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Abstract. The measurement of the road adhesion coefficient is of great significance for the vehicle active safety
control system and is one of the key technologies for future autonomous driving. With a focus on the problems
of interference uncertainty and system nonlinearity in the estimation of the road adhesion coefficient, this work
adopts a vehicle model with 7 degrees of freedom (7-DOF) and the Dugoff tire model and uses these models to
estimate the road adhesion coefficient in real time based on the particle filter (PF) algorithm. The estimations us-
ing the PF algorithm are verified by selecting typical working conditions, and they are compared with estimations
using the unscented Kalman filter (UKF) algorithm. Simulation results show that the road adhesion coefficient
estimator error based on the UKF algorithm is less than 7 %, whereas the road adhesion coefficient estimator
error based on the PF algorithm is less than 0.1 %. Thus, compared with the UKF algorithm, the PF algorithm
has a higher accuracy and control effect with respect to estimating the road adhesion coefficient under different
road conditions. In order to verify the robustness of the road adhesion coefficient estimator, an automobile test
platform based on a four-wheel-hub-motor car is built. According to the experimental results, the estimator based
on the PF algorithm can realize the road surface identification with an error of less than 1 %, which verifies the
feasibility and effectiveness of the algorithm with respect to estimating the road adhesion coefficient and shows
good robustness.

1 Introduction

With the development of the automobile industry and the
increase in car ownership, the rate of road traffic accidents
is also increasing. The difficulty involved with obtaining in-
formation regarding people and vehicles during driving has
become one of the most important factors affecting traffic
safety and obscuring the cause of many traffic accidents. In
order to ensure the stability of vehicles under critical condi-
tions, anti-lock braking (ABS) systems, accelerated anti-slip
regulation (ASR) systems and electronic stability program
(ESP) technology have become indispensable in the active
safety control of modern vehicles.

The development of automotive active safety electronic
control technology and related control strategies requires
good road adaptability. This adaptability requirement neces-
sitates that the control system is able to accurately estimate

the tire–road adhesion coefficient in real time. If the tire–road
adhesion coefficient can be accurately measured in real time,
the vehicle control strategy can be changed in real time ac-
cording to the road information, thereby improving the driv-
ing safety of the vehicle. At present, according to different re-
search methods, techniques for estimating the road adhesion
coefficient are mainly divided into two categories, namely
cause-based and effect-based methods.

Cause-based methods estimate the road adhesion coeffi-
cient using special sensors, such as optical sensors and video
image sensors, to detect road cover (e.g., water, snow, ice and
oil) (Yu et al., 2006). Breuer et al. (1992) proposed the use of
optical sensors to assess the absorption and scattering of light
by substances on the road in order to perceive substances that
reduced road adhesion, thereby identifying the road adhe-
sion coefficient before the wheel arrived. Tuononen and Har-
tikainen, (2008), in contrast, used a special optical sensor. As
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the absorbance is related to the wavelength and surface ma-
terial when using an optical sensor, infrared diodes with dif-
ferent wavelengths were used in the sensor. The absorbance
was different at different wavelengths according to the road
surface information, thereby allowing for the identification of
the road surface. Khaleghian et al. (2017) proposed a method
to detect road icing that employed an infrared thermometer to
assess the thermal energy in the freezing process in order to
analyze the effect of the road surface. Eldar et al. (2020) pro-
posed a road and condition classification algorithm based on
a deep neural network (DNN) using video image sensors. Ya-
mada et al. (2005) proposed a method that used reflection and
scattering to detect and evaluate road conditions. By using a
digital image processing algorithm to evaluate the difference
in the appearance of at least one point of the road in at least
two digital images, the diffuse reflection and specular reflec-
tion of the road were detected, and the road adhesion coeffi-
cient was estimated. However, the abovementioned methods
require additional sensors that are vulnerable to environmen-
tal impact and increase costs.

Using an effect-based method, the size of the peak road
adhesion coefficient (µmax) is identified by measuring and
analyzing the motion response caused by the change in the
road adhesion coefficient on wheels or car bodies (Yu et al.,
2006). There are two main ways to achieve this. One method
is to install tire sensors. Alonso et al. (2015) proposed a road
classification system based on the real-time acoustic analy-
sis of tire–road noise; the system could accurately identify
dry and wet asphalt pavements. Dogan (2017) inserted strain
sensors into the tire tread to measure tire deformation and
estimated the friction coefficient of the road by comparing
the deformation of the center and the edge of the contact
surface. Boyraz and Dogan (2013) designed an intelligent
road condition estimator based on acoustic sensors; this esti-
mator, named the “Acoustic Road-Type Estimation” system,
could effectively distinguish asphalt, gravel, snow and ice.
Kalliris et al. (2019) proposed a road-type estimator based
on acoustic signals; the estimator could distinguish asphalt,
gravel, snow and stones, and the feature extraction used sig-
nal processing methods in the field of acoustics and speech
recognition as well as an artificial nerves network or sup-
port vector machine for classification. Wang and Wei (2020)
proposed a smart-tire algorithm based on support vector ma-
chines to predict the peak adhesion coefficient between clas-
sified tires and road surfaces. However, these methods are
difficult to use in production vehicles due to the cost and
technical challenges involved in embedding strain sensors
and related power, signal conditioning and communication
equipment in tires.

