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Abstract. This paper will study a trajectory tracking control algorithm for electric vehicles based on a terminal
sliding mode controller. First, a 3 degrees of freedom nonlinear vehicle model and a controller-oriented 2 degrees
of freedom vehicle model are established. The preview time is adaptively adjusted based on the preview model.
Then, the vehicle trajectory tracking controller, which uses the terminal sliding mode algorithm, is designed. The
radial basis function (RBF) neural network algorithm is used to approximate the system variable parameters in
the control model online. At the same time, fuzzy logic is used to control the gain parameters of the controller
to reduce the chattering of the control system. Finally, the designed controller is verified by simulation. The
maximum deviation of path tracking under different speeds is 0.6 m, and the target path can also be well followed
under different road friction coefficients. The simulation results show that the controller designed in this paper
can effectively carry out the vehicle trajectory tracking and lateral control and reduce the chattering to a certain
extent.

1 Introduction

In recent years, autonomous technology has become the crit-
ical research direction of vehicle technology. One of its core
technologies is to control technology. The control system de-
termines all the actions of autonomous vehicles, and the ex-
cellent performance controller is the basis for autonomous
technology. Trajectory tracking is an integral part of the au-
tonomous vehicle, and better tracking capabilities are the
basic needs of autonomous vehicles (Gonzalo et al., 2020;
Xiong et al., 2020). However, because the vehicle system has
the characteristics of strong nonlinearity and high coupling,
its dynamic model is very complex and cannot be accurately
represented. Therefore, trajectory tracking control is always
a major difficulty in realizing autonomous driving technol-
ogy.

The trajectory tracking of autonomous vehicles attracts
a wide range of attention from many scholars and pro-
poses several control methods to achieve trajectory track-
ing. Abatari and Tafti (2013) designed a fuzzy proportional–

integral–derivative (PID) controller for the path following of
car-like mobile robots. Zhang et al. (2019) used the Takagi–
Sugeno fuzzy control method to study the steering control
problem of vehicle trajectory tracking with uncertain param-
eters. Boumediene et al. (2020) carried out tracking control
on the established 3 DOF (degrees of freedom) model by
combining the adaptive neural fuzzy reasoning system and
particle swarm optimization algorithm. To improve the sta-
bility of autonomous vehicles, Yuan et al. (2019) track the
trajectory based on the model predictive control algorithm
by increasing the dynamic constraints of the center of mass,
acceleration, and tire side angle. Liang et al. (2017) applied
model predictive control to deal with low-speed trajectory
tracking to ensure the reasonable safety of autonomous ve-
hicles. Zhou et al. (2019) designed the electromechanical
coupling dynamic trajectory tracking controller based on the
model predictive control algorithm. Li et al. (2020) proposed
a linear predictive lateral control method. The lateral force
of the front tire was selected as the control input. The fric-
tion between the front and rear tires was used as the safety
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constraint of the predictive controller for the stability control
of vehicle path tracking at high speed. Wang et al. (2018)
proposed a new model predictive control strategy based on
the adaptive cost function, which reflects different require-
ments under different road classes and friction coefficients.
The strategy is applied to the longitudinal control of intelli-
gent vehicles.

The sliding mode control (SMC) algorithm is widely used
in nonlinear control systems due to its characteristics. SMC
has strong robustness to strong nonlinearity, external dis-
turbance, and parameter uncertainty and disturbance caused
by complex driving conditions of autonomous vehicles (Wu
et al., 2019). In addition, the SMC controller allows the
vehicle to converge quickly to the path (Sun et al., 2019).
Martin et al. (2013) designed a trajectory tracking controller
using a sliding mode control algorithm based on the kine-
matic model. Based on the 2 DOF vehicle model, Norouzi
et al. (2019) combined the sliding mode controller with
the back-stepping controller to control the steering. Cao
et al. (2017) designed a robust sliding mode control steer-
ing controller with an adaptive preview time strategy, which
can carry out path tracking and avoid significant acceleration
caused by adaptive preview time strategy during trajectory
tracking. The most critical sliding mode control problem is
the chattering caused by the sliding surface switching. In re-
cent years, many methods have been proposed to eliminate
chattering. However, reducing or eliminating chattering is
still the key to the design of a sliding mode controller (Tagne
et al., 2014; Guo et al., 2017; Taghavifar and Rakheja, 2019).

