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Abstract. A reliable optimization of dynamic vibration absorber (DVA) parameters is extremely important to
analyze its dynamic damping characteristics and improve its vibration suppression performance. In this paper,
we will discuss a parameter optimization method of the Voigt and three-element DVA models according to
the H∞ optimization criterion. The particle swarm optimization method is an effective heuristic optimization
algorithm; however, it is easy to lose diversity and fall into local extremum. To solve this problem, the adaptive
multiswarm particle swarm optimization (AM-PSO) is used to search the solution of the DVA models. Particles in
AM-PSO are adaptively divided into multiple swarms, and the variable substitution learning strategy is utilized
to reduce their computational complexity and improve the algorithm’s global search capability. In addition,
the AM-PSO method is employed to optimize the parameters of DVA models and compared with the genetic
algorithm and PSO. The simulation results show that the AM-PSO algorithm has superior performance. Also, the
adaptive multiswarm numerical design method discussed herein will push the field towards practical applications,
including traditional DVA and related complex three-element DVA.

1 Introduction

Dynamic vibration absorbers (DVAs) have been utilized to
suppress the vibration of a primary system for more than
110 years. One of the most common DVAs is the Voigt
type, in which the spring is set in parallel with the viscous
damper, thereby connecting the primary system to the sec-
ondary mass. The main parameters of Voigt DVA model
are the tuning frequency ratio and damping ratio. Here, we
will discuss a parameters optimization method for the three-
element type of DVAs.

There are a few previous studies on the three-element type
of DVA (TEDVA). Snowdon developed the TEDVA model in
1974, where the amplitude magnification factor across a sim-
ple spring mass system at resonance was investigated (Snow-
don, 1974). The TEDVA consists of a viscous damper ab-
sorber and two spring elements, where one connects in series
with the viscous damper absorber, and the other connects in

parallel with the viscous damper absorber. Asami and Nishi-
hara (1999) conducted the optimization design of the TEDVA
based on the H∞ optimization criterion and indicated that the
it had better vibration control performance than a traditional
DVA under the same mass ratio. Later, Asami and Nishi-
hara (2002) discussed the optimization problem of TEDVA in
the light of H2 optimization criterion (Asami and Nishihara,
2002) and derived the exact solution for undamped main sys-
tem. The previous optimization study of TEDVA is based on
the fixed-point theory; however, there are significant differ-
ences in the optimum solutions obtained by employing the
fixed-point theory (Nishihara, 2019).

Anh et al. (2013, 2014) proposed a design method for
nontraditional DVAs, in terms of the equivalent linearization
method, and gave a weighted dual criterion to approximately
replace the damped primary structure with an equivalent un-
damped structure. However, these results are unavoidably af-
fected by the fixed-point theory of the undamped primary
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system. Beyond that, Javidialesaadi and Wierschem (2018)
introduced, formulated, optimized, and discussed a TEDVA
based on the inverter which took full advantage of the poten-
tially high inertial mass of a relatively small mass in the rota-
tion. Chen et al. (2020) applied the TEDVA theory to reduce
the car body resonance and obtained the optimal suspension
parameters of the underframe equipment under a vertical har-
monic excitation, and the research shows that the vehicle
with three-element DVA can have a better driving quality.

In order to obtain more efficient solutions, optimization
techniques such as the genetic algorithm (GA), Newton–
Raphson algorithm, and particle swarm optimization have
been applied to vibration absorber optimization. Esen and
Koc (2015) studied the dynamic behavior of an anti-aircraft
barrel with a passive absorber and acquired the optimization
parameters of the vibration absorbers combined with the ge-
netic algorithm. In 2019, Nishihara (2019) gave the optimal
parameter value of the three-element DVA by the Newton–
Raphson algorithm and indicated that there is no closed solu-
tion to the design problem for three-dimensional DVA, even
in the case of undamped primary system. The controlling
equations of a planar vibration system were described, and
the particle swarm optimization (PSO) algorithm was em-
ployed to optimize the main parameters of electromagnetic
shunt damping absorber (Xie et al., 2014). According to the
typical conditions of electric wheels with an in-wheel motor,
the PSO algorithm was used to optimize the parameters of
the DVA system to obtain acceptable vibration performance
(Liu et al., 2017). In the noise control solutions of transporta-
tion industry, Jagodzinski et al. (2020) established the objec-
tive function of root mean square (RMS) surface velocity and
employed the PSO algorithm to optimize the objective func-
tion. Thus, the optimal parameter combination of the shock
absorber was obtained (Jagodzinski, et al., 2020). In recent
years, PSO has been a widely used optimization algorithm
inspired by swarm intelligence because of its effectiveness in
theory and practice (Gao et al., 2019; Wang et al., 2021).

