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Abstract. The isomorphism identification of the kinematic chain (KC) based on graph theory definition has no
advantage in efficiency, especially when the number of links in the KCs is large. The topological characteristic
constants for isomorphism identification, such as the power value sequence (PVS), least distance matrix sequence
(LDMS), and loop number (LN), are proposed. The fourth PVS, the LDMS, and the LN are compared and
arranged in descending order, to form a strong complementary chain, which can identify KCs of at least 15 links
with 4 degrees of freedom (DOF). The method is applied to the complete atlas of the following: 8-link 1 DOF,
9-link 2 DOF, 10-link 1 DOF, 12-link 1 DOF, 13-link 2 DOF, and 15-link 4 DOF planar single-joint KCs, 6-link
1 DOF and 7-link 1 DOF planetary gear trains, 8-link 1 DOF planar multiple joint KCs, and contracted graphs
with up to six independent loops. All results are in agreement with the reported ones in the literature. Thus, the
proposed method possesses good versatility and has been verified as being reliable and efficient.

1 Introduction

Isomorphism identification is a key factor affecting the effi-
ciency and accuracy of the comprehensive configuration of
the kinematic chain (KC; Yan, 1992). Although the isomor-
phism identification is accurate by using the definition of
graph theory, a large number of computations will be gen-
erated, especially when the number of links exceeds 10 (Sun
et al., 2020). Scholars have conducted various investigations
on isomorphism identification by using the topological char-
acteristic constants of KCs to improve the identification effi-
ciency.

If one-to-one mapping f is available for the two
graphs G1 = (V1E1) and G2 = (V2E2), and the expression
uv ∈ V1 [u,v] ∈ E1⇔

[
f (u) ,f (v)

]
εE2 is satisfied, then the

graphs G1 and G2 are isomorphic. Ding and Huang (2009)
proposed the specified matrix-based method with a lower
computational complexity than that of McKay for isomor-
phism identification. However, the judging efficiency of their
method decreases with the increase in the number of links
(Zeng et al., 2014). Sun et al. (2020) proposed a set of iso-
morphism identification methods based on graph theory defi-
nitions of isomorphism, which has remarkable advantages in
the rapid identification of the isomorphism of multilink KCs.

However, the judgment will become complicated when both
graphs have a large number of similarities.

In addition to the definition method, there are also
many characteristic constants methods; for example, Uicker
and Raicu (1975) proposed an isomorphism identification
method based on the characteristic polynomials of adjacent
matrices and emphasized the effectiveness of this method
to 1–2 DOF PSKCs (planar simple joint kinematic chains)
within the 10 links. Sunkari and Schmidt (2006) provided
the correct isomorphism identification method based on the
eigenvalue and eigenvector of the adjacency matrix. Al-
though this method was reliable for 14-link KCs within
3 DOF, the reliability could not be ensured when the num-
ber of KCs is higher than 14 links. Rao and Raju (1991)
first introduced the concept of the Hamming distance in the
field of information and communication to the mechanism.
Sun et al. (2017) improved the Hamming matrix to identify
the isomorphism of KCs. However, the Hamming method is
an unnecessary and insufficient condition for isomorphism.
Moreover, the method is still far from being considered a
candidate for computerized synthesis (Mruthyunjaya, 2003).
Ambekar and Agrawal (1986) proposed a coding-based iso-
morphism identification method. Considering the simplicity
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of the method, scholars have conducted extensive research
on code-based methods (Shin and Krishnamurty, 1993; Tang
and Liu, 1993; Rajneesh and Sunil, 2018, 2019). Theoreti-
cally, coding-based isomorphic identification methods have
coding uniqueness and decodability. Nevertheless, most of
the proposed methods can only effectively identify KCs
within 10 bars or fewer (Mruthyunjaya, 2003). Yadav et
al. (1996) proposed a method based on the link multiplic-
ity distance matrix for isomorphism. Vinjamuri et al. (2017)
detected the isomorphism of the linkage and geared KCs us-
ing the concept of net distance in graph theory. Although the
reliability of this method was reported for 15-link KCs with
4 DOF, the counterexamples have been found at 10-link KCs.

Overall, most of the isomorphism identification methods
in the literature require complex computations, and some
methods are unreliable when applied to KCs with a large
number of links. Moreover, most existing methods have poor
versatility; hence, different algorithms are needed for differ-
ent kinds of KCs. Thus, the topological characteristic con-
stants for isomorphism identification are also proposed to
help identify KCs with at least 15 links with 4 DOF.

