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Abstract. Laparoscopic arm and instrument arm control tasks are usually accomplished by an operative doctor.
Because of intensive workload and long operative time, this method not only causes the operation not to be flow,
but also increases operation risk. In this paper, we propose a method for automatic adjustment of laparoscopic
pose based on vision and deep reinforcement learning. Firstly, based on the Deep Q Network framework, the raw
laparoscopic image is taken as the only input to estimate the Q values corresponding to joint actions. Then, the
surgical instrument pose information used to formulate reward functions is obtained through object-tracking and
image-processing technology. Finally, a deep neural network adopted in the Q-value estimation consists of con-
volutional neural networks for feature extraction and fully connected layers for policy learning. The proposed
method is validated in simulation. In different test scenarios, the laparoscopic arm can be well automatically
adjusted so that surgical instruments with different postures are in the proper position of the field of view. Sim-
ulation results demonstrate the effectiveness of the method in learning the highly non-linear mapping between
laparoscopic images and the optimal action policy of a laparoscopic arm.

1 Introduction

In recent years, minimally invasive surgery (MIS) has be-
come more and more important. MIS has been applied in var-
ious surgeries, including brain, heart, and liver (Chang and
Rattner, 2019). This is due to its many benefits in medical
practice. In addition to obvious less invasiveness, there are
many advantages such as much less postoperative pain and
blood loss. MIS also brings advantages of shorter recovery
time and less infective rate, which make them beneficial to
both inpatients and clinicians (Davies, 1995).

In a typical celiac minimally invasive robot-assisted
surgery procedure, the surgeon is needed to control two or
three instrument arms (Pandya et al., 2014). A laparoscopic
arm is usually controlled by the doctor themselves or by an
assistant. When the surgeon controls both instrument arm
and laparoscopic arm, the surgeon must frequently stop to
change the laparoscopic viewpoint, which causes the opera-
tion to be unstable and not smooth. While directing an as-
sistant to control the laparoscopic arm leads to increased op-

eration time, with a laparoscopic pose automatic adjustment
system, the surgeon will not have to manually move the la-
paroscopic arm in a robot-assisted surgery, and the expert as-
sistant can be eliminated.

At present, many researchers have studied that in the
method of laparoscopic pose adjustment, which can be clas-
sified as follows.

1. The eye-tracking-based method captures human eye
movements through the eyeball positioning device, con-
trols camera movement, and adjusts the camera’s post
and field of vision. Ali et al. (2008) developed an au-
tonomous eye-gaze-based laparoscopic positioning sys-
tem, which can keep the user’s gaze point region at the
centre of the laparoscope viewpoint. Cao et al. (2016)
developed a laparoscopic post-adjustment system based
on pupil variation using a support vector machine classi-
fier (SVM) and a probabilistic neural network classifier
(PNN).

2. The kinematics-based method acquires pose informa-
tion and vector information such as velocity and accel-
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eration of surgical instrument through a sensor and then
adjusts the laparoscopic pose using the kinematic model
relationship. Sandoval et al. (2021) made the laparo-
scopic posture able to be automatically adjusted based
on the kinematics model and motion data of the surgi-
cal instruments. Yu et al. (2017) proposed a method for
automatically adjusting the position of the laparoscopic
window based on the kinematics model of the laparo-
scopic arm and surgical field parameters.

3. The vision-based method obtains post and trajectory in-
formation of the surgical instrument from laparoscopic
imaging through image-processing and visual-tracking
technology and then deduces the moving image rela-
tionship between the laparoscope and the laparoscopic
arm. Shin et al. (2014) proposed a 3D instrument-
tracking method using a single camera, which can ob-
tain the 3D positions, roll angle, and grasper angle of
the laparoscopic instrument with markers. Zhao et al.
(2017) proposed a 2D/3D tracking-by-detection frame-
work, which uses line features to describe the shaft via
the RANSAC scheme and uses special image features
to depict the end-effector based on deep learning.

4. Other methods: Franz et al. (2014) describe the basic
working principles of electromagnetic (EM) tracking
systems and summarize the future potential and limi-
tations of EM tracking for medical use. Zinchenko et
al. (2015) proposed using combined motion of surgical
instruments to suggest robotics arm movements so that
the camera can be repositioned, which is called “flag
language”.