Besides, even in an undamped primary system, it is impos-
sible to have a closed solution for the three-element DVA. For
this reason, a more accurate and easy method is necessary
to optimize TEDVA for reducing the vibrations of a damped
system. In this paper, an adaptive multiswarm particle swarm
optimization is discovered to minimize the maximum ampli-
tude magnification factor of the three-element DVA. The rest
of this paper is organized as follows: the traditional Voigt
DVA and three-element DVA models are established and ex-
plained in Sect. 2. Details of the adaptive multiswarm parti-
cle swarm optimization (AM-PSO) are described in Sect. 3.
In Sect. 4, the performance of the AM-PSO algorithm is
validated based on a variety of experiments. In Sect. 5, the
comparisons of the vibration reduction in the performance of
DVAs are studied, and the conclusion is provided in Sect. 6.

2 Defining the problem

2.1 Establishment of models

Figure 1 shows the traditional DVA and three-element DVA
models attached to a primary system with damping. The pri-
mary system consists of a mass (m1), a spring with a spring
constant (k1), and a damper with a viscous damping coef-
ficient (c1), and it is excited by a harmonic force excita-
tion f (t)= F0 sin ωt . The traditional DVA is composed of
a mass (m2), a spring (k2), and a damper (c2). The three-
element DVA is composed of a mass (m2), two springs (k2
and k3), and a damper (c2).

The dynamic equation of the system with two kinds of
dynamic vibration absorbers can be established as the Voigt
DVA, as follows:{
m1ẍ1+ (c1+ c2)ẋ1− c2ẋ2+ (k1+ k2)x1− k2x2

= F0 sin ωt
m2ẍ2− c2ẋ1+ c2ẋ2− k2x1+ k2x2 = 0.

(1a)

The three-element DVA is as follows:
m1ẍ1+ c1ẋ1+ (k1+ k2+ k)x1− k2x2− k3x3

= F0 sin ωt
m2ẍ2+ c2ẋ2− c2ẋ3− k2x1+ k2x2 = 0
c2ẋ2− c2ẋ3+ k3x1− k3x3 = 0.

(1b)

2.2 Theoretical analysis

When the main system is excited by a harmonic frequency
of ω, the nonhomogeneous term F0 sin ωt in Eq. (1) can be
transformed into F0e

jωt . Here, j is the imaginary unit. So
the steady-state solutions are given by the following:

x1 =X1e
jωt ,x2 =X2e

jωt ,x3 =X3e
jωt . (2)

By substituting Eq. (2) into Eq. (1), the steady-state fre-
quency response of the main system is obtained in the fol-
lowing form:

X1(jω)= F0
E1+ jF1

G1+ jH1
, (3)

where E1, F1, G1, and H1 are real polynomials in ω, and
they are expressed for Voigt DVA as follows:
E1 =m2ω

2
− k2

F1 =−c2ω

G1 = k1m2ω
2
− k1k2+ k2m1ω

2
+ k2m2ω

2

−m1m2ω
4
+ c1c2ω

2

H1 =m2c1ω
3
+m1c2ω

3
+m2c2ω

3
− k2c1ω− k1c2ω,

(4a)

and for three-element DVA, as follows:

E1 = k3m2ω
2
− k2k3

F1 =m2c2ω
3
− k2c2ω− k3c2ω

G1 =−k1k2k3+ k2c1c2ω
2
+ k3c1c2ω

2
− c1c2m2ω

4

+k1k3m2ω
2
+ k2k3m1ω

2
+ k2k3m2ω

2
− k3m1m2ω

4

H1 = k1m2c2ω
3
− k2k3c1ω− k1k2c2ω− k1k3c2ω

+k2m1c2ω
3
+ k3m2c1ω

3
+ k2m2c2ω

3
+ k3m1c2ω

3

+k3m2c2ω
3
−m1m2c2ω

5.

(4b)
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Figure 1. Schematic diagram of DVAs.

Let the natural frequencies of the main system and
the DVA be ω1 =

√
k1/m1 and ω2 =

√
k2/m2, respectively.