The rest of this paper is organized as follows. Section 2
proposes the concept of the power value sequence (PVS),
least distance matrix sequence (LDMS), and loop numbers
(LNs), which is applied for isomorphism identification. Sec-
tion 3 presents examples to verify the computational com-
plexity and effectiveness of the methods. Section 4 applies
the methods to common KCs. Section 5 identifies the result
analysis. Section 6 concludes the paper.

2 Isomorphism identification

2.1 Extraction of topological characteristic constants

The number of paths taking k steps from one vertex to other
vertices in loops, the shortest distance from one vertex to
other vertices, and the number of loops starting at one vertex
can all be extracted from the topological graph. Figure 1b
shows the following: the number of paths taking four steps
from vertex 4 to vertex 5 is 4, that is, 4-2-3-1-5, 4-2-3-1-5,
4-3-2-1-5, and 4-3-2-1-5 (the similarity of the paths is due
to edge 15, which is a parallel edge), the least distance from
vertex 4 to reach vertex 5 is 1 (edge 45 is assigned 1), and
the number of loops starting at four vertices is 12, that is, 4-
2-1-3-4, 4-2-1-5-4, 4-2-3-1-5-4, 4-2-3-4, 4-3-1-2-4, 4-3-1-5-
4, 4-3-2-1-5-4, 4-3-2-4, 4-5-1-2-3-4, 4-5-1-2-4, 4-5-1-3-2-4,
and 4-5-1-3-4. There are three characteristic constants of KC
extracted by the aforementioned phenomena.

2.1.1 Power of the adjacency matrix

In graph theory, the kth power of the adjacency matrix
An×n is the multiplication of the general matrix [A]kn×n =[
a

(k)
ij

]
n×n

, where a(k)
ij represents the number of paths for ver-

tices vi and vj to reach each other through the k edges.

Definition 1. The row elements of the power of the adja-
cency matrix are sorted in descending order (i.e., the power
value sequence of the adjacency matrix (PVS) Aks ).

Definition 2. The values of each row of PVS are compared
and arranged in descending order (i.e., PVSD Akt ).

For example, the fourth power of the adjacency matrix
A4, the fourth PVS A4

s , and the fourth PVSD A4
t of the KC

(Fig. 1c) are, respectively, presented as follows:

A4
=


54 15 15 38 6
15 24 23 12 30
15 23 24 12 30
38 12 12 27 6
6 30 30 6 43


1
2
3
4
5

,

A4
s =


54 38 15 15 6
30 24 23 15 12
30 24 23 15 12
38 27 12 12 6
43 30 30 6 6


1
2
3
4
5

, and

A4
=


54 38 15 15 6
43 30 30 6 6
38 27 12 12 6
30 24 23 15 12
30 24 23 15 12


1
5
4
2
3

. (1)

2.1.2 Least distance matrix

The least distance matrix, in which two points on the graph
must take at least a few steps to reach each other through
one path, is often used in transportation network analysis.
The connected weighting graph is G(V,E), the vertices set
is V = {v1,v2, . . .vn}, the edges set isE = {e1,e2, . . .en}, and
the weight on the edge vivj is f (vivj ), where ij = 1,2, . . .n.
The weight matrix W = (dij )n×n, that is,

dij =


f (vivj ) existing edge between vertices

i and j
∞ no edge between vertices i and j
0 i = j.

(2)

Definition 3. The row elements of the least distance matrix
are sorted in descending order (i.e., LDMS Dmin

s ).
Definition 4. The values of each row ofDmin

s are compared
and arranged in descending order (i.e., LDMSD Dmin

t ).
For example, the least distance matrix D, the LDMSDmin

s ,
and the LDMSDDmin

t of the KC (Fig. 1c) are, respectively,
presented as follows:
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Figure 1. (a) A 10-link 1 DOF KC, (b) topological graph, and (c) contracted graph.