We present a novel method for laparoscopic pose auto-
matic adjustment based on machine vision and deep rein-
forcement learning (Kober et al., 2013; Sekkat et al., 2021;
Bohez et al., 2017; Zhang et al., 2016) in this paper. The la-
paroscopic arm will be automatically adjusted according to
the condition of the surgical instrument to ensure that the
surgical instruments maintain the proper position and size in
the operation field.

2 Preliminaries

A celiac minimally invasive robot-assisted surgery system
generally consists of a robotic arm (laparoscopic arm) with a
laparoscope and two or three robotic arms (instrument arm)
with a surgical instrument at the end, as shown in Fig. 1a.

The structure of the surgical robotic arm used in this pa-
per is shown in Fig. 1b. The first four joints form the passive
parts that are used for robotic arm pre-operative placement.
The last four joints are active parts. During the operation, the
doctor controls the active part through a master manipulator
to adjust the posture of the end surgical instrument or laparo-
scope.

3 Laparoscopic pose automatic adjustment method

In this section, we give a total introduction of our method
frame for laparoscopic pose automatic adjustment. The
method is composed of two parts: the image processing and
laparoscopic pose adjustment, as shown in Fig. 2. The former
is divided into object detection before operation and track-
ing to obtain the position and size of the surgical instrument
as pose parameters and then determine whether the laparo-
scopic pose needs to be adjusted through movement decision.
Finally, we train a motion controller which is composed of
a deep neural network (DNN) and reinforcement learning,
taking the laparoscopic image as input and the outputting
laparoscopic arm action. It controls the adaptive motion of
the laparoscopic arm so that the surgical instrument is in the
proper position of laparoscopic vision.

4 Movement decision

In this section, we first describe how to extract features of
surgical instruments before operation, and then we use a
scale-adaptive algorithm to track surgical instruments. Fi-
nally, we describe the movement decision module to deter-
mine whether the laparoscope requires movement regulation.

As shown in Fig. 3, we add a simple and specific marker
in the surgical instrument. We can indirectly obtain the pose
of the surgical instrument by detecting the pose character-
istics of the marker, which can avoid the disadvantages of
more time and workload for identifying the whole surgical
instrument. The design of the marker takes advantage of the
rotation invariance of the circular feature. According to the
mapping relationship, the circle becomes an ellipse during
the rotation, and its long axis size remains unchanged. So, the
position information of the surgical instruments is replaced
with the coordinates of the circle centre, and the size of the
surgical instruments is replaced with the long axis of the cir-
cular markers.

Through the relevant image-processing technology, the
pose parameters of the surgical instruments can be obtained.
First, we obtain the greyscale probability density map of the
image by back projection. Then, we can calculate the elliptic
equation using the method of ellipse fitting by image inertia
moment and obtain centre coordinates and the elliptic long
axis value.

To quickly extract the post parameters of the surgical in-
strument, we need to quickly track the surgical instruments
to obtain the adaptive size region of interest. The continu-
ously adaptive mean shift (CAMShift) (Comaniciu and Meer,
2002) algorithm through OpenCV implementation for track-
ing was used in this paper. The CAMShift algorithm skilfully
exploits the mean-shift algorithm by the adaptive region size
adjustment step.

Before controlling the laparoscopic arm movement, it is
judged based on the visual field state of the surgical instru-
ment and the set motion decision conditions for whether ex-
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Figure 1. The MIS robotic system and its robotic arm structure. (a) Celiac minimally invasive robot-assisted surgery system. (b) The
structure of the surgical robotic arm.

Figure 2. Laparoscopic pose automatic adjustment method.

Figure 3. Surgical instrument marker setting.

ercise is required. Specific parameters are as shown in Fig. 4.
In this paper, in order to simplify the simulation environment,
it is assumed that there is only one surgical instrument in the
laparoscopic field of view.

Where the elliptic long-axis value d is used to indicate
the relative size of the surgical instrument, the centre coor-
dinate (x,y) shows the position of the surgical instrument in
the field of view. Tl and Th are the lower threshold and up-
per threshold of the surgical instrument size. Tx and Ty are
thresholds of the surgical instrument position. When any one
of these thresholds is exceeded, the laparoscopic arm moves.

Setting these thresholds can effectively avoid laparoscopic
sensitivity to surgical instrument movement.

5 Laparoscopic motion control based on deep
reinforcement learning

In this work, we use deep reinforcement learning to map the
laparoscopic image end to end to the joint motion of the la-
paroscopic arm. In Sect. 5.1 the Markov model of laparo-
scopic visual field adjustment is introduced, in Sect. 5.2 the
network structure of the Deep Q Network (DQN) (Mnih et
al., 2015) is introduced, and in Sect. 5.3 the reward function
and network training algorithm are introduced.