Then, the following ratios and dimensionless parameters are
considered:



µ=m2
/
m1; mass ratio

α = ω2
/
ω1; tuning frequency ratio

λ= ω
/
ω1; input frequency ratio

ν = k3
/
k2; spring ratio

ζ1 =
c1

2m1ω1
; damping ratio of the main system

ζ2 =
c2

2m2ω2
; damping ratio of the DVA.

(5)

The amplitude magnification factor of the base displacement
to that of the primary system is represented by a dimen-
sionless frequency response function. Here, the parameter
δ = F0/k1 is introduced to represent the static displacement
of the main system under the static action, and the amplitude
amplification factor of the primary system (A) is expressed
by a dimensionless function. The expression of A then be-
comes the following:

A=

∣∣∣∣X1

δ

∣∣∣∣=
√
E2

2 + ζ
2
2F

2
2

G2
2+H

2
2
, (6)

where, for the Voigt DVA model, E2, F2, G2, and H2 in
Eq. (6) are, respectively, expressed as follows:


E2 = λ

2
−α2

F2 =−2αλ
G2 = µα

2λ2
+ 4ζ1ζ2λ

2α−
(
λ2
− 1

)(
λ2
−α2)

H2 = 2λ
[
ζ1
(
λ2
−α2)

+ ζ2α
(
λ2α2
+µλ2α2

− 1
)]
.

(7a)

For the three-element DVA, E2, F2, G2, and H2 in Eq. (6)
are, respectively, expressed as follows:

E2 = vα
(
λ2
−α2)

F2 = 2λ
(
λ2
−α2
− vα2)

G2 = vα
[
λ2 (µ− λ2)

−α2 (1− λ2
−µλ2)]

+4ζ1ζ2λ
4 (α2
+ vα2

− λ2)
H2 = 2ζ1vαλ

3 (λ2
−α2)

+2ζ2λ
[
λ2 (1− λ2)

−α2 (1+ v)
(
1− λ2

−µλ2)] .
(7b)

We may see that the dimensionless treatment can more di-
rectly reflect the connection between the main system and
the vibration absorption system and give the general form of
the results.

2.3 Parameter optimization formulation

Upon examination of Eq. (6), it can be found that the am-
plitude amplification factor is a function of the following six
variables: λ,µ, v, α, ζ1, and ζ2. The input frequency ratio λ is
an unknown input parameter to the system, and the damping
ratio ζ1 and mass ratio µ are constant parameters selected by
the system and do not need to be optimized in general. The
remaining three parameters (v, α, and ζ2) can be selected by
the designer to minimize the vibration of the primary system.

At present, there are three typical optimization criteria for
selecting the optimum design parameters of DVAs. The ob-
ject of H∞ optimization is to minimize the maximum ampli-
tude magnification factor (A) of the primary system (Tigli,
2012). The object of the H2 optimization is to minimize the
area under the frequency response function to reduce the total
vibration energy of the system (Asami and Nishihara, 2002b;
Asami et al., 2002). The objective of the stability maximiza-
tion criterion is to improve the transient vibration of the sys-
tem (Asami et al., 2002). The design objective of the dynamic
vibration absorber in this work is to minimize the maximum
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vibration amplitude of the main system under harmonic ex-
citation, which is equivalent to the H∞ optimization norm.

The optimization problem proposed in this paper can be
expressed as follows:

min(maxA)α,ζ2 λS≤λ≤λB , (8)

where λS and λB are the minimum and maximum boundary
conditions of λ, respectively.

The constraint conditions of the objective function de-
scribed in Eq. (8) are as follows:

µ=m2
/
m1 ∈ [0.03,0.5];

α = ω2
/
ω1 ∈ [0.5,2];

λ= ω
/
ω1 ∈ [0,3];

ν = k3
/
k2 ∈ [0,5];

ζ1 =
c1

2m1ω1
∈ [0,0.5];

ζ2 =
c2

2m2ω2
∈ [0,0.5].

(9)

The optimal solution of Eq. (8) will be α and ζ2, which will
minimize the maximum over the distribution region of λ. In
this paper, the adaptive multiswarm particle swarm optimiza-
tion method is employed to obtain the optimal solution of the
vibration absorber in order to achieve the minimization of the
maximum amplitude magnification factor.