D=


0 1 1 2 2
1 0 1 1 2
1 1 0 1 2
2 1 1 0 1
2 2 2 1 0


1
2
3
4
5

,

Dmin
s =


2 2 1 1 0
2 1 1 1 0
2 1 1 1 0
2 1 1 1 0
2 2 2 1 0


1
2
3
4
5

, and

Dmin
t =


2 2 2 1 0
2 2 1 1 0
2 1 1 1 0
2 1 1 1 0
2 1 1 1 0


5
1
2
3
4

. (3)

2.1.3 Loop number matrix

The loop search method is used to obtain the loop number
(LN) of each vertex and given in matrix form (i.e., LN).

Definition 5. The row elements of the loop number matrix
are sorted in descending order (i.e., LND LNd).

For example, the loop number LN and LNd of the KC
(Fig. 1c) are presented as follows:

LN= LNd =


7
6
6
6
5


1
2
3
4
5

. (4)

2.2 Isomorphism identification algorithm

The core idea of the isomorphism identification algorithm is
to combine the four PVSDA4

t , LDMSDDmin
t , and LND LNd

to form a composite characteristic constant (CCC, and writ-
ten as 3C). The 3C is denoted as follows:

3C=
[
A4

t

∣∣∣Dmin
t

∣∣∣ LNt

]
. (5)

For example, the 3C of Fig. 1c is shown in Eq. (6).

3C=

[54 38 15 15 6
43 30 30 6 6
38 27 12 12 6
30 24 23 15 12
30 24 23 15 12

∣∣∣∣∣
2 2 2 1 0
2 2 1 1 0
2 1 1 1 0
2 1 1 1 0
2 1 1 1 0

∣∣∣∣∣
7
6
6
6
5

]
. (6)

Figure 2. (a) A 10-link PSKC (1) and (b) 10-link PSKC (2).

If the 3C of the two graphs is the same, then the two graphs
are judged to be isomorphic; otherwise, they are judged to be
non-isomorphic. The main steps of the detection algorithm
are illustrated as follows.

Step 1. Calculate the fourth power of the adjacency ma-
trix An×n and determine the A4

t . If the parameters A4
t of the

two graphs are different, then they are non-isomorphic, and
the next graph is considered. Otherwise, the next step is per-
formed.

Step 2. Determine the Dmin
t . If the Dmin

t parameters of the
two graphs are different, then they are non-isomorphic; oth-
erwise, the next step is performed.

Step 3. Determine the LNt. If the LNt parameters of the
two graphs are different, then they are non-isomorphic; oth-
erwise, they are isomorphic. The next graph is then consid-
ered until all candidate graphs are identified.

3 Illustrative examples

The proposed method is tested on different kinds of KCs,
including PSKCs, PMKCs (planar multiple joint kinematic
chains), PGTs (planetary gear trains), and contracted graphs
of KCs, to prove its versatility. The illustrative examples are
provided as follows.

3.1 Examples of PSKCs

Example 1. There are two 10-link PSKCs considered in
Figs. 2a and 4b.

The adjacency matrices of Fig. 2a and b are respectively
entered into the isomorphism identification programs. The
A4

t of the two graphs are different, as shown in Eq. (7). Thus,
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Figure 3. (a) A 28-link PSKC (1) and (b) 28-link PSKC (2).

Figure 4. (a) An 8-link KC with two multiple joints (1) and an
(b) 8-link KC with two multiple joints (2).

the two graphs are considered non-isomorphic.

A4
t(a)−A

4
t(b) =


0 0 1 −1 0 0 −1 0 1 0
1 0 0 0 1 3 0 1 1 1
0 0 0 −1 −1 0 0 1 1 1
0 0 0 0 −1 0 0 0 1 1
−1 0 0 −1 −1 −4 −1 0 1 −1
0 1 1 −1 0 0 −1 1 1 0
0 −1 0 −1 −1 1 0 0 1 0
0 −1 0 −1 0 1 0 1 1 0
−1 0 −1 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 . (7)

The methods of Yadav et al. (1996) and Vinjamuri et
al. (2017) are applied to Example 1. Figure 4a and b have
the same string, that is, 178-2(20)-2(19)-4(17)-2(16). There
two graphs identified as being isomorphic, according to the
rule. This result is contradictory to that presented in this pa-
per. The least distance matrix is not a global characteristic
constant.

Example 2. There are two 28-link PSKCs considered in
Fig. 5a and b, as discussed in Ding and Huang (2009).

The adjacency matrices of Fig. 3a and b are, respectively,
entered into the isomorphism identification programs. The
3C of the two graphs is the same. Thus, the two graphs are
considered isomorphic.