Another method is to estimate the road adhesion coeffi-
cient based on tire slip. Lin and Huang (2013) established
a nonlinear vehicle dynamics model with 7 degrees of free-
dom (7-DOF) using the Pacejka 89 tire model. The vertical
load of the front and rear wheels was estimated by the dy-
namic model. The tire longitudinal force and slip rate were

estimated by combining the tire mechanics model and the un-
scented Kalman filter (UKF) algorithm, and the “slip-slope”
(curve slope) under different road adhesion coefficients was
then obtained. Moreover, the mapping relationship between
several typical road adhesion coefficients and the slip-slope
was established. Wang et al. (2020) proposed a method for
estimating the road adhesion coefficient based on the front-
and rear-wheel speeds and braking torques under braking
conditions. Firstly, the dynamic model and Burckhardt fric-
tion model of two-wheel vehicle braking were established.
The ideal braking torque sliding-mode controller was then
established based on the ideal and actual slip rate of the
front and rear wheels of the vehicle. Integral switching was
used to deal with the chattering phenomenon of the vehi-
cle sliding-mode controller. Finally, the extended state ob-
server was designed using the front- and rear-wheel speed
and braking torque as the input, and this observer was used
to observe the correlation value of the road adhesion coef-
ficient. Donald et al. (2019) designed two recognition algo-
rithms based on longitudinal dynamics and lateral dynamics.
The first method used the improved recursive least squares
(RLS) algorithm to estimate friction based on vehicle mea-
surements under excitation conditions and employed external
information stability. The second method was based on the
nonlinear classification technique, which estimated the fric-
tion force by weighting the sliding–acceleration map. Feng et
al. (2020) proposed a four-wheel-drive electric vehicle road–
tire friction coefficient estimation based on a mobile optimal
estimation strategy. Taking advantage of the characteristics
of four-wheel-drive electric vehicles that can obtain torque
and wheel speed information, the road adhesion coefficient
is estimated based on the HSRI (Highway Safety Research
Institute) tire model and its variants. Fan et al. (2020) stud-
ied an algorithm for estimating the driving state and road ad-
hesion coefficient of distributed electric vehicles. A 3-DOF
vehicle estimation model was established, taking advantage
of the multi-information sources of distributed electric vehi-
cles. The multi-sensor signal was used as the input for the
estimation model, and the lateral force was calculated us-
ing the Dugoff tire model. A dual-volume joint estimation
algorithm for driving state and road adhesion coefficient was
designed. Heidfeld et al. (2019) proposed a road estimator
based on the UKF algorithm. The estimator was robust to un-
known disturbances and measurement errors. Hu et al. (2019)
used a bicycle model and a brush model to estimate the rear-
wheel force based on a Kalman filter (KF) and employed the
least squares method to identify the longitudinal stiffness of
the rear wheel and the friction coefficient of the road sur-
face. Fan and Wang (2016) established a rim–beam dynamic
model with multiple degrees of freedom and coupled it with
a tire dynamic friction model. By analyzing the influence of
key parameters, such as the slip ratio on adhesion coefficient,
the tire–road adhesion coefficient estimation model was fur-
ther established. Finally, vehicle field tests of high, low and
joint road were carried out, and the brake pressure (brake
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Figure 1. Vehicle dynamics model.

torque), vehicle velocity (wheel speed), slip ratio, and wheel
speed sensor sine wave time–frequency analysis and tire–
road friction coefficient estimation were analyzed. Wielitzka
et al. (2018) proposed sensitivity-based road friction estima-
tion in vehicle dynamics using a UKF. Xiong et al. (2020) de-
signed a fuzzy adaptive road adhesion coefficient fusion esti-
mation method that made full use of the vehicle’s longitudi-
nal and lateral excitation to realize the algorithm’s estimation
and adaptability to different vehicle driving conditions. In the
abovementioned methods, the estimators are more compli-
cated, the computational burden is relatively larger and there
are certain drawbacks with respect to real-time performance.