The objective of this paper is the trajectory tracking con-
trol of vehicles. The contribution of this paper is as follows:
(1) an autonomous vehicle trajectory tracking controller
based on the terminal sliding mode control is designed.
(2) Because the control system contains state-dependent,
time-varying parameters which cannot be known in advance,
it is necessary to approximate them, and the approximation
value is used as the design basis of the controller. The radial
basis function (RBF) neural network controller is designed
to approximate the time-varying parameters. (3) To reduce
the chattering of the controller, the fuzzy algorithm is used
to control the gain of symbol function control. (4) The simu-
lation analysis of the designed controller is carried out under
the double lane-shifting condition to verify its effectiveness,
and the influence of different vehicle speeds and different
road adhesion coefficients on the controller is studied. The
structure design of this paper is as follows. Section 1 intro-
duces the current research status of scholars and the research
content of this paper. Section 2 establishes the vehicle dy-
namics model and tire model. Section 3 establishes the driver
preview model, designs the controller, and conducts stability
analysis for the designed controller. Section 4 carries out the
simulation analysis of the controller, conducts the simulation
verification of the controller designed in this paper under the
condition of the double line change, and compares the con-
trol effect between the controller designed in this paper and

the traditional terminal sliding mode controller. Section 5 is
the conclusion of this paper.

2 Vehicle model

An accurate vehicle dynamics model can accurately reflect
the kinematic and dynamic characteristics of the vehicle,
which is the basis of vehicle controller design. In this pa-
per, from the realization of the control goal of autonomous
vehicle steering, a dynamic model that can reflect the lateral
characteristics of the vehicle is established. The established
model needs to ensure that the response of the vehicle model
can be similar to or consistent with the actual vehicle and
meet the requirements of the trajectory tracking lateral con-
troller designed in this paper. Therefore, this section estab-
lished the vehicle model with 3 DOF, the controller-oriented
model with 2 DOF, and the Dugoff tire model (Dugoff et al.,
1970).

2.1 Vehicle model with 3 DOF

In this paper, a 3 DOF nonlinear model including longitudi-
nal, lateral, and yaw motion is established by using a simpli-
fied model. The 3 DOF nonlinear model is shown in Fig. 1.
XOY is the geodetic reference frame, and xoy is the vehicle
reference frame. a is the distance from the center of mass to
the front axis, and b is the distance from the center of mass
to the rear axis. tf is the front wheel tread, tr is the rear wheel
tread, ω is the yaw rate, β is the sideslip angle, V is the ve-
hicle’s speed, u is longitudinal velocity, and v is lateral ve-
locity. Fxi (i = 1,2,3,4) is the longitudinal force on the four
tires, Fyi (i = 1,2,3,4) is the lateral force on the four tires,
αi (i = 1,2,3,4) is the sideslip angle of the four tires, and
δ is the steering angle.

Meanwhile, the following assumptions are made: (1) ig-
noring the influence of the steering operating mechanism, the
front wheel angle is directly taken as input, and the left and
right front wheel angles are assumed to be equal. (2) The
effect of the suspension system is not considered, only the
translational motion of the vehicle along the x axis and y axis
is considered, and the influence of pitch motion, vertical mo-
tion, and roll motion of the vehicle is not considered, and
(3) the effects of aerodynamics are ignored. The dynamic
equations of the nonlinear vehicle model are as follows (Feng
et al., 2020):
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Table 1. Various SMC techniques for trajectory tracking and their control strategies.

Method Chattering elimination method Approximate time-varying
parameters method

Nonsingular terminal sliding mode
(Wu et al. 2019)

– Extended state observer

Super-twisting sliding mode
(Sun et al., 2019)

Super-twisting sliding mode Nested adaptive law

Sliding mode controller
(Martin et al., 2013)

– –

Sliding mode and backstepping controllers
(Norouzi et al., 2019)

– Particle swarm optimization

Robust sliding mode control
(Cao et al., 2017)

Adaptive preview time strategy –

Adaptive sliding mode
(Guo et al., 2017)

Adaptive boundary layer Fuzzy logic

Higher-order sliding mode control
(Tagne et al., 2014)

– –

Novel switching exponential-like sliding mode
(Taghavifar and Rakheja, 2019)