3.2 Examples of PMKCs

The distinction of multiple joint KCs lies in the existence
of the multiple joints, which can be distinguished by setting
a hollow vertex (multiple joints) connected edge value of 2.
The isomorphism identification method is consistent with the
single-hinged KC. For example, two 8-link KCs with two
multiple joints are considered in Fig. 4a and b.

The adjacency matrices of Fig. 4a and b are, respectively,
entered into the isomorphism identification programs. The
A4

t of the two graphs are different, as shown in Eq. (8). Thus,
the two graphs are considered non-isomorphic.

A4
t(a)−A

4
t(b) =



2 0 0 8 2 −2 −2 −2 0 0
2 0 0 8 2 −2 −2 −2 0 0
2 1 5 4 3 −4 0 0 0 0
2 1 5 4 3 −4 0 0 0 0
0 3 4 4 3 −1 −1 0 0 0
0 3 4 4 3 −1 −1 0 0 0
0 2 4 4 2 −1 −1 0 0 0
0 2 4 4 2 −1 −1 0 0 0
0 −2 −1 0 −1 −4 −4 −2 −2 0
0 −2 −1 0 −1 −4 −4 −2 −2 0

 . (8)

3.3 Examples of PGTs

Yang and Ding (2019) proposed a new graph model to rep-
resent the structure of PGTs (Yang et al., 2018). The new
graph representation can completely avoid the generation
of pseudo-isomorphic graphs, and the rotation and displace-
ment graphs of PGTs have the same graph model. The dis-
tinction of PGTs lies in the existence of the hollow vertex
and dashed edges, which can be distinguished by setting a
dashed edge value of 3 and a hollow vertex-connected edge
value of 2. For example, the adjacency matrix of Fig. 5a is
Fig. 5b and that of Fig. 5c is Fig. 5d.

The adjacency matrices of Fig. 5b and d are, respectively,
entered into the isomorphism identification programs. The
3C of the two graphs are the same, as shown in Eq. (9). Thus,
the two graphs are considered isomorphic.

3C(a) = 3C(b)

=


1134 658 568 105 75 30 30
870 706 453 335 30 18 0
706 582 381 279 30 18 0
658 408 344 58 48 18 18
568 344 308 36 28 0 0
453 381 276 177 75 58 28
335 279 177 152 105 48 36

6 5 5 3 2 1 0
6 5 4 3 3 1 0
5 4 4 3 3 2 0
5 4 4 3 2 1 0
5 4 4 2 1 1 0
4 3 3 3 2 1 0
3 3 3 2 2 2 0

11
10
9
9
9
6
5

 . (9)

3.4 Examples of contracted graphs

The distinction of contracted graphs lies in the existence of
the parallel edges, which can be distinguished by setting the
parallel edge value equal to the number of parallel edges.
The isomorphism identification method is consistent with
the single-hinged KC. For example, two 10-link contracted
graphs are considered in Fig. 6a and b.

The adjacency matrices of Fig. 6a and b are entered into
the isomorphism identification programs. The A4

t of the two
graphs are different, as shown in Eq. (10). Thus, the two
graphs are considered non-isomorphic.

A4
t(a)−A

4
t(b) =



0 2 1 1 2 1 −4 −2 0 −1
0 0 3 2 0 −2 −1 0 −1 −1
2 0 −2 2 3 1 −3 −2 −1 −1
0 0 0 2 0 −2 0 1 0 −1
3 0 1 0 −2 0 −2 0 −1 0
1 −2 −3 −5 −3 0 4 3 2 3
−2 1 1 −1 −4 4 −2 0 0 2
−2 0 −2 2 0 0 −2 3 1 2
0 −1 −1 0 −2 0 1 2 0 1
−2 −3 −2 −2 −2 0 5 2 2 3

 . (10)
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Figure 5. (a) A 6-link PGT (1) and (c) 6-link PGT (2). Panels (b) and (d) show the adjacency matrices of panels (a) and (c), respectively.

Figure 6. (a) A 10-link contracted graph (1) and (b) 10-link con-
tracted graph (2).