At present, most methods of estimating the road adhesion
coefficient are based on a KF algorithm. A common KF al-
gorithm can obtain the best estimation and a better track-
ing effect under the conditions of a linear Gaussian model
(Yousefnejad and Monfared, 2022); however, the actual sys-
tem nonlinear factors cannot be ignored. The UKF algorithm
can realize the state parameter estimation of a vehicle dy-
namics model containing nonlinear factors, which improves
the accuracy and stability of the estimation system. However,
the unscented Kalman estimator obtains the approximate an-
alytical solution of the system under the condition of Gaus-
sian noise. Thus, for complex nonlinear vehicle systems, the
estimator has certain limitations. With a focus on the fact that
the Kalman estimator needs to determine the model or noise,
researchers proposed the robust Kalman algorithm (Rocha
and Terra, 2021), the multi-objective optimization Kalman
algorithm (Ayala et al., 2017) and the KF to correct noise
dynamic mode decomposition (Jiang and Liu, 2022). In ad-
dition, the KF algorithm and the fuzzy algorithm can be com-
bined to solve the uncertainty of the model (Freire et al.,
2016). In vehicle parameter estimation, there are often is-
sues with model uncertainty and disturbance uncertainty. The
above algorithms cannot concurrently deal with the model
and interference uncertainty. Therefore, this work designs a
PF algorithm to estimate the road adhesion coefficient. The
PF algorithm is not restricted by the type of noise nor the
system model, and it has great advantages and high accuracy
with respect to estimating the system state parameters.

In order to improve the accuracy and real-time perfor-
mance of the road adhesion coefficient estimation, this work

adopts a 7-DOF vehicle model including the Dugoff tire
model, and it estimates the road adhesion coefficient in real
time based on the UKF algorithm and the PF algorithm. The
MATLAB–Simulink software platform is used to verify the
effectiveness of the algorithm, and the estimation effect of
the two algorithms on the road adhesion coefficient is com-
pared. Via the establishment of the four-wheel-hub-motor ve-
hicle test platform, based on an actual vehicle road test, the
effectiveness and robustness of the road adhesion coefficient
estimator are verified.

2 Vehicle dynamics model

2.1 The 7-DOF vehicle model

In this paper, the vehicle is simplified to a vehicle model with
7 degrees of freedom (Rajesh, 2012; Wang et al., 2017). The
vehicle dynamics model is shown in Fig. 1, including the
transverse motion, longitudinal motion, yaw motion and the
rotational motion of four wheels around their respective axes.

The following assumptions are made with respect to the
vehicle model:

1. the road surface is relatively smooth, although the
movement and turning moment of the vehicle in the ver-
tical direction are not considered;

2. the origin of the moving coordinate system solidified
on the vehicle coincides with the center of mass of the
vehicle;

3. each tire has the same mechanical characteristics;

4. the tire angle on the same shaft is the same in the steer-
ing process;

5. the pitch angle of the vehicle is zero, and the influence
of the vehicle’s roll motion on the motion is not consid-
ered.

The lateral motion is calculated as

m
(
v̇y + vxr

)
= (Fx1+Fx2) sinδ

+
(
Fy1+Fy2

)
cosδ+Fy3+Fy4. (1)

The longitudinal motion is calculated as

m
(
v̇x − vyr

)
= (Fx1+Fx2)cosδ

−
(
Fy1+Fy2

)
sinδ+Fx3+Fx4. (2)

The horizontal pendulum motion is calculated as

Izṙ = a (Fx1+Fx2) sinδ− b
(
Fy3+Fy4

)
+ a

(
Fy1+Fy2

)
cosδ+

d

2

(
Fy1−Fy2

)
sinδ

+
d

2
(Fx2−Fx1)cosδ. (3)
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Figure 2. Schematic diagram of the road adhesion coefficient estimation based on the UKF.

Figure 3. Schematic diagram of the road adhesion coefficient estimation based on the PF.

Figure 4. Double-lane-changing front-wheel angle.

The rolling motion of the wheels is calculated as

Iωiω̇ = Tdi −FxiRW− Tµdi (i = 1,2,3,4) . (4)

In the above formulae, m is the mass of vehicle recondi-
tioning (kg); vx and vy represent the velocities of vehicles
in the x and y directions, respectively (m s−1); r is vehi-
cle yaw rate (rad s−1); Fxi (i = 1, . . .,4) and Fyi (i = 1, . . .,4)

represent the longitudinal force and transverse force of the
tire, respectively, (N); Tµdi (i = 1, . . .,4) is dynamic output
braking torque (N m); Tdi (i = 1, . . .,4) is the wheel driving
torque (N m); a and b represent the distance from the center
of mass to the front and back axes, respectively (m); d is the
wheel tread of both the front and rear wheels (m); δ is driver
angle input (rad); Iz represents the rotational inertia which
sprung mass around the z axis (kg m2); Iwi (i = 1, . . .,4) rep-
resents the rotational inertia of the wheels and their compo-
nents (kg m2); Rw is wheel radius (m); and wi (i = 1, . . .,4)
is the angular velocity of the wheel (rad s−1).