Fuzzy type 2 neural network controller –

Figure 1. Vehicle model with 3 DOF.
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

u̇= vω+ 1
m
[(Fx1+Fx2)cosδ− (Fy1+Fy2) sinδ

+Fx3+Fx4]

v̇ =−uω+ 1
m
[(Fx1+Fx2) sinδ+ (Fy1+Fy2)cosδ

+Fy3+Fy4]

ω̇ = 1
Iz

[
a((Fx1+Fx2) sinδ+ (Fy1+Fy2)cosδ)

−b(Fy3+Fy4)+ tf
2 ((−Fx1+Fx2)cosδ

−(Fy1+Fy2) sinδ)+ tr
2 (Fx4−Fx3)

]
Ẋ = ucosψ − v sinψ
Ẏ = usinψ + v cosψ,

(1)

where X and Y represent the vehicle’s coordinates with the
geodetic coordinate system as the reference frame, ψ is the
vehicle’s heading angle,m is the vehicle’s mass, and Iz is the
moment of inertia of the vehicle around the z axis.

2.2 Tire model

In this paper, the Dugoff tire model (Dugoff et al., 1970) is
used to calculate the longitudinal and lateral forces of the tire.
For each wheel, the longitudinal and lateral forces acting on
the tire can be expressed as follows:

Fxi = µiFzicx
λi

1− λi
f (L), (2)

Fyi = µiFzicy
tan(αi)
1− λi

f (L), (3)

where

f (L)=

{
llL(2−L), L < 1,

1, L≥ 1,

L=
1

2
√
c2
xλ

2
i + c

2
y tan2αi

(1− λi)

× (1− εu
√
c2
xλ

2
i + c

2
y tan2αi).

The following formula calculates each tire sideslip angle,
vertical load, and slip rate (Feng et al., 2020):

αi = δ− arctan

(
v− aω

u± tf
2

)
, i = 1,2; (4)

αi =−arctan

(
−v+ bω

u± tr
2

)
, i = 3,4; (5)

Fzi =

(
1
2
mg±may

h

tf

)
b

l
−

1
2
max

h

l
, i = 1,2; (6)

Fzi =

(
1
2
mg±may

h

tr

)
b

l
+

1
2
max

h

l
, i = 3,4. (7)

λi =
Rωi

vi
− 1< 0; (brake)

λi = 1−
vi

Rωi
> 0; (drive), (8)

where µi is the tire–road friction coefficient, λi is the longi-
tudinal slip ratio, cx is the longitudinal stiffness of tire, cy is
the lateral stiffness of tire, ε is the velocity influence factor,
Fzi is the vertical tire load, R is the wheel rolling radius,
ωi is the wheel rolling angular velocity, vi is the speed of the
wheel center, ax and ay are the longitudinal and lateral ac-
celeration, h is the height of the center of mass, and l is the
wheelbase.

2.3 Controller-oriented 2 DOF model

Since the lateral and yaw motions are mainly involved in
the path-tracking control process, to reduce the calculation
amount, a single wheel is used to replace the two wheels on
the axle, so as to simplify the four-wheel vehicle into a mono-
rail vehicle model. At the same time, it is assumed that the
relationship between the tire sideslip force and the sideslip
angle is linear. The 2 DOF vehicle dynamics model is shown
in Fig. 2, and the dynamic equation is as follows (Feng et al.,
2020):ω̇ =

a2cf+b
2cr

Izu
ω+ acf−bcr

Iz
β − acf

Iz
δ

β̇ =
(
acf−bcr
mu2 − 1

)
ω+ cf+cr

mu
β − cf

mu
δ,

(9)

where cf is the front wheel lateral stiffness, cr is the rear
wheel lateral stiffness, and ω is the yaw rate. The coordinate
transformation formula between the geodetic and vehicle co-
ordinate systems is the same as the 3 DOF model, so it will
not be repeated.

Equation (9) can be expressed as the equation of state, as
follows:

ẋ= Ax+Bu(t), (10)

where

x= ω
β
, A= a11 a12

a21 a22
, B= b11

b21
, a11 =

a2cf+ b
2cr

Izu
,

a21 =
acf− bcr

mu2 − 1, a12 =
acf− bcr

Iz
, a22 =

cf+ cr

mu
,

b11 =−
acf

Iz
, b21 =−

cf

mu
.