3 Numerical optimization

If the DVAs are attached a damped primary system, the
closed form algebraic solution of the system based on the
H∞ norm cannot be obtained (Nishihara, 2019; Asami et
al., 2002). As described above, a number of optimization
algorithms, such as the Newton–Raphson method, steep-
est descent algorithm, and so on, were developed based on
gradient-based methods for parameter estimation and solu-
tion. Although the gradient-based method is a robust process
to update the parameters along the descending direction of
the gradient, it tends to a local minimum rather than global
minimum (Yin et al., 2020). As an alternative method, the
heuristic algorithm, especially the particle swarm optimiza-
tion algorithm, is more effective in solving the parameter
identification problem of DVA models. Heuristic algorithms
no longer require any gradient information and do not re-
quire the continuity/convexity of the specific search domain
information and the objective function, so they have the ad-
vantages of robustness, simplicity, and easy implementation
(Xiong et al., 2020).

The original idea of a PSO algorithm is to simulate the
process of birds foraging to find the optimal solution. Be-
cause each particle of the algorithm uses the same iterative
formula, the particles are easy to gather at local extremum
positions and fall into the local optimization, which makes
the particle swarm optimization algorithm lose diversity (Bi
et al., 2019). Based on the original particle swarm optimiza-
tion algorithm, many PSO algorithms have been developed

in order to improve the diversity of the population (Chen and
Zhao, 2009; Li et al., 2012; Qin et al., 2015; Zhang et al.,
2019, 2020; Lai et al., 2020).

3.1 Canonical particle swarm optimization

In a D dimensional search space, the velocity vector and po-
sition vector of each particle i (i = 1, 2, . . . ,N ) are defined as
V i = (vi1,vi2, . . .,viD), and Xi = (xi1,xi2, . . .,xiD), respec-
tively. Assuming that the current number of iterations is k,
the updating formulas of particle velocity and position are as
follows:

vk+1
i = wvki + c1r1(pki − x

k
i )+ c2r2(pkg − x

k
i ) (10)

xk+1
i = xki + v

k+1
i , (11)

where c1 and c2 are learning factors, r1 and r2 are ran-
dom numbers between 0 and 1, w is an inertia damping
term that influences the momentum vector, pi represents
the optimal position of the ith particle searched so far,
which is called the individual optimal value and recorded as
pi = (p1

i ,p
2
i , . . .,p

D
i ), i = 1,2, . . .,N , and pg represent the

global optimal position of the whole particle swarm, which
is recorded as pg =

(
p1

g,p
2
g, . . .,p

D
g

)
.

The position of each particle is updated using Eq. (11), and
the particle velocity is updated depending on Eq. (10) at each
iteration. Due to the existence of numerous parameters, opti-
mizing the parameters of DVA models is a complex optimiza-
tion problem, which is challenging. As a result, the accuracy
and the convergence rate of the standard PSO may not be
satisfactory. To strengthen global search ability in PSO, the
adaptive learning approach is applied to the standard PSO in
this paper.

3.2 Adaptive multiswarm particle swarm optimization

Maintaining population diversity is an important aspect of
the complex parameter optimization problem, and it is also
the key to preventing particles from falling into a local opti-
mal solution. The multiple swarm PSO technique is an effec-
tive adaptive way to maintain diversity through information
sharing among different subswarms (Qin et al., 2015). In this
paper, the particle swarm is adaptively divided into several
subgroups based on the distribution density and cutoff dis-
tance of particles.

In order to explore different regions of DVA model search
space at the same time and maintain the population diversity
and interaction among multiple individual groups, the par-
ticles are adaptively divided into several subgroups by the
clustering method. Here we define the local density and the
minimum distance between particles.

In the process of subgroup division, Euclidean distance is
used to calculate the distance (dij ) between particles. And the
cutoff distance (dc) is used as the evaluation basis for sub-
swarms division of particles, which can be written as below
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Figure 2. Main process of the subswarm assignment.

as follows:

dc = min
i,j∈I

(
dij
)
. (12)

The method of subswarm division considers the overall dis-
tribution of data from the perspective of density, and the local
density ρi represents the number of particles at a certain dis-
tance and is given by an equation of the following the form:

ρi =
∑

j∈I,j 6=i

e
−

(
dij
dc

)2

. (13)

We may see that the smaller the Euclidean distance, the larger
the local density, and the stronger the ability to find the local
optimal solution. At the same time, in order to divide the par-
ticle swarm into several subswarms with the highest density,
another quantity δi is introduced to represent the minimum
distance between particles, which is expressed as follows:

δi =minj∈Iρj >ρi
(
dij
)
. (14)

The AM-PSO has a population with several subswarms,
where the center particle of each subswarm has higher local
density and minimum distance. Each remaining particle is ar-
ranged to the nearest subswarm, which has a higher density.
Figure 2 illustrates how to divide subswarms by a local den-
sity and minimum distance towards the search for the global
best solution.