2.2 Tire model

Considering the nonlinearity in the process of tire motion,
the Dugoff model is adopted to analyze the force on the tire.
In order to reflect the force on the actual road surface, an
improved Dugoff tire model is used (Wu, 2008). For each
wheel, the longitudinal force Fxi and lateral force Fyi can be
expressed by the following formulae.

The longitudinal force of tire is calculated as

Fxi = µxiFziCx
s

1+ s
f (λi) , (5)

where Cx is longitudinal slip stiffness, and λi is the set pa-
rameter.
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The lateral force of tire is calculated as

Fyi = µyiFziCy
tanαi
1+ s

f (λi) ; (6)

λi =
1− s

2
√

(Cxs)2
+
(
Cy tanα

)2 ; (7)

f (λi)=
{

(2− λi)λi (λi ≤ 1)
1(λi > 1) . (8)

Here, s represents the longitudinal slip of tire.

2.3 Vertical load of the wheel

The vertical load of each wheel is given as follows:

Fz1 =
mgb

2(a+ b)
−

mhcgv̇x

2(a+ b)
−

mhcgv̇yb

(a+ b)d
; (9)

Fz2 =
mgb

2(a+ b)
−

mhcgv̇x

2(a+ b)
+

mhcgv̇yb

(a+ b)d
; (10)

Fz3 =
mga

2(a+ b)
+

mhcgv̇x

2(a+ b)
−

mhcgv̇ya

(a+ b)d
; (11)

Fz4 =
mga

2(a+ b)
+

mhcgv̇x

2(a+ b)
+

mhcgv̇ya

(a+ b)d
. (12)

2.4 Each wheel side-slip angle and the speed of the
wheel center

The angle of each wheel side-slip and the speed of the wheel
center are given as follows:

α1 = tan−1
(

vy + aγ

vy − 0.5dγ

)
− δf ; (13)

α2 = tan−1
(

vy + aγ

vy + 0.5dγ

)
− δf ; (14)

α3 = tan−1
(

vy − bγ

vx − 0.5dγ

)
; (15)

α4 = tan−1
(

vy − bγ

vx + 0.5dγ

)
; (16)

vx1 = (vx − 0.5dr)cosδ+
(
vy + ar

)
sinδ; (17)

vx2 = (vx + 0.5dr)cosδ+
(
vy + ar

)
sinδ; (18)

vx3 = (vx − 0.5dr) ; (19)

vx4 = (vx + 0.5dr) . (20)

2.5 Slip rate calculation

The slip rate is calculated as

s =
v− vi

v
× 100%=

(
1−

ωiRw

v

)
× 100% (i = 1,2,3,4), (21)

where Rw is the radius of the wheel, ωi (i = 1, · · ·,4) is the
angular velocity of the wheel and vxi (i = 1, · · ·,4) is the ve-
locity of the wheel center.

3 Estimation of the road adhesion coefficient based
on the UKF algorithm

The extended Kalman filter algorithm is used to carry out
Taylor expansion of the nonlinear system equations or ob-
servation equations and keep the first-order approximation
term, so that the linearization error will be introduced. In
general, the extended Kalman filter needs to calculate the Ja-
cobian matrix of the system state equations and observation
equations, which increases the complexity of the calculation.
Compared with the extended Kalman filter, the UKF discards
the traditional method of linearizing the nonlinear function,
uses the unscented transform (UT) change to determine the
sampling point near the estimated point and uses the deter-
mined sample to approximate the posterior probability den-
sity of the state. It does not need to derivative the Jacobian
matrix, and it improves the estimation accuracy and stabil-
ity (Huang and Wang, 2015).

Assuming that the process noise and the observation noise
are both Gaussian white noise and that the variances are Q
and R, respectively, the nonlinear system is described as fol-
lows:{
X(k+ 1)= f (X(k),W (k))
Z(k)= h(X(k),V (k)), (22)

where W (k) is the process noise, V (k) is the observation
noise, f is the nonlinear state equation function and h is the
nonlinear observation equation function. The basic steps in
the calculation are as follows:

1. Calculate the weights corresponding to 2n+ 1 sigma
points and sampling points.
X(0)
=X,i = 0

X(i)
=X+ (

√
(n+ λ)P )i, i = 1− n

X(i)
=X− (

√
(n+ λ)P )i, i = n+ 1− 2n

(23)


ω0

m =
λ
n+λ

ω0
c =

λ
n+λ
+ (1− a2

t +β)
ωim = ω

i
c =

λ
2(n+λ) , i = 1− 2n,

(24)

where

λ= a2
t (n+ κ)− n. (25)
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In the formula (
√

P)T (
√

P)= P, (
√

P)i represents the
ith column of the square root of the matrix; ωc is the
weight of the covariance; ωm is the weight of the mean;
λ is the scaling factor to reduce the prediction error; at is
the distribution state of sampling point; κ is a parameter
to be selected, and its value should ensure that matrix
(n+ λ)P is a positive semi-definite matrix; and β is the
parameter to be selected, and its value is β ≥ 0, which
is used to combine the momentum of the higher-order
terms in the equation.