3 Design of trajectory tracking controller

The structure of the controller is shown in Fig. 3. First, the
optimal preview time is obtained according to the preview
time adaptive algorithm, and the optimal preview distance
and expected yaw rate are calculated. Then, the yaw rate error
is taken as the control input, and the steering wheel angle out-
put by the controller is input into the 3 DOF vehicle model.
Finally, the vehicle model feeds back the vehicle state param-
eters such as yaw rate and yaw velocity to the controller to
achieve the closed-loop control.
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Figure 2. Vehicle model with 2 DOF.

Figure 3. Controller structure in this paper.

3.1 Preview model construction

The vehicle will encounter a variety of emergencies in the
running process. Therefore, in the process of vehicle driving,
the path ahead can be assessed, and the corresponding deci-
sion can be made in advance, so that the vehicle can better
track the desired trajectory. The trajectory tracking control
method proposed by Macadam (2003) has been widely ap-
plied in the longitudinal and lateral control of automobiles.
The basic idea of the optimal preview driver model is to es-
tablish the optimal index function according to the position
of the road ahead, the vehicle state, and the lateral position
deviation in the preview time, and the optimal steering angle
is obtained to control the vehicle to track the ideal trajectory.

In general driver models, the preview time is set as a fixed
value, but under the conditions of high speed, complex tra-
jectory, and road width constraints, driver models with fixed

preview time often find it challenging to complete driving
tasks. Therefore, to improve the adaptability of the driver
model, the preview time is adaptively controlled. A differ-
ent preview time tp is selected, and the adaptive optimiza-
tion function of the preview time is designed according to
the trajectory deviation, boundary distance, yaw angle devia-
tion output by vehicle model, and pavement model in time t1.
The appropriate preview time is selected according to the op-
timization function. It is controlled according to the preview
time at this time. The optimization functions are designed as
follows:

– Trajectory deviation optimization function:

J1 =

t1∫
0

(yt− ye)2dx. (11)

https://doi.org/10.5194/ms-13-713-2022 Mech. Sci., 13, 713–724, 2022



718 B. Wang et al.: Autonomous vehicle trajectory tracking lateral control

– Boundary position optimization function:

J2 =

t1∫
0

∣∣ yt−ye
1

∣∣
1−

∣∣ yt−ye
1

∣∣dx. (12)

– Yaw angle deviation optimization function:

J3 = |ψr−ψd| . (13)

– Dynamic response time optimization function:

J4 =
(
tp− T

′
)2
, (14)

where yt and ye are the target trajectory and the predicted
trajectory, t1 is the model prediction time, 1 is the distance
from the centerline to the boundary, and ψr and ψd are the
yaw angle and the target heading angle at this time. tp is the
previewing time used for the calculation, and T ′ is the time
associated with vehicle steering response characteristic.

The trajectory deviation optimization function calculates
the trajectory deviation within the preview time. The longer
the preview time, the greater the trajectory deviation. The
purpose of the boundary position optimization function is to
constrain the vehicle at a position far from the road boundary
through the optimization function to ensure the safe passage
of the vehicle. By calculating the deviation between the yaw
angle and the target heading angle at the current moment, the
yaw angle deviation optimization function ensures that the
difference between the vehicle direction, and the target tra-
jectory tangent direction at the beginning of the next stage
is slight. This reduces the difficulty of steering control in the
next stage. The longer the preview time, the easier it is for the
vehicle to maintain stability in a particular range, but the pre-
diction accuracy will deteriorate. The dynamic response time
optimization function calculates the difference between the
preview time and the vehicle steering response time, ensur-
ing calculation accuracy while optimizing the preview time.
According to Eqs. (11)–(14), the optimization objective func-
tion is as follows:

J =min(w1J1+w2J2+w3J3+w4J4), (15)

where w1, w2, w3, and w4 are the weight coefficient. The
selection of different weight coefficients corresponds to dif-
ferent driving styles. By optimizing the algorithm, the appro-
priate preview time t can be obtained. After calculating the
optimal preview time, the preview distance can be calculated
according to the current velocity, and the following formula
can calculate the target yaw rate (Chen et al., 2016):

ωd =
2arctan

(
1f
vxt

)
− 2β

t
. (16)

3.2 Design of terminal sliding mode controller

According to Eq. (10), the state equation of the control sys-
tem in this paper can be expressed as follows:

ω̇r = f (ωr)+ b11u+D(t), (17)

where f (ωr)= a11ωr+ a12β, and D(t) is the uncertainty of
the system and external interference, which can be repre-
sented as follows:

D(t)= ã11ωr+ ã12β + b̃11u(t)+ d̃f and |D(t)| ≤ d1. (18)

The control input is the yaw rate error, which can be ex-
pressed as follows:

e = ωr−ωd, (19)

where ωr is the real yaw rate, and ωd is the target yaw rate.
The terminal sliding mode surface function is designed as
follows:

s = e+ c

t∫
0

|e|qsign(e)dt, (20)

where c is the control parameter, and c > 0.
Combining the above equation, the control law can be de-

signed as follows:

u(t)=−b11
[
f (ω)−ω̇d+c|e|

qsign(e)+ks+Dsign(s)
]
. (21)

3.3 Design of the RBF neural network

In Eq. (20), there are time-varying parameters in f (ω), so the
neural network method can be used for the online approxima-
tion of f (ω). The RBF neural network has a good generaliza-
tion ability, simple network structure, and universal approx-
imation characteristics, when compared with BP neural net-
work. It can avoid unnecessary and lengthy calculations and
realize online tuning, so this paper selects the RBF network
to achieve an adaptive approximation of system parameters.
The algorithm of the RBF neural network is as follows:

hj (x)= exp

(
−

∥∥x− cj∥∥2

2b2
j

)
j = 1,2,3,4,5

f̂ (ω)= wTh(x)+ εf, (22)

where x is the network input, cj is the central point coordi-
nate of the Gaussian basis function of the j th neuron in the
hidden layer of the network, bj is the width of the Gaussian
basis function of the j th neuron in the hidden layer, hj is
the hidden layer output, w∗ is the ideal weight of RBF net-
work, y(t) is the RBF network output, and ε is the network
approximation error. The RBF network structure is 2–5–1.

For the RBF network in this paper, we take the con-
trol input e and its derivative ė as the network input, that
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Figure 4. Comparison between actual value and approximate value.

is, x = [e ė]T. The number of hidden layers in the network
is five, and the network output f̂ (ω) is the approximate value
of f (ω). So, the following can be obtained:hj (x)= exp

(
−
‖x−cj‖

2

2b2
j

)
j = 1,2,3,4,5

f̂ (ω)= wTh(x)+ εf,

(23)

where w is the real weight of the RBF network. In order to
adjust the weight adaptive, the following adaptive law is de-
signed:

ẇ =−γ · s ·h(x). (24)

The RBF network for online approximation of time-
varying parameters as shown in Fig. 4.

Figure 4 shows that the RBF neural network designed in
this paper is effective in approximating time-varying param-
eters, and the error between the approximation value and the
actual value is small, which can be used for controller de-
sign. By substituting the designed RBF network output f̂ (ω)
into Eq. (20), the adaptive sliding mode control law of RBF
network can be obtained as follows:

u(t)=−b11
[
f̂ (ω)−ω̇d+c|e|

qsign(e)+ks+Dsign(s)
]
. (25)

3.4 Design of switching gain fuzzy controller

The chattering of the SMC is mainly caused by the sign func-
tion sign(s). Generally, the sign function is changed into sat-
uration to reduce the chattering. In this paper, the fuzzy con-
trol method based on the gain is used to reduce the chattering
of the sliding mode control system.

The actual sliding mode movement trend is shown in
Fig. 5. According to the figure, the fuzzy rule can be set as

Figure 5. In-plane sliding mode state point movement.

Figure 6. Input membership function.

follows: (1) when sṡ < 0, the system state point is approach-
ing the sliding mode surface, and the value of D should in-
crease. (2) When sṡ < 0, the system state point is far away
from the sliding mode surface, and the value of D should
decrease. We know that D is a positive constant. Therefore,
1D is selected as the output of the fuzzy system, and then
the value ofD is estimated by the integral method. The input
sṡ itself already contains the change and rate of change of the
switching function s, and the rate of change of sṡ is not easy
to calculate, so only sṡ is selected as the system input. Based
on the fuzzy rule, the input and output fuzzy set of the sys-
tem can be defined as follows. The domain determination and
membership function selection are shown in Figs. 6 and 7.

sṡ = {NB NM ZO PM PB}
1D = {NB NM ZO PM PB}.

The fuzzy rules are designed as follows:

– Rule 1 – if sṡ is PB, then 1D is PB.

– Rule 2 – if sṡ is NM, then 1D is NM.

– Rule 3 – if sṡ is ZO, then 1D is ZO.