4 Application of the algorithm

The proposed isomorphism identification algorithm has been
fully automated using MATLAB2018a software on a per-
sonal computer with a 1.60 GHz Intel® Core™ i5-8250 PC
with 8 GB RAM. The isomorphism identification algorithm
is applied to the complete atlas of the following: 8 links with
1 DOF, 9 links with 2 DOF, 10 links with 1 DOF, 12 links
with 1 DOF, 13 links with 2 DOF, and 15 links with 4 DOF
PSKCs, 6 links with 1 DOF and 7 links with 1 DOF PGTs,
8 links with 1 DOF PMKCs, and contracted graphs with up
to six independent loops. All the isomorphism identification
results are in agreement with those of Yang et al. (2018) and
Ding et al. (2011, 2016a, b). The detailed detection results
are shown in Tables 1–4.

5 Identification result analysis

Many algorithms for graph isomorphism identification are
available, but the problems encountered in their applications
are due to their computational complexity and effectiveness
(Ding and Huang, 2009).

5.1 Computational complexity

Compared with the graph theory definition method to iden-
tify the isomorphism, 3C methods are simple. Only the ap-
plication of A4

t can solve most isomorphic problems of KCs.
Table 1 shows that A4

t cannot identify only six KCs from
27 496 13 links with 2 DOF PSKCs. The time consumption
of the computer program is also listed in Tables 1–4. Com-
pared with a single characteristic constant, 3C does not sig-

nificantly increase the time. For example, the time consump-
tion of 12-link PSKCs when only using A4

t , Dmin
t , and 3C is

25.3, 24.4, and 25.8 s, respectively.

5.2 Effectiveness

Compared with other characteristic constant methods, such
as eigenvalue, eigenvector, characteristic polynomial, code-
based, and distance- or path-based methods, the 3C method
in this paper possesses good versatility, as shown in Tables 1–
4.

6 Conclusions

The isomorphism identification of KCs are crucial in the pro-
cess of mechanism innovation design. This paper presents
an identification method based on how the fourth PVSD, the
LDMSD, and the LND form a strong complementary chain
to identify KCs at least 15 links with 4 DOF. The method
is suitable for planar single and multiple joint KCs, PGTs,
contracted graphs, and multicolored graphs. The comparison
with the literature shows that the proposed method in this
study is effective and accurate and can be automatically re-
alized by the computer. Our method is simple, reliable, and
efficient and possesses good versatility. The present research
is helpful for improving the efficiency of mechanism design.

Code availability. The code is available in the Supplement.

Data availability. The data are available upon request from the
corresponding author.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/ms-13-585-2022-supplement.

Author contributions. YW is the lead author for the article and
was responsible for collecting the research literature, organizing the
paper structure, and writing the paper. RC co-wrote the paper with
YW and JC. JC is the corresponding author for the paper, presented
the idea of this research, and was responsible for the whole process
of writing and revising this paper.
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Table 1. Detection results of PSKCs.

Links DOF No. of PSKCs A4
t Dmin

t 3C

No. of Time No. of Time No. of Time
mistakes consumption mistakes consumption mistakes consumption

8 1 16 0 < 1 0 < 1 0 < 1
9 2 35 0 < 1 1 < 1 0 < 1
10 1 230 0 < 1 9 < 1 0 < 1
12 1 6856 5 25.3 414 24.4 0 25.8
13 2 27 496 6 229.5 747 312.9 0 312.2
15 4 216 291 87 18 655.4 1877 42 604.2 0 43 097.2

Table 2. Detection results of PMKCs.

Links DOF No. of PMKCs A4
t Dmin

t 3C

No. of Time No. of Time No. of Time
mistakes consumption mistakes consumption mistakes consumption

8 1 18 0 < 1 0 < 1 0 < 1

Table 3. Detection results of PGTs.

Links DOF No. of PGTs A4
t Dmin

t 3C

No. of Time No. of Time No. of Time
mistakes consumption mistakes consumption mistakes consumption

6 1 81 0 < 1 13 < 1 0 < 1
7 1 152 0 < 1 48 < 1 0 < 1

Table 4. Detection results of contracted graphs.

Loops No. of contracted graphs A4
t Dmin

t 3C

No. of Time No. of Time No. of Time
mistakes consumption mistakes consumption mistakes consumption

3 4 0 < 1 0 < 1 0 < 1
4 17 0 < 1 1 < 1 0 < 1
5 118 0 < 1 13 < 1 0 < 1
6 1198 0 < 1 246 < 1 0 < 1
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