2. A set of sampling points and their weights are obtained
using Eqs. (23) and (24).

X(i) (k|k)=
[
X̂ (k|k) X̂ (k|k)+

√
(n+ λ)P (k|k)

X̂ (k|k)−
√

(n+ λ)P (k|k)
]

(26)

3. Calculate the further prediction of the 2n+1 sigma point
set, i = 1,2, · · ·,2n+ 1, using

X(i)(k+ 1|k)= f [k,X(i)(k|k)]. (27)

4. According to the sigma point, calculate the further pre-
diction of the system state quantity and the covariance
matrix as

X̂ (k+ 1|k)=
2n∑
i=0

ω(i)X(i) (k+ 1|k) ; (28)

P (k+ 1|k)=
2n∑
i=0

ω(i)
[
X̂ (k+ 1|k)−X(i) (k+ 1|k)

]
·

[
X̂ (k+ 1|k)−X(i) (k+ 1|k)

]
+Q.

(29)

5. According to the predicted value, the UT transforma-
tion is used again to generate a new sigma point set, and
the generated new sigma point set is substituted into the
observation equation to obtain the predicted observation
value.

X(i) (k+ 1|k)=
[
X̂ (k+ 1|k) X̂ (k+ 1|k)+

√
(n+ λ)P (k+ 1|k)

X̂ (k+ 1|k)−
√

(n+ λ)P (k+ 1|k)
]

(30)

Z(i) (k+ 1|k)= h
[
X(i) (k+ 1|k)

]
(31)

6. Obtain the observed prediction value of the sigma point
set from the above steps, and obtain the mean value and

covariance of the system prediction via weighted sum-
mation.

Z (k+ 1|k)=
2n∑
i=0

ω(i)Z(i) (k+ 1|k) (32)

PZkZk =

2n∑
i=0

ω(i)
[
Z(i) (k+ 1|k)−Z (k+ 1|k)

]
·

[
Z(i) (k+ 1|k)−Z (k+ 1|k)

]
+R (33)

PXkZk =

2n∑
i=0

ω(i)
[
X(i) (k+ 1|k)

−Z (k+ 1|k)
][
X(i) (k+ 1|k)−Z (k+ 1|k)

]T
(34)

7. Calculate the Kalman gain matrix.

K (k+ 1)= PXkZkP
−1
ZkZk

(35)

8. Calculate the status update and covariance update of the
system.

X̂ (k+ 1|k+ 1)= X̂ (k+ 1|k)+K (k+ 1)[Z (k+ 1|)

−Ẑ (k+ 1|k)
]

(36)

P (k+ 1|k+ 1)= P (k+ 1|k)

−K (k+ 1)PZkZkK
T (k+ 1) (37)

In order to estimate the road adhesion coefficient, the
state variable of the nonlinear automobile system is set to
X= [µ1,µ2,µ3,µ4]

T , and the observed variable is Z=
[ax,ay, ṙ]

T .
Combined with the above vehicle dynamics model, the ve-

hicle nonlinear system can be described as

X(k+ 1)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



µ1
µ2
µ3
µ4

+W (k); (38)

Z(k)= φX(k)+V (k). (39)

Here,

φ =


F 0
x_f l−F

0
y_f lδ

m

F 0
x_f r−F

0
y_f r δ

m

F 0
x_rl
m

F 0
x_rr
m

F 0
x_f lδ+F

0
y_f l

m

F 0
x_f r δ+F

0
y_f r

m

F 0
y_rl
m

F 0
y_rr
m

H (3,1) H (3,2) H (3,3) H (3,4)

; (40)
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H (3,1)=
a
(
F 0
x_f lδ+F

0
y_f l

)
+d/ 2

(
F 0
x_f l−F

0
y_f lδ

)
Iz

;

H (3,2)=
a
(
F 0
x_f rδ+F

0
y_f r

)
−d/ 2

(
F 0
x_f r−F

0
y_f rδ

)
Iz

;

H (3,3)=
−

(
bF 0

y_rl−d/ 2F 0
x_rl

)
Iz

;

H (3,4)=
−

(
bF 0

y_rr+d/ 2F 0
x_rr

)
Iz

.