– Rule 4 – if sṡ is PM, then 1D is PM.

https://doi.org/10.5194/ms-13-713-2022 Mech. Sci., 13, 713–724, 2022



720 B. Wang et al.: Autonomous vehicle trajectory tracking lateral control

Figure 7. Output membership function.

Figure 8. The effect of fuzzy logic control algorithm on reducing
chattering.

– Rule 5 – if sṡ is NB, then 1D is NB.

The corresponding results of the input and output are ob-
tained according to the fuzzy rules, and the upper boundary
condition of D̂ is estimated by the integral method.

D̂ =G

t∫
0

1Ddt. (26)

Figure 8 shows the effect of the fuzzy logic control al-
gorithm on reducing chattering. It can be seen from Fig. 8
that the fuzzy logic algorithm has a pronounced effect on the
elimination of chattering. In the whole control process, the
control input chattering of the controller with the fuzzy logic
algorithm is much smaller than that of the controller without
the fuzzy logic algorithm. It is proved that the fuzzy logic
controller designed in this paper is effective at eliminating
chattering of the sliding mode controllers.

So far, the design of the fuzzy RBF neural network termi-
nal sliding mode controller is completed. The control law of
the controller designed in this paper is summarized as fol-

lows: f̂ (ω) is the approximation value of time-varying pa-
rameters which approximate by the RBF neural network al-
gorithm, and D̂ is the estimated value of control gain by the
fuzzy logic algorithm.

u(t)=− b11
[
f̂ (ω)− ω̇d+ c|e|

qsign(e)+ ks

+ D̂sign(s)
]
. (27)

3.5 Stability analysis of the algorithm

According to Eq. (20), we can obtain the following:

ṡ = ė+ c|e|qsign(e)

= ω̇− ω̇d+ c|e|
qsign(e)

= f (ω)+ b11u(t)− ω̇d+ c|e|
qsign(e)+D(t). (28)

We then substitute Eq. (25) into the above equation.

ṡ = f (ω)−
[
f̂ (ω)− ω̇d+ c|e|

qsign(e)+ ks

+ D̂sign(s)
]
− ω̇d+ c|e|

qsign(e)+D(t)

= (f (ω)− f̂ (ω))− ks− D̂sign(s)+D(t)

= f̃ (ω)− ks− D̂sign(s)+D(t)

= w̃Th(x)− εf− ks− D̂sign(s)+D(t), (29)

where w̃Th(x)= wTh(x)−w∗T h(x).
The Lyapunov function is designed as follows:

L=
1
2
s2
+

1
γ
w̃Tw̃. (30)

Taking the derivative of this equation, we have the follow-
ing:

L̇= s · ṡ+
1
γ
w̃T ˙̃w

= s
[
w̃Th(x)− εf− ks− D̂sign(s)+D(t)

]
+

1
γ
w̃T ˙̃w

= w̃T
(
sh(x)+

1
γ
˙̃w

)
+ s

[
− εf− ks− D̂sign(s)

+D(t)
]
. (31)

It can be obtained by substituting Eq. (24) into Eq. (31) as
follows:

L̇= s
(
− εf− ks− D̂sign(s)+D(t)

)
≤ s

(
− εf− D̂sign(s)+D(t)

)
=−(D̂− η) |s| , (32)

where η =D(t)− εf. Since the approximation error of the
RBF network εf is very small, L̇ < 0 can be obtained as long
as D̂ > d1 is guaranteed, so that the system is asymptoti-
cally stable. And when s→∞, L→∞, the system must
be asymptotically stable in a large range, while ensuring that
it is asymptotically stable.
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Table 2. Vehicle model parameters and controller parameters.

Parameter Value Parameter Value

m (kg) 1310 cr (Nrad−1) 100 081
a (m) 1.016 h 0.54
b (m) 1.562 q 0.7
Iz (kgm2) 1536.7 γ 0.5
cf (Nrad−1) 100 081 k 10

Figure 9. Trajectory tracking at different speeds.

4 The simulation analysis

In order to verify the effectiveness of the designed terminal
sliding mode controller, trajectory tracking control under dif-
ferent speeds and limit conditions and different control meth-
ods are compared and simulated. Part of the relevant parame-
ters of the vehicle model and controller are shown in Table 1.
The route of the double shift line condition is selected for the
prescribed route.

