
can be used to describe the number distribution of eight kinds
of linkages in the solutions map. However, the solutions map
is not an image in the real sense. Hence, the corresponding
histogram is called a “pseudo-histogram” in this study. If the
pseudo-histogram is used as the feature of the solutions map,
the similarity between any two maps can be measured by the
Bhattacharyya coefficient:

52 (X1,X2)=
∑8

i=1

√
4(X1)i ×4(X2)i, (30)

where 4 (X) represents the histogram vector corresponding
to the solution vector X, which has eight elements. Each rep-
resents the number of solutions with a specific linkage type.
The subscript i of 4 indicates the index of the ith element in
the histogram vector.

By embedding the sharing function based on the pseudo-
histogram into the fitness function of the TGA, multiple
groups of solutions maps can be obtained in a single calcu-
lation. Consider once again the position synthesis task in Ta-
ble 4 as an example. Four groups of typical solutions maps
obtained based on the above algorithm are shown in Fig. 13.
It is clear that the Bhattacharyya coefficient calculated from
the pseudo-histogram can adequately reflect the similarity
between different solutions maps. Moreover, the niche real-
ized by the pseudo-histogram can avoid the convergence of
the GA to the same solution.

To further verify the influence of the niche technology
based on the pseudo-histogram on the GA, the results of
optimization of the GA and the TGA were compared with
populations of Ps = 20 and Ps = 40, as shown in Table 8. It
shows that the niche technology based on the sharing func-
tion method had a significant impact on the GA. The max-
imum fitness value obtained by optimization was generally
low and unstable. Even if the population was expanded to
40, the fitness value obtained from three tests (ID = 2, 4, 9)
was below 0.7 because the sharing function method changed
the standard of fitness evaluation. The fitness of a solution
depends not only on the objective function, but also on the
similarity between it and the entire population. According
to the previous assumptions, many local optimal solutions
might have been distributed in the solution domain of opti-
mization problems of the solutions map, and the use of the
sharing function generally reduces the fitness of these solu-
tions. Therefore, only when the algorithm converges to the
real global optimal solution, can we obtain stable and high-
quality results of optimization. The standard GA can usu-
ally converge only to local optimal solutions with different
fitness values after each optimization, where the fitness val-

ues of these solutions are generally low and different. This
causes the results of optimization to greatly fluctuate. Al-
though the expansion of the population helps to expand the
search scope of the algorithm, it is difficult to ensure that
part of the randomly generated individuals in the initial pop-
ulation fall into the vicinity of the global optimal solution
for further search. In this case, the algorithm is still trapped
in widely distributed local optimal solutions with low fit-
ness. By contrast, the telomere operator can enable the GA
to jump between local optimal solutions and thus can always
converge to the global optimal solution. This renders the al-
gorithm stable. For these reasons, the telomere operator is
insensitive to population size, and this indicates that the re-
quired solutions maps can still be obtained with a smaller
population to reduce computation time.

5.4 BurLink software based on solutions map method

The solutions map is a computer-aided method of synthesis.
To improve the efficiency of synthesis, the linkage synthe-
sis software BurLink was developed based on the solutions
map, as shown in Fig. 14. It offers two views. The right view
is the solutions map and the left view shows the linkage so-
lution selected from it. The movement of the buoy and the
sea level in the solutions map can be controlled by sliders.
When the buoy moves, the linkage solution and the coupler
curve are updated immediately. The software can output the
coordinates of each hinge on the linkage and show the corre-
sponding animation.

In addition to the calculation of points on the center and
the circle, each linkage solution in the solutions map re-
quires the calculation and visualization of the types of link-
age and defect, and transmission-related performance. If the
time needed for the calculation is too long, the synthesis ef-
ficiency of the software decreases. Most of the computation
time is spent on the visualization of the solutions map. To
shorten this, the Java3D API is used to generate the solu-
tions map. Consider the solutions map shown in Fig. 5 as an
example. BurLink can complete all calculations and the 3D
display of 52 441 solutions within 300 ms (test conditions:
11th Gen Intel(R) Core(TM) i7-1165G7 at 2.80 GHz; RAM
16 GB). It also supports the TGA in expanding the domain of
solution of the solutions map. After TGA optimization, users
can extract information on any individual in the population
and update the map.

5.5 Discussion

According to the analysis in Sect. 1, past methods can be
divided into three categories: traditional method based on
region-based segmentation technology, type map based on
solution domain analysis, and approximate motion synthesis
based on optimization. Both the type map and TGA-based
solutions map can be used to analyze the solution domain;
thus their synthesis efficiencies are much higher than that
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Figure 13. Solutions maps generated by the niche genetic algorithm based on the pseudo-histogram method.

Table 8. Comparison of results of niche optimization of the GA and TGA.