In combination with the actual operating conditions of the
vehicle, the initial value of the filter is set as follows: the
process noise covariance matrix is R= I3·3, the measure-
ment noise covariance matrix is Q= I4·4 ·0.01, and the initial
value of the error covariance matrix is P0 = I4·4. After the
initial value setting is completed, the algorithm recursion is
realized. The vehicle model and the Dugoff normalized tire
model are built in MATLAB–Simulink, and the road adhe-
sion coefficient is the estimated by filtering with the UKF.
The schematic diagram of road adhesion coefficient estima-
tion based on the UKF algorithm is shown in Fig. 2.

4 Estimation of the road adhesion coefficient based
on the PF algorithm

For the parameter estimation of a nonlinear vehicle system,
in addition to the KF algorithm mentioned above, another
possible method for use is the PF algorithm. The core idea of
the PF algorithm is the approximation of the probability den-
sity function of the system state variables using a series of
discrete sampling points. The minimum variance of the state
variables is obtained by using the sample mean value, and the
estimated value of the system state is then obtained (Huang
and Wang, 2017). The algorithm is not limited by noise type
nor system type, and it has great advantages with respect to
dealing with nonlinear and non-Gaussian systems. The PF
algorithm is a probabilistic statistical method, comprising a
Bayesian filtering algorithm based on Monte Carlo simula-
tion. It estimates the identified parameters by calculating the
mean value of the particle set samples.

The PF algorithm used in the process of estimating the
road adhesion coefficient in this paper is a classic sampling
importance resampling (SIR) algorithm. This algorithm in-
troduces resampling, which can effectively avoid the particle
degradation problem by moving the particles to the high like-
lihood region as much as possible. In the process of estimat-
ing the road adhesion coefficient, a small number of particles
are used, and good results can be obtained, which improves
the real-time performance of parameter estimation (Lin et al.,
2011). The specific process of the algorithm is described be-
low.

For a nonlinear system, the process of the algorithm is de-
scribed as follows:

X (k)= f (X (k− 1) ,W (k)) ; (41)

Z (k)= h (X (k) ,V (k)) . (42)

Here, X(k) is the state variable at time k; Z(k) is the mea-
sured variable at time k; W (k) is the process noise, and its
variance isQ; and V (k) is the observation noise, and its vari-
ance is R.

The steps required to implement the filter are as follows:

1. Initialize the filter.

N random samples are drawn from the prior distribu-
tion p(X0), and the particle swarm {Xi0:k}

N
i=1 is gener-

ated. The weights are normalized to
∑
i

ωik = 1, and the

weights of all particles are set to 1/N . The posterior
probability distribution of the target state at time k can
then be discretely weighted as

p (X0:k|Z1:k)≈
N∑
i=1

ωikδ
(
X0:k −X

i
0:k

)
, (43)

whereX0:k is the state set from 0 to k,Xi0:k is the particle
set with corresponding weight ωik , δ(X) is the Dirac-
delta function and Z1:k is the measured value.

The posterior probability density is updated with the up-
date of the observation. The initial error variance matrix
is set as a fourth-order sparse matrix with diagonal el-
ements of 10−3. Among them, the variance setting is
small, which can avoid generating excessive disturbance
and causing distortion.

2. Calculate the of importance weights.

The choice of weight is the key to particle filtering.
The weight is selected by importance sampling. Sam-
pling X(i)

k ∼ q(Xk|X0:k−1,Z1:k), the update formula of
importance weight is

ωik ∝
p
(
Zk|X

i
k

)
p
(
Xik|X

i
k−1

)
p
(
Xi0:k−1|Z1:k−1

)
q
(
Xik|X

i
0:k−1,Z1:k

)
q
(
Xi0:k−1|Z1:k−1

) =

ωik−1
p
(
Zk|X

i
k

)
p
(
Xik|X

i
k−1

)
q
(
Xik|X

i
0:k−1,Z1:k

) .

(44)

The importance weight is then normalized as

ωik = ω
i
k

/
N∑
i=1

ωik. (45)

3. Introduce resampling.

To overcome the problem of particle degradation, re-
sampling technology is introduced. The degradation
problem of particle filtering algorithm is that the vari-
ance of the importance weight increases randomly with
time, so that the weight of particles is concentrated on
a few particles. Even after several steps of recursion,
there may be only one particle with nonzero weight.
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Table 1. Vehicle structure parameters.

Parameter (symbol) Numerical value and unit

Vehicle mass (m) 1764 kg
The distance from the center of mass to the front axis (a) 1.09 m
The distance from the center of mass to the back axis (b) 1.53 m
Vehicle wheelbase of front and rear (d) 1.535 m
Tire radius (Rw) 0.35 m
Height of the center of mass (hcg) 0.30 m
Moment of inertia of wheel and its components (Iw) 2400 kg m2

Moment of inertia of sprung mass around the Z axis (Iz) 3 kg m2

Longitudinal stiffness of the tire (Cx ) 70 000 kN m rad−1

Lateral stiffness of the tire (Cy ) 55 000 kN m rad−1

Figure 5. The high-adhesion road surface identification effect based on the UKF algorithm.