First, the influence of speed on the designed sliding mode
controller was observed, and the car was allowed to track
the specified double line movement condition at the speed of
10, 15, and 20 ms−1, respectively. The simulation results are
shown in Figs. 9–12.

It can be seen from Fig. 9 that, under three different speed
conditions, the designed controller can ensure good tracking
of the pre-set track at three different speed conditions. With
the increase in speed, the lateral deviation of the vehicle in-
creases gradually, but it can still guarantee the basic consis-
tency with the pre-set track direction. With the increase in
vehicle speed, the trend of vehicle lateral acceleration, steer-
ing wheel angle, and yaw rate is basically similar, with only
a numerical increase. Although there is some chattering, the
fluctuation is slight, which meets the lateral control require-
ments of the vehicle. The above simulation results can ver-
ify that the designed controller can meet the requirements

Figure 10. Acceleration at different speeds.

of vehicle trajectory tracking and lateral control at different
speeds.

In order to verify the effectiveness of the controller under
low road friction coefficient, the speed was set to 20 ms−1,
and the double line change was simulated on the road surface
with road friction coefficients of 0.8, 0.6, 0.4, and 0.2. The
simulation results are as shown in Figs. 13–16.

As shown in Figs. 13–16, the controller’s accuracy de-
creases with the decrease in the road friction coefficient. Af-
ter turning back to the front, the vehicle has a specific devi-
ation, but it can also keep on the prescribed track. Accord-
ing to the variation law of lateral acceleration and yaw rate,
the lateral acceleration and yaw rate decrease and have cer-
tain fluctuations when the road friction coefficient decreases.
This may be due to the tires not providing enough lateral
force. Although the control effect is slightly chattering, the
chattering amplitude is small, and the lateral deviation does
not increase significantly. Therefore, the designed controller
can effectively track and control the vehicle lateral when a
low road friction coefficient is present.

In order to verify the difference in the control effect be-
tween the designed fuzzy RBF neural network terminal slid-
ing mode controller and other controllers, this paper com-
pares the control effect between traditional PID controller,
the terminal sliding mode controller(T-SMC), and fuzzy RBF
neural network terminal sliding mode controller(T-Fuzzy-
RBF-SMC). The speed is set to 15 ms−1, and the road fric-
tion coefficient is 0.8. The simulation results are shown in
Figs. 17–20.

Figures 17–20 show that the three control methods effec-
tively carry out vehicle trajectory tracking and lateral control.
The controller designed in this paper has a better control ef-
fect than the traditional PID in trajectory tracking. It shows
that the controller designed in this paper has a specific opti-
mization in the control effect. Compared with the controller
designed in this paper, the control effect of T-Fuzzy-RBF-
SMC is better than that of T-SMC. The control variables
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Figure 11. Steering angle at different speeds.

Figure 12. Yaw rate at different speeds.

Figure 13. Trajectory tracking of different friction coefficients.

Figure 14. Acceleration of different friction coefficients.

Figure 15. Steering angle of different friction coefficients.

Figure 16. Yaw rate of different friction coefficients.
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Figure 17. Trajectory tracking of different controllers.

Figure 18. Acceleration of different controllers.

of acceleration, steering wheel angle, and yaw rate are op-
timized, as compared with the T-SMC algorithm. Therefore,
the fuzzy RBF neural network terminal sliding mode con-
troller designed in this paper has a better control effect than
the other two controllers.

5 Conclusion

This paper proposes a fuzzy RBF neural network terminal
sliding mode controller for trajectory tracking control and
lateral control of electric vehicles. A terminal sliding mode
controller is used to design the controller, and the RBF neu-
ral network method is used to adaptive approximation of sys-
tem parameters. In order to eliminate chattering, a fuzzy al-
gorithm is designed for fuzzy control of control gain. The
designed controller is verified by simulation. The simulation
of different speeds, different road friction coefficients, and
different controllers verified that the controller designed in
this paper could effectively carry out trajectory tracking and
lateral control of electric vehicles and eliminate chattering

Figure 19. Steering angle of different controllers.

Figure 20. Yaw rate of different controllers.

to a certain extent. In future research, we hope to improve
the control algorithm and consider more uncertain parame-
ters such as road conditions, changes in the centroid position
caused by changes in vehicle quality, etc. At the same time,
we also need to verify the algorithm designed in this paper on
the test bench and the actual vehicle to ensure its timeliness.
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