Suppose that the Euclidean distance between the ith par-
ticle and the kth particle is the smallest when j = k. Then,
δi is equal to dik , which means that kth particle is the central
particle of the subswarm. It is assumed that multiple particles
have the same minimum distance δi , and the particle with a
relatively large local density ρ is taken as the center of the
subswarm. Figure 2a is the initialization of the particle, and
the green particles (C1, . . . , C5) in Fig. 2b are the center of
each subswarm found by Eqs. (12)–(14).

After determining the center particles of all subswarms,
the remaining particles are assigned to different subswarms
according to the principle of Euclidean distance dij and form
multiple swarms autonomously. When other particles are as-
signed to the subswarm, there are the following two cases:

(1) if the Euclidean distance between the particle and the
center of all subswarms is not equal, then the particle be-
longs to the subswarm with the smallest Euclidean distance,
and (2) the Euclidean distance from the particle to the center
particle of subswarms is equal. For example, in Fig. 2b, the
red particle k belongs to the first case, which has the smallest
Euclidean distance from C5 and is assigned to the C5 sub-
swarms. The yellow particle m belongs to the second case,
which has the equal Euclidean distance to the central parti-
cles C1 and C2, and then the mth particle belongs to the C1
subswarm with higher density.

For the constrained optimization problem of three-element
DVA system, many constraint items make the search more
difficult, and the particles are easy to mature prematurely,
leading to the stagnation of the algorithm. In order to main-
tain the ability of continuous searching for the optimal so-
lution of the population, the velocity update of particles is
characterized by the population diversity. The velocity up-
date formula of the AM-PSO method is as follows:

vk+1
i = wvki + c1r1

(
pki − x

k
i

)
+ c2r2

(
1
S

S∑
j

(
pkg

)
j
− xki

)
, (15)

where S is the number of subswarms, and 1
S

S∑
j

(
pkg

)
j

is a

particle diversity function, which increases the guidance of
the population information sharing to the particle search pro-
cess.

It is interesting to note that the local optimal particles in
Eq. (15) not only guide the learning of the particles in this
subswarm but also explore the information from other sub-
swarms. The best global solution is the average information
of S subswarms of pg, which can be used to guide the update
of local optimal particles to further improve the population
diversity and accelerate the convergence speed.

In addition, for the sake of reducing the computational
complexity of the optimization process, the variable substitu-
tion learning idea is utilized to simplify problems, and it can
improve the algorithm’s global search capability. According
to the idea of variable substitution, Eq. (10) can be written in
the following form:

vk+1
i = wvki +ϕ

[(
δ− xki

)]
, (16)

where δ is found by a linear combination applied to the
function δ =

(
ϕ1p

k
i +ϕ2p

k
g

)
/ϕ and ϕ = ϕ1+ϕ2, ϕ1 = r1c1,

ϕ2 = r2c2, ϕ1 = r1c1.
The simplified method of variable substitution can not

only improve the diversity of the population but also im-
prove the slow convergence speed caused by too frequent
subswarm operations. The flowchart of the AM-PSO strat-
egy is described in Fig. 3.
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Figure 3. Flowchart of the AM-PSO algorithm.

4 Performance evaluation of the AM-PSO algorithm

In order to present the effectiveness of the AM-PSO method
employed in this paper, its performance is compared with
canonical PSO and GA (genetic algorithm). The basic pa-
rameters of AM-PSO and PSO are the same in the following
ways: the particle dimension m= 3 in the Voigt DVA model
or m= 4 in the three-element DVA model, the population
sizeN = 80, the number of iterations is 100, and the learning
factor c1 = 2 and c2 = 2. The key parameters of the dynamic
vibration absorber are optimized by the canonical PSO, GA,
and AM-PSO, respectively, and the optimization process was
made by self-developed programs which are conducted in the
64 bit MATLAB version (2017b).