The weight of other particles is small, which can be
ignored, so that a great deal of computational work is
wasted updating particles that have little or no effect on
the estimate of p(Xk|Z1:k); as a result, the set of par-
ticles cannot represent the actual posterior probability
distribution. In order to determine the degradation de-
gree of particles, an approximate measurement scale of
relative efficiency is adopted. This effective sampling

scale Neff is defined as outlined in Zhu (2010),

Neff = 1

/
N∑
i=1

(ωik)
2. (46)

An effective sample number Nthreshold is then set as
the threshold. WhenNeff <Nthreshold, resampling is per-
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Figure 6. The high-adhesion road surface identification effect based on the PF algorithm.

Figure 7. The low-adhesion road surface identification effect based on the UKF algorithm.
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Figure 8. The low-adhesion road surface identification effect based on the PF algorithm.

Figure 9. The hub-motor experimental car.
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Table 2. Vehicle structure parameters.

Parameters Numerical value/unit

Battery Operating voltage 72 V
Battery capacity 180 Ah
Rated power 5500 W

Hub motor Rated voltage 72 V
Rated current 89 A
Rated speed 2500 rpm

Figure 10. Driving route map.

formed, and the original weighted sample {Xi0:k,ω
i
k}
N
i=1

is mapped to {Xi0:k,N
−1
}
N
i=1 equal weighted samples.

4. Obtain output.

The state estimation as carried out as

Xk =

N∑
i=1

ωikX
i
k. (47)

The variance estimation is calculated as

Pk =

N∑
i=1

ωik

(
Xik −Xk

)(
Xik −Xk

)T
. (48)

The vehicle model and the Dugoff normalized tire
model are built in MATLAB–Simulink, and the road ad-
hesion coefficient is finally estimated by filtering with
the PF. A schematic diagram of the road adhesion coef-
ficient estimation based on the PF algorithm is shown in
Fig. 3.

5 Results & discussion

Taking the four-wheel motor drive prototype developed by
our research group as the research object, road adhesion co-
efficient estimators are studied. The vehicle structure param-
eters are shown in Table 1.

Figure 11. Lateral acceleration.

Figure 12. Yaw rate.

The simulation experiment is carried out under the double-
lane-changing conditions outlined below, and the front-wheel
angle of the double-lane-changing test is shown in Fig. 4. The
abovementioned vehicle model and the designed algorithm
observer are used to estimate the road adhesion coefficient.

5.1 Simulation of road adhesion coefficient estimation

An established 7-DOF vehicle model and the Dugoff tire
model are used to identify the road adhesion coefficient ac-
cording to the designed UKF algorithm and PF algorithm.
In order to verify the effectiveness and feasibility of the al-
gorithms with respect to identifying the road adhesion co-
efficient, according to the built Simulink simulation model,
the simulation tests are carried out on roads with high and
low adhesion coefficients. The simulation tests’ conditions
were the abovementioned double-lane-changing conditions,
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Figure 13. Longitudinal acceleration.

Figure 14. Front-wheel angle.

the vehicle speed was 48 km h−1, and the ideal high and low
adhesion coefficients were set to 0.8 and 0.4, respectively.

The initial value settings of the road adhesion coefficient
estimator based on the UKF algorithm were as follows: the
process noise covariance matrix was R= I3·3, the measured
noise covariance matrix was Q= I4·4 · 0.01, the initial value
P0 = I4·4 of the error covariance matrix and the initial value
of the state variable was X= [1,1,1,1]

The initial value settings of the road adhesion coefficient
estimator based on the PF algorithm were as follows: the
process noise covariance matrix was R= [1], the measured
noise covariance matrix was Q= I4·4 · 0.01, the initial value
P0 = I4·4 of the error covariance matrix and the initial value
of the state variable was X= [1,1,1,1].

According to the simulation results on high- and low-
adhesion-coefficient roads, both the UKF algorithm and the
PF algorithm can effectively estimate the road adhesion co-
efficient in real time, showing good robustness. According to
Figs. 5–8, the time for the UKF algorithm to converge to the

ideal value is significantly longer than for the PF algorithm,
but the convergence time is also within 1 s. Via comparison
and analysis, the estimation of the road adhesion coefficient
based on the PF algorithm is closer to the ideal value. Both
algorithms will oscillate due to the measurement noise, re-
sulting in errors. Compared with the UKF algorithm, the es-
timation of the road adhesion coefficient based on the PF al-
gorithm has a higher accuracy and better control effect.