Test ID GA TGA

Population size Ps = 20 Population size Ps = 40 Population size Ps = 20 Population size Ps = 40

1 0.808140496 0.719515621 0.864022039 0.854201389
2 0.845178814 0.688117222 0.871671598 0.848327124
3 0.847435393 0.808539516 0.805541023 0.845135764
4 0.819129855 0.613161143 0.791941971 0.834410095
5 0.72313888 0.79294896 0.880453601 0.76589113
6 0.378567574 0.872318339 0.814721197 0.865165839
7 0.783488051 0.760982924 0.878007221 0.794923907
8 0.617957746 0.822096614 0.797713479 0.811727568
9 0.65781804 0.678953044 0.835121086 0.775965734
10 0.83415333 0.806904164 0.8374514 0.813102075
11 0.762416295 0.786905787 0.820455668 0.863822243
12 0.833188657 0.826113212 0.830851801 0.860283435
13 0.742630385 0.85883183 0.850974277 0.794999717
14 0.775725 0.789474375 0.82898474 0.869401192
15 0.847920605 0.845536032 0.82237643 0.874622222
16 0.802203709 0.87267562 0.813134105 0.841278983
17 0.841179666 0.832508151 0.832767857 0.840127081
18 0.749836018 0.799855215 0.84064 0.765636095
19 0.783424238 0.835722012 0.841445923 0.876876502
20 0.795826689 0.798990032 0.84377729 0.853818085
ζav 0.762467972 0.790507491 0.835102635 0.832485809
ζad 0.070491087 0.049644232 0.019253808 0.030515444
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Figure 14. Software used for the synthesis of the linkage position.

of the traditional, blind method. Compared with the type
map, the TGA-based solutions map adds a dimension to vi-
sualize continuous attributes of the linkage, and can expand
the solution domain through the TGA and niche technol-
ogy. Although the TGA-based solutions map also uses the
optimization algorithm, its objective of optimization is the
solution domain and not a single linkage solution. In addi-
tion, it blurs the boundary between accurate position synthe-
sis and approximate motion synthesis, which means that the
two problems can be solved by a unified method in some
cases. When the allowable errors in all guidance positions
are zero, the TGA-based solutions map solves the problem
of accurate position synthesis; when errors are introduced to
part of the guidance positions, it solves the mixed problem of
exact–approximate synthesis; when errors are introduced to
all guidance positions, it solves the problem of approximate
motion synthesis.

Compared with previous methods, the highlight of the pro-
posed TGA-based solutions map is that it can provide more
candidate solutions for the problem of the four-position syn-
thesis of the 4R linkage to satisfy the needs of subsequent
design. Consider the synthesis task in Table 4 as an example
once again. Statistical results show that the number of can-
didate solutions that can be obtained by the type map or the
basic solutions map is 5694, whereas the number of candi-
date solutions that can be obtained by the TGA-based solu-
tions map is 25 670. Considering that solutions in the area
of the same linkage type of the type map or the solutions
map are highly similar, it is not rigorous enough to compare
the two methods in terms of the number of candidate solu-
tions only. If the linkage needs to be free of motion-related

defects and the minimum transmission angle at the four spec-
ified positions is greater than 30◦, the region in the solution
domain that satisfies the above constraints and has the same
linkage type can be called the candidate region. As is shown
in Fig. 15, the type map can provide 9 candidate regions for
the synthesis task in Table 6 while the solutions map based
on the TGA and niche technology (population size, Ps = 20)
can provide 20 solution domains and a total of 208 candidate
regions. In particular, the solutions map can find solutions
of all linkage types, but the type map cannot find the rocker
crank and Grashof double-rocker linkage solutions that sat-
isfy the given requirements. Note that only the transmission
angle is limited here. If the ratio of the link length, velocity
and acceleration of the guidance point, force of the driving
link, and other attributes are limited, the nine candidate re-
gions provided by the type map are likely to be significantly
reduced or may even lead to no solution. By contrast, after
the expansion of the solution domain, the solutions map still
has a larger selection space owing to the large number of re-
gions of candidate solutions.

6 Conclusions

In this paper, the authors examined the computer-aided syn-
thesis of the planar 4R linkage. The main conclusions can be
summarized as follows:

1. A solutions map method was proposed. It can re-
veal the distribution of the linkage solutions of differ-
ent attributes, including discontinuous attributes (such
as linkage and defect types) and continuous attributes
(such as link length, transmission angle, acceleration,
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Figure 15. Analysis of candidate regions. (a) Schematic diagram of candidate regions in the solutions map. (b) Number of candidate regions
with different types of linkages.

and force, or their weighted values) so that the required
linkage solutions can be quickly located.

2. A method of generating the solutions map was pro-
posed. The center curve was first calculated by projec-
tive geometry and the circle curve was then obtained by
vector elimination. A defect discrimination algorithm
was proposed based on this which can quickly elimi-
nate defective linkage solutions from the solutions map
to improve the efficiency of linkage synthesis.

3. An improved genetic algorithm (GA) based on the
telomere operator was proposed and used to expand the
domain of solution of the solutions map. A niche con-
struction method based on a pseudo-histogram was pro-
posed based on this, such that more solutions maps and
candidate solutions can be obtained after optimization.
The results showed that the telomere genetic algorithm
(TGA) significantly outperformed the traditional GA re-
garding the problem of expanding the domain of solu-
tions of the solutions map.

4. The TGA-based solutions map was used to develop the
software BurLink for linkage synthesis.

5. Compared with previous research, the proposed TGA-
based solutions map can provide more candidate so-
lutions for the problem of the four-position synthesis
of the 4R linkage. Moreover, it blurs the boundary be-
tween accurate position synthesis and approximate mo-
tion synthesis, which means that the two problems can
be solved by a unified method in some cases.

6. The TGA-based solutions map can also be applied to
the finite positional synthesis of any linkage with at least
two free variables, including planar and spatial linkages.
The specific method of operation is consistent with that
in this study. It is first necessary to specify two free vari-
ables in the linkage synthesis model to form the solu-
tions map and to then use the TGA to optimize it.
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