After many experiments, the convergence curves of the fit-
ness function for three algorithms of PSO, AM-PSO, and GA
under the optimal case are described in Fig. 4. As can be
seen from the figures, the optimization result requires at least
64 (GA), 86 (PSO), and 58 (AM-PSO) iterations to stabilize
in the Voigt DVA model. However, the optimization result
requires at least 24 (GA), 84 (PSO), and 17 (AM-PSO) it-
erations to stabilize in the Voigt DVA model. Therefore, the
convergence rate of AM-PSO is better in comparison with

Table 1. Number of iterations for Voigt DVA and three-element
DVA after 40 independent runs.

Damping function Algorithm
Iterations

Success rate
Mean Min Max

Voigt DVA
GA 78 55 99 80 %
PSO 89 65 100 65 %
AM-PSO 60 41 83 100 %

Three-element DVA
GA 58 36 100 85 %
PSO 89 65 100 75 %
AM-PSO 51 32 73 100 %

other algorithms, and the fitness value of the three-element
DVA is smaller with the AM-PSO algorithm than the other
two algorithms. This also proves that the AM-PSO algorithm
is reliable.

For the evaluation of stability of AM-PSO method in DVA
models, it is necessary to estimate the number of iterations
required to achieve a certain accuracy. The maximum num-
ber of iterations is 100, and the stability analysis results of
three algorithms are given in Table 1. The three algorithms
run independently 40 times, and the proportion of success-
ful reaching of the given threshold is calculated. Here, the
thresholds of the Voigt DVA and the three element DVA are
1.58 and 1.355, respectively.

Table 1 displays that the comprehensive vibration reduc-
tion capability and stability of DVAs have improved by using
the AM-PSO. For the Voigt and three-element DVA model,
the AM-PSO algorithm can reach the given threshold with
100 % success rate, while the success rate of canonical PSO
is the lowest. Therefore, compared with PSO and GA al-
gorithm, the AM-PSO algorithm runs stably. Whether the
AM-PSO algorithm is applied to the Voigt DVA or the three-
element DVA, the maximum, minimum, and average itera-
tion times are all the minimum. The results show that AM
-PSO algorithm is superior to the other two algorithms and
can obtain a more effective vibration reduction effect in the
three-element DVA model.

5 Comparisons of the vibration reduction
performance

When damping is present in the primary system, the objec-
tive function which is given in Eq. (8) is too complex to ob-
tain an exact solution. Here we obtain the optimal parameters
by numerical method based on H∞ optimization criterion.

5.1 Optimizing simulation of DVA parameters

Consider the transformed system in Eq. (1) and select the
mass ratio µ= 0.1 and the damping ratio of the main system
ζ1 = 0.3. Then, the optimal parameters of the DVAs could
be obtained based on the numerical methods of GA, PSO,
and AM–PSO. Table 2 presents the result comparisons after
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Figure 4. Convergence of PSO, AM-PSO, and GA algorithms.

optimization by the canonical PSO, GA, and AM–PSO pa-
rameters.

The comparison of the optimal solutions of different opti-
mization algorithms is given in Fig. 5.

The results in Fig. 5 and Table 2 show that the three-
element DVA provides a smaller maximum amplitude mag-
nification factor than the standard DVA based on the equiva-
lent mass ratios and damping ratios of the main system. We
can see that the peaks obtained by AM–PSO optimization are
significantly lower than those of the other two optimization
methods. Therefore, the vibration reduction performance is
improved by the implementation of the optimal design.

From the comparison, it could be concluded that the three-
element DVA is better than Voigt DVA in reducing the vi-
bration of damped main system. In addition, the parameters
obtained by the AM–PSO numerical optimization algorithm
can not only significantly reduce the amplitude of the reso-
nance region of the main system but also expand the effective
frequency range of vibration absorption.

In addition, Fig. 6 shows a comparison of the theory of
Den Hartog and the optimization algorithms for the mass ra-
tio µ= 0.1 with a damped primary system (ζ1 = 0.3). The
definition of the optimal parameters was proposed in Asami
and Nishihara (1999) and Nishihara (2019) as follows:

vfp = 2
[
µ+

√
µ (1+µ)

]
(17)

αfp =

√
1

1+µ

(
1−

µ

1+µ

)
(18)

ζ2 =

√
1+ r
r
·
−b−

√
b2− ac

a
, (19)

where r =
√

(1+µ)/µ, and the parameters in Eq. (19) are
expressed as a =−2−2r+5r2

+4r3
−2r5

+r6, b = 2−3r2
−

r4, and c =−2+ 2r + r2.
As shown in Fig. 6, the maximum amplitude magnifica-

tion factor obtained by using the fixed-point theory is slightly

larger than that obtained by the optimization algorithms, and
the output values corresponding to P and Q are 1.577 and
1.623, respectively. That is, the condition that P and Q are
unequal in height so that they are in the maximum position
on the curve cannot be used as the optimal design condi-
tion. Therefore, for a three-element DVA with reference to
a damped system, the equal adjustment of the height of P
and Q should be determined by the numerical optimization
method.