5.2 Experimental verification

In order to verify the robustness and accuracy of the road ad-
hesion coefficient estimator, a four-wheel-hub-motor vehicle
test platform was built for this work. This platform is mainly
divided into four parts: the vehicle chassis, the hub-motor
drive system, the energy management system and the control
system. The hub-motor test car is shown in Fig. 9. The power
supply for the hub-motor vehicle is provided by two sets of
72 V battery packs, which mainly service the three electri-
cal components, including the four hub motors, the electric
power steering and the controller. Among these components,
the hub motors use a DC brushless motor. The main vehicle
structure parameters are shown in Table 2.

In the vehicle driving experiment, the sensors used mainly
included components such as a three-axis accelerometer, a
fiber-optic gyroscope, a wheel speed sensor, a steering an-
gle sensor and a speed sensor based on GPS. The vehicle
is equipped with an XW-G15700 inertial navigation system
and a satellite navigation system. The longitudinal acceler-
ation and lateral acceleration data are obtained by the in-
tegrated GPS/INS navigation system. The yaw rate is ob-
tained by the fiber-optic gyroscope sensor, and the front-
wheel angle is obtained by the R100 series angle sensor. The
vehicle-mounted test system is equipped with an NI data ac-
quisition (DAQ) device for signal processing and data ac-
quisition, and it uses a LabVIEW serial port communica-
tion VISA module to achieve communication with the NI
cDAQ9137 data acquisition box. According to the above
simulation results, the PF algorithm shows good robustness.
Therefore, in the road test of real vehicles, the PF algorithm
is used to estimate the road adhesion coefficient. Based on
the hub-motor vehicle test platform, a road test using a real
vehicle was carried out on dry pavement under double-lane-
changing conditions. To ensure driving safety, the speed is
set as 40 km h−1. The double-lane-changing working condi-
tion is shown in Fig. 10. The specific settings of this working
condition are as follows: D = 3.5 m; l1 = 15 m; l2 = 30 m;
l3 = 25 m; l4 = 25 m; l5 = 30 m; the l0 setting is related to
vehicle speed vx , and l0 = 2vx ; due to the limited test site,
the track can only be composed of a surface with the same
friction level; and the road adhesion coefficient is approxi-
mately µ≈ 0.8. The obtained data are shown in Figs. 11–14,
and the experimental results are shown in Fig. 15.
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Figure 15. Road surface identification effect of double-lane-changing conditions.

According to Fig. 15, in the experimental process, the es-
timator based on the PF algorithm can realize road surface
identification with an error of less than 1 %, which verifies
the feasibility and effectiveness of the algorithm with respect
to estimating the road adhesion coefficient and shows good
robustness.

6 Conclusions

In this paper, a 7-DOF vehicle model and the Dugoff tire
model are established using the MATLAB–Simulink soft-
ware platform. Based on the UKF algorithm and PF algo-
rithm, road adhesion coefficient estimators are designed, and
simulation experiments are carried out. In order to verify the
feasibility and robustness of the algorithms on a real road,
a hub-based motor vehicle test platform is built to complete
real-vehicle experiments, and the following conclusions are
drawn:

a. The simulation results of high- and low-adhesion-
coefficient roads show that the estimation of the road ad-
hesion coefficient based on the UKF and PF algorithms
can show good robustness and that these algorithms can
quickly and effectively estimate the road adhesion co-
efficient. Via comparative analysis, it is found that the
estimation of the road adhesion coefficient based on the

PF algorithm is more accurate than that of the UKF al-
gorithm, and the former also has a better robustness and
control effect.

b. Via the actual vehicle verification, it is found that the
road adhesion coefficient estimator designed based on
the PF algorithm can effectively and accurately com-
plete road adhesion coefficient estimation. The experi-
mental results show that the method has good robust-
ness.

In view of the limitations of the KF algorithm, this paper
applies the PF algorithm to the estimation of the road ad-
hesion coefficient. The estimator based on the particle algo-
rithm is not limited by the noise type nor the system model,
which can improve the accuracy of the road adhesion coef-
ficient. However, the estimator based on the particle algo-
rithm has a large computational burden as well as certain
limitations with respect to real-time performance. In addi-
tion, the multi-information and multi-method fusion estima-
tion method is not used to estimate the road adhesion coeffi-
cient. Therefore, in order to obtain a real-time and accurate
road adhesion coefficient, using vehicle dynamics model and
multi-sensor information fusion technology, with a modeling
analysis method, future work will focus on parameter estima-
tion theory, adaptive control theory, simulation analysis and
other means combined with a dynamic tire friction model in
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order to identify and predict various road conditions under
arbitrary vehicle working conditions.
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