5.1 Markov model of laparoscopic visual field
adjustment

The laparoscopic arm control system makes action deci-
sions based only on the laparoscopic field of view at the
current moment, making the active joints of the laparo-
scopic arm move and obtaining a new laparoscopic field
of view for the next step of motion control until the au-
tomatic adjustment task of the laparoscopic field of view
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Figure 4. Threshold setting.

Figure 5. Markov model of laparoscopic visual field adjustment.

is completed, as shown in Fig. 5. Therefore, the problem
of automatic adjustment of laparoscopic posture can be ex-
pressed as the Markov decision process (MDP), a common
model of reinforcement learning (RL) (Mnih et al., 2013;
Silver et al., 2014; Gu et al., 2016; Mnih et al., 2016). An
MDP comprises a five-tuple {S,A,R,P,γ }. Here S is a fi-
nite set of states, A is a finite set of actions, P is the transi-
tion probability of states, R : S×A× S→ R is the reward
function, and γ is a discount factor. The goal of an RL
agent is to learn the strategy π = p(a|s) to maximize the to-
tal discounted reward G(t)=

∑
∞

k=1γ
kRt+k+1. The action-

value function predicts all future rewards when perform-
ing the action a at the state s according to the strategy
π :Qπ (s,a)= Eπ [Gt |St = s,At = a]. The optimal strategy
can be obtained by solving the optimal action-value function:
Q∗(s,a)= Ras + γ

∑
s′∈SP

a
ss′

maxQ∗(s′,a′).

5.2 Deep Q Network

In this work, we use a deep neural network to calculate the
Q(s,a;θi) value for performing action a in a specific state s,
and the optimal Q∗(s,a;θi) value is obtained by optimizing
the neural network parameter θ . This algorithm that com-
bines deep learning and reinforcement learning to achieve
end-to-end learning from state to action is the DQN, which
can be described as a pioneering work in deep reinforcement
learning. When the state s′ and Ras value obtained by per-
forming action a in state s are unique, the target Q value

output by the neural network in the current iteration i can
be expressed as yi = r + γmaxQ(s′,a′,θi). DeepMind re-
leased an article (Mnih et al., 2015) in Nature, introducing
the concept of a target network to further break the asso-
ciation of the target Q value and the current Q value. The
concept of a target network with weight θ− uses the old
deep neural network to get the target Q value. Here are
the optimization goals for the DQN with a loss function
Li(θi)= E[(r + γmaxa′Q(s′,a′;θ−i )−Q(s,a;θi))2

].
The DQN uses the evaluation network to calculate

the Q(s,a;θi) and the target network to calculate the
Q(s′,a′;θ−i ). The two networks have the same structure, as
shown in Fig. 6. The network uses images obtained from
laparoscopy as input, uses convolutional neural networks
(CNNs) (Long et al., 2015) to extract features, and uses fully
connected (FC) layers for strategy learning. To reduce the
size of the feature map and increase the non-linearity, each
convolutional layer is connected with a maximum pooling
layer and a Relu layer. The image is resized to 128×128 be-
fore being forwarded into the network, and it finally obtains a
4×4×64 visual feature map through a series of convolution
and pooling operations.

Then the flattened visual features are fed into policy learn-
ing networks on the upper side which consist of two fully
connected layers of 256 neurons and 6 neurons respectively.
The six neurons in the output layer are the Q values of the
six actions of the laparoscopic arm. The six actions are the
joint variables of rotary joints 5 and 6 and prismatic joint
8 increasing and decreasing. The rotary joint angle increas-
ing/decreasing step is constant at 2◦, and the prismatic joint
displacement is 10 mm. The policy learning network on the
lower side determines whether the laparoscopic arm needs to
be moved during the testing. The specific network configura-
tion is shown in Table 1.

5.3 Design of the reward function and the network
training algorithm

The reward of each action is determined according to the co-
ordinates (x,y) and relative size of the surgical instrument
(z), as shown in Eqs. (1) and (2):

reward=



3 if |x− x0| ≤
tx
2 and |y− y0| ≤

ty
2

and |z− z0| ≤
tz
2 ,

−3 if |x− x0| ≤
mx
2 or |y− y0| ≤

my
2 ,

or |z− z0| ≤
mz
2

rewardbuff others,

(1)

rewardbuff =∑
i=x,y,z

λi

(
2

mi − ti
×max

(
abs(i− i0),

ti

2

)
+

ti

(mi − ti)

)
, (2)

where x0 and y0 are the coordinates of the centre point of
the image, and t0 is the set standard size of the surgical in-
strument. tx, ty, tz represents the tolerable error. When x,y,z
is within the tolerable error range, the surgical instrument is
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Figure 6. The network structure for the actor estimation.