5.2 Analysis of the effectiveness of vibration control

Parameter sensitivity analysis is a measure to study the de-
gree of distribution or quantification of model output changes
under different input parameter changes. A different formu-
lation of sensitivity was provided in (Richiedei, et al., 2021)
for an undamped system. The inherent assumption in calcu-
lating the parameter sensitivity using differential equations is
that there is no correlation between input parameters. How-
ever, the sensitivity of the parameters does not only depend
on the influence of a parameter on the output of the model but
also on the changes of the output of the system model due to
the interaction of parameters. Considering the coupling re-
lationship between parameters, the parameter sensitivity is
calculated by a discrete method as follows:

S =
1
N

[
N∑
i=1

(
Ai −A

′

i

1x

)2
]1/2

, (20)

where Ai represents the maximum amplitude magnification
factor of the ith data point obtained by substituting the orig-
inal optimization parameters into the DVA model. A′i repre-
sents the corresponding maximum amplitude magnification
factor obtained by substituting the changed parameters into
the DVA model, x is a parameter to be analyzed (e.g., µ or
ζ1),1x = xi+1−xi , andN is the total number of data points.
S is the sensitivity of the parameter, and the larger value in-
dicates the higher sensitivity of the parameter.
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Table 2. Comparison of optimization parameters of DVAs.

Optimization parameters
Voigt DVA Three-element DVA

GA PSO AM–PSO GA PSO AM–PSO

α 0.8417 0.8534 0.8598 0.5236 0.5001 0.4925
v – – – 1.7613 1.4958 1.5056
ζ2 0.3492 0.4216 0.4659 0.3651 0.2819 0.3719
λ 0.6300 1.0600 0.6900 0.6100 0.5800 0.8400
A 1.5869 1.6335 1.5622 1.4101 1.5357 1.3318

Figure 5. Comparison of optimization performance. (a) Voigt DVA. (b) Three-element DVA.

The procedure of the parameter sensitivity analysis is as
follows:

– Sept1: within the range of variable parameters, select
the optimized parameter combination as the reference
basis point.

– Sept2: determine the parameters to be analyzed and in-
crease or decrease the value with its base point value as
the center point.

– Sept3: calculate the outputs and other parameters, ex-
cept for the analyzed parameter, using the AM–PSO al-
gorithm.

– Sept4: calculate the parameter sensitivity using Eq. (20)
and then sort the parameter sensitivity measure to the
influence of each parameter on the model output.

Generally, the mass ratio depends on the specific engineer-
ing requirement, and in the previous numerical solution, the
mass ratio µ is specified in advance. This subsection gives
the results when the mass ratio is also a design variable. The
results of mini-max optimization (Eq. 8) will obtain the in-
formation about the effects of the change in mass ratio on the
amplitude magnification factor. The optimal parameters of

the three-element DVA model obtained using the AM–PSO
algorithm in Table 4 were selected as the reference basis, and
then the sensitivity analysis of the parameters was performed,
as described above. The results of some examples are shown
in Table 3.

When the mass ratio µ changes from the left side to the
right side of the interval, the sensitivity decreases gradually,
with an average sensitivity of 1.57 %. The damping ratio of
the main system ζ1 tended to the right side of the interval,
and the sensitivity changed less, with an average sensitivity
of 7.51 % in the entire interval. Therefore, selecting the ap-
propriate µ and ζ1 can improve the robustness of the system.

5.3 Impact of tuning parameters on the three-element
DVA

Let the mass ratio µ= 0.1 and the damping ratio of the main
system ζ1 = 0.3. Then, we analyzed the influence of input
frequency ratio (λ) and damping ratio of dynamic vibration
absorber (ζ2) on the vibration reduction of the main sys-
tem. Some typical normalized amplitude–frequency curves
for different damping ratios are shown in Figs. 7 and 8.

It can be clearly seen that, when λ takes the upper limit
of the interval, all amplitude–frequency curves pass through
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Figure 6. Comparison of the theory of Den Hartog and optimization algorithms through the frequency response curve.

Table 3. Results of parameter sensitivity analysis.

Index i 1 2 3 4 5 6 7 8

µ 0.05 0.07 0.09 0.11 0.44 0.46 0.48 0.50
S 3.56 % 3.07 % 2.91 % 2.42 % 0.57 % 0.45 % 0.31 % 0.29 %
ζ1 0.05 0.10 0.15 0.20 0.35 0.40 0.45 0.50
S 4.07 % 5.16 % 22.03 % 17.53 % 6.06 % 5.84 % 3.79 % 3.28 %

a fixed point, which always causes the normalized A to re-
main unchanged. When ζ2 takes [0, optimal], then the max-
imum amplitude magnification factor decreases gradually as
the damping ratio of dynamic vibration absorber increases.
When ζ2 exceeds the optimal damping ratio, the maximum
amplitude magnification factor increases gradually. When ζ2
takes the optimal parameters, the maximum amplitude mag-
nification factor obtained using the AM–PSO optimization
algorithm was 1.3318, which is 5.55 % less than GA and
13.28 % less than PSO. It can be seen that the appropriate
numerical calculation method is helpful for obtaining a bet-
ter combination of tuning parameters so as to better suppress
the vibration of the main system. In addition, it is not difficult
to find that the influence of the tuning parameter ζ2 is consis-
tent for the GA, PSO, and AM-PSO numerical optimization
algorithms.

Figure 9 shows the effect of spring ratio (v) on the maxi-
mum amplitude magnification factor under the different opti-
mization algorithms. Although the influence of the change in
the spring ratio on the model is different, their change law is
the same. When the spring ratio takes two boundaries, then
the maximum amplitude magnification factor is also at the
output of the boundary. When v takes the minimum value,
then the value of A takes the maximum value. As v gradu-
ally increases from the minimum value to the optimal value
or decreases from the maximum value to the optimal value,

the value of A gradually decreases from point D and point F
to point E (position of the minimum value), respectively.

Figure 10 shows the influence of the law of the change in
the spring ratio on the three-element DVA model under dif-
ferent damping ratios of the main system based on the AM–
PSO optimization algorithm. Obviously, with the increase in
the damping ratio of the main system, the maximum ampli-
tude magnification factor decreases gradually. At that time,
when ζ1 = 0.01, then the A value is 2.9152 under the opti-
mal parameter combination, while when ζ1 = 0.5, then the
A value is 1.3302 under the optimal parameter combination.
Moreover, when ζ1 takes a smaller value, the change in v has
a significant impact on the model output. On the contrary,
when ζ1 takes a larger value, the change in v (except for the
smaller value of v) has no significant impact on the model
output.

6 Conclusions

An analytical solution for designing the optimal parameters
of dynamic vibration absorbers attached to the damped main
system is found to be difficult and complicated. In this paper,
the adaptive multiswarm particle swarm optimization is ap-
plied to parameter optimization, and the numerical solutions
of the system are given for the damped main system under si-
nusoidal force excitation. In the AM-PSO algorithm, the par-
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Figure 7. Influence of tuning parameter ζ2 on the three-element DVA under different optimization algorithms.

Figure 8. Influence of damping ratio of dynamic vibration absorber on numerical algorithm.

Figure 9. Influence of spring ratio (v) on the three-element DVA under different optimization algorithms.
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Figure 10. Normalized amplitude–frequency curves with different ζ1 and v.

ticles are adaptively grouped into several subswarms in ac-
cordance with the distributed density of the particles and the
minimum distance between particles. In addition, the vari-
able substitution learning strategy of velocity was utilized to
improve the algorithm’s population diversity.

Comprehensive experiments have been carried out to com-
pare the AM-PSO algorithm with the canonical PSO and
GA on the DVA models. The simulation results demonstrate
that the comprehensive optimization is better in the AM-PSO
than in the canonical PSO and GA. In addition, the main pa-
rameters of the DVA models are modified in light of the op-
timized results of the GA, canonical PSO, and AM-PSO to
further verify the effectiveness of the AM-PSO method for
optimizing parameters of the DVAs, and the three-element
DVA has better robustness.

The optimal results obtained from this study have impli-
cations for numerical studies at the parameter optimization
and performance evaluation of dynamic vibration absorbers.
Moreover, the AM–PSO optimization algorithm proposed in
this paper is not affected by the damping of the primary sys-
tem.
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