Table 1. Network architecture configuration.

Layer Type Size Input size Filter number Output size

Input Resize – 512× 512× 3 – 128× 128× 3
Layer 1 Conv+pool+relu 3× 3 128× 128× 3 16 64× 64× 16
Layer 2 Conv+pool+relu 3× 3 64× 64× 16 16 32× 32× 16
Layer 3 Conv+pool+relu 3× 3 32× 32× 16 32 16× 16× 32
Layer 4 Conv+pool+relu 3× 3 16× 16× 32 32 8× 8× 32
Layer 5 Conv+pool+relu 3× 3 8× 8× 32 64 4× 4× 64
Layer 6 FC+relu – 1024 256 256
Layer 7 FC – 256 6 6
Layer 8 FC – 1024 128 128
Layer 9 FC – 128 2 2

in the correct position. mx,my,mz represents the maximum
error. When x,y,z is outside the maximum error range, the
surgical instrument is in the wrong position. If the surgical
instrument is in the correct position and the wrong position,
the task is terminated.

We train the DQN model in a simulation environment
to obtain the best network parameters. The training pro-
cess is shown in Algorithm 1. At the beginning of each
epoch, we get the initial state. According to the state, we
can calculate the reward and judge whether the task is ter-
minated. When the task continues to execute, the model will
give a specific action based on the current state: action=
argmaxaQ(s,a,θi). The simulated environment has 1−
e-greedy probability of executing this specific action and e-
greedy probability of randomly choosing an action to exe-
cute to explore more states. The simulation environment gets
a new state after completing an action.

The current state, action, new state, and reward corre-
sponding to the new state are stored in the memory pool as a
set of data. When the simulation environment performs sev-
eral actions, we will train the model, and when the model
performs training several times, the parameters of the target
network are replaced with the parameters of the evaluation
network.

6 Simulation results and discussion

To verify the feasibility of the DQN-based method in learn-
ing laparoscopic pose automatic adjustment, we performed
some experiments in simulation scenarios. The simulation
settings are described in Sect. 6.1, and the simulation results
are reported in Sect. 6.2.

6.1 Simulation settings

In the paper, we used the crossed-platform robotics simula-
tor V-REP (Rohmer et al., 2013) to set up the simulation and
test scenarios to validate our method. As shown in Fig. 7,
the scene consists of a laparoscopic arm and a surgical in-
strument. A visual sensor is attached to the laparoscopic arm
manipulator and can capture RGB images. The laparoscopic
arm structure is shown in Sect. 2, in which the active joints 5,
6, and 8 are in the position control mode. We turn the back-
ground colour to red in the software to simulate a real sur-
gical environment. The laparoscopic arm is initialized to the
same pose and the surgical instrument is also initialized to
the centre of the laparoscopic vision at the beginning of each
training round. The surgical instrument moves randomly in
the three-dimensional space, and the laparoscopic arm per-
forms a series of actions to make the surgical instrument re-
turn to the correct position in the field of view.
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Figure 7. V-REP scene.

V-REP offers a remote application programming interface
(API) allowing us to control a simulation from an external
application. The remote API on the client side is available
for many different programming languages. We implement
our method in Python using the TensorFlow library.

The network weight parameters are trained using RM-
Sprop optimization with the initial learning rate of 0.002. The

Table 2. Success rate in different test scenarios (%).

Test scenario Surgical instrument trajectory

Random Line Curve

Scenario A 100 100 100
Scenario B 100 100 100
Scenario C 100 100 100

reward discount factor γ is set to 0.9, e-greedy is set to 0.9
and the batch size is set to 64. The experience replay mem-
ory size is set to 20 000. In the training process, the memory
pool first collects the experience of the first 200 steps, and
then evaluated network parameters are updated every 5 steps.
Whenever the evaluation network is updated 200 times, the
parameter value of the evaluated network is assigned to the
target network. The agent is trained for 8000 epochs.

6.2 Simulation results

In this section, first, we give some parameter curves in the
training phases. Secondly, we tested the model in different
states to verify the robustness of the model. Finally, we anal-
ysed some failure cases.

The success rate in every 100 epochs and the average value
of R (total reward per epoch) for every 100 epochs are used
as indicators to detect the training situation of the model, as
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Figure 8. The success rate and the average value of R for all 100 epochs. (a) Success times per 100 epochs. (b) Average value of R per 100
epochs.

Figure 9. The real surgical image as the background.

Figure 10. Laparoscopic field of view in different scenarios.

shown in Fig. 8. This curve is drawn based on the average
value of five experiments. After 5000 epochs of training, the
success rate is close to 100 %, and the average value of R
converges to around −2. This shows that the model param-
eters have converged, and the task of tracking surgical in-
struments and adjusting the visual field has been completed.
After the model training is completed, the model parame-
ters are fine-tuned in a simulation environment with different
backgrounds and the marker removed to adapt to the complex
surgical environment.

To simulate the complex surgical environment, three dif-
ferent test scenarios are set up. Scenario A uses the train-
ing scene as the test scene. Scenario B uses the real surgi-
cal image as the background, as shown in Fig. 9. Scenario C

uses the training scene but removes the marker on the sur-
gical instruments. Figure 10 shows the laparoscopic field of
view in different scenarios. We conducted 5000 experiments
in each scenario. In each experiment, the position and size
of surgical instruments in the laparoscopic field of view were
random. Scenarios A, B, and C achieved 99.88 %, 99.78 %,
and 100 % success rates respectively. Figure 11 shows the
change process of the laparoscopic field of view in the three
scenarios. The experimental results show that the method is
less affected by the experimental environment, and when the
marker is blocked, it can also achieve the expected goal well.
Therefore, our model can be well adapted to the complicated
surgical environment during the surgery.

It can be seen from Fig. 12a that the method can adjust
the pose of the laparoscopic arm so that the surgical instru-
ments in different postures are in the appropriate field of vi-
sion for the doctor. The successful pose adjustment results
from various random movements of the surgical instrument
demonstrate the performance of the learning method and its
generalization capability. We also analysed some failed cases
in Scenario A: when the initial surgical instrument position
is set to the extreme condition of the visual field, the auto-
matic adjustment task of the laparoscopic visual field will
fail, as shown in Fig. 12b. In the initial posture of the surgi-
cal instrument shown on the left-hand side of Fig. 12b, the
laparoscopic arm needs more than 40 steps to make the sur-
gical instrument return to the correct position in the field of
view. On the right-hand side of Fig. 12b, the laparoscope is
moved directly to the failure state to avoid the total reward
value being too small.

To simulate the actions of doctors in real surgery, we set
up three different trajectories of surgical instruments: ran-
dom motion, line motion, and curve motion. We conducted
500 experiments on each trajectory in each test scenario. In
each experiment, if the surgical instrument is always in the
correct position in the laparoscopic view, the experiment is
considered successful. Table 2 shows the success rate of the
task. In these scenarios, the laparoscopic arm can move the
surgical instrument into a suitable field of view. It proves that
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Figure 11. The adjustment process of the laparoscopic visual field.

Figure 12. Visualization of test results. (a) Different pose testings of the surgical instrument. (b) Results of mission failure.

the method is widely effective and can meet the needs of doc-
tors during surgery.

7 Conclusions

In this paper, the effectiveness of the proposed methods is
demonstrated by the simulation results. This method based
on machine vision and deep reinforcement learning uses con-
volutional neural networks to extract visual features. Then
the related reward function is set up to train a policy learn-
ing network to complete the non-linear mapping of a laparo-
scopic image to the optimal action of a laparoscopic arm.
The proposed pose adjustment system does not require cam-
era calibration because it does not need a robot and camera
mathematical model.

In addition, there are many aspects to be developed in the
future. (1) This article did not experiment in the actual envi-
ronment because of the expensive cost of a real experiment,
so the next step is to develop a model-based data-efficient
robot-tracking system to use in the actual surgical procedure.
(2) The best view of laparoscopy is simple in this paper. Dur-
ing the operation, the surgeon must not only pay attention
to surgical instruments, but also focus on the human body.
So, the related reward function needs further design. (3) This
article examines the issue of single surgical instrument track-
ing, but multiple surgical instruments may be required during

surgery. The next step is to study the issue of laparoscopic
pose automatic adjustment for multiple surgical instruments.
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