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Abstract. The main purpose of the iterative learning control (ILC) method is to reduce the trajectory tracking
error caused by an inaccurate model of the robot’s dynamics. It estimates the tracking error and applies a learning
operator to the output control signals to correct them. Today’s ILC researchers are suggesting strategies for
increasing the ILC’s overall performance and minimizing the number of iterations required. When a payload
(or a different end effector) is attached to a robotic manipulator, the dynamics of the robot change. When a
new payload is added, even the most accurately approximated model of the dynamics will be altered. This will
necessitate changes to the dynamics estimates, which may be avoided if the ILC process is used to control the
system. When robotic manipulators are considered, this study analyses how the payload affects the dynamics and
proposes ways to improve the ILC process. The study looks at the dynamics of a SCARA-type robot. Its inertia
matrix is determined by the payload attached to it. The results show that the ILC method can correct for the
estimated inertia matrix inaccuracy caused by the changing payload but at the cost of more iterations. Without
any additional data of the payload’s properties, the suggested technique may adjust and fine-tune the learning
operator. On a preset reference trajectory, the payload adaptation process is empirically tested. When the same
payload is mounted, the acquired adaptation improvements are then utilized for another desired trajectory. A
computer simulation is also used to validate the suggested method. The suggested method increases the overall
performance of ILC for industrial robotic manipulators with a set of similar trajectories but different types of
end effectors or payloads.

1 Introduction

Industrial robotic arm manipulators are machines that must
track trajectories with high accuracy. This trajectory tracking
process depends on the correct estimation of the parameters
of the dynamics of both the robot itself and its payload. As a
payload both the end effector and the object with which the
robot interacts may be considered. Even if the dynamics of
the robot is estimated precisely, the control system will have
to compensate for the error introduced by the unknown dy-
namics or the variation of the dynamics of the payload. These
uncertainties of variations will introduce trajectory tracking
errors.

Nowadays, many researchers are working on adaptation of
the control to the payload of the robot. Truong et al. (2019)
consider control for robots with large payload variations.
They are proposing backstepping sliding mode control and

are utilizing a fuzzy logic system for adjusting the control
gains based on the output of the non-linear disturbance ob-
server to compensate for the payload. Lee et al. (2020a) pro-
pose the time delay control as a promising control technique
for application to robot manipulators. They are proposing the
idea of adaptive gain dynamics and show through experi-
ments that their method can be used for the control of a robot
which operates under significant payload changes. In later re-
search of Lee et al. (2020b), they consider a payload-adaptive
PID control that is simple, model-free, and robust against
payload variations. Their control is efficient under substantial
payload variations. However, the PID type of control is work-
ing in the presence of a trajectory error and cannot be applied
when a precision trajectory tracking is required. Reducing
the trajectory tracking error is important, even when human–
machine collaboration is considered by the modern robotic
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control systems. Researchers Hu et al. (2020) proposed an
integrated direct or indirect adaptive algorithm which con-
sists of a generalized momentum-based indirect adaptation
law to estimate the payload online. This research will pro-
pose the usage of the iterative learning control (ILC) tech-
niques which are widely used for precise trajectory tracking
control.

ILC is a non-dual kind of adaptive control that was first
proposed by Uchiyama (1978) and further developed by Ari-
moto et al. (1984a, b) for systems that function in a repeat-
able pattern. The ILC procedure will begin by making an ed-
ucated guess about the required output control signals, which
will be generated using the approximated mathematical pa-
rameters of the model. The ILC will thereafter require multi-
ple iterations. The approach evaluates the tracking error after
each iteration and adjusts the output control signals using a
particular learning operator. When a pre-set acceptable accu-
racy threshold is reached, the iterative control procedure will
be terminated. Consequently, a biologically inspired iterative
self-learning process is created.

The ILC must generate a convergent process before it can
be applied to a robot system. In today’s literature, the conver-
gence of the ILC approach has been thoroughly researched.
Heizinger et al. (1989) proved the convergence of the ILC
when non-linear systems (such as robotic manipulators) are
considered. Longman and Huang (2002) observed an issue
with the formation of a transient error during the first few
iterations. This issue necessitated more investigation due to
the mechanical features of the robotic manipulators which
constrain their state space. This issue prevents the ILC from
being directly applicable to constrained state space robotic
manipulators. The constrained output ILC (COILC) method,
described in Yovchev et al. (2020a), can be applied for con-
trol of robotic manipulators without imposing any extra con-
straints on their workspace, as well as to solve the problem
of transient growth error. Robustness and convergence of the
COILC are proven when an estimation of the inertia matrix
is used as a learning operator.

The focus of today’s ILC investigation is on improving the
overall performance of the ILC and for reducing the required
number of ILC executions (iterations) for generating the con-
trol signals for precise trajectory tracking when payload vari-
ations are considered. The performance of the ILC methods
can be improved by a range of machine learning methods
(Wei-Liang et al., 2017; Zhang et al., 2019). The work of
Nemec et al. (2017) provides an adaptive ILC method to
achieve smooth and safe manipulation of fragile items, with
the adaptation supervised by reinforcement learning. Neural
networks (Patan et al., 2017; Xu and Xu, 2018) or fuzzy neu-
ral network methods (Wang et al., 2008; Wang et al., 2014)
are used within ILC to reduce the uncertainty of the model
used for the design of the controller. The basis-motion torque
composition approach (Sekimoto et al., 2009) has been pro-
posed as a solution for the main disadvantage of the ILC,

that the ILC requires a new learning process for achieving a
different motion (Tanimoto et al., 2017).

In our previous research (Yovchev and Miteva, 2021) we
investigated the influence of the ILC learning operator over
the performance of the ILC when considering the need for
using similar desired trajectories. The research by Yovchev
and Miteva (2021) showed that the learning operator can be
tuned for the given job, and this analysis can then be used
to increase ILC performance when the job is modified. To
put it another way, if the job is to paint vehicle doors, the
ILC will modify its learning operator to shorten the time re-
quired for convergence when computing the precise control
signals for the execution of required trajectory for painting
another car door. The different learning operators are gener-
ated using a modified version of the estimated inertia matrix
of the robotic manipulator. The modification analysis is done
offline, and the algorithm does not require additional specific
hardware. The proposed adaptation process is dependent on
only one additional gain by which the estimated inertia ma-
trix is modified when the learning operator is optimized. This
research will consider this gain as a multiplier gain of the in-
ertia matrix. The current research will extend the adaptation
process of the ILC learning operator by adding an additional
adaptation gain (called fine-tuning gain) which will be added
element-wise to the modified estimation of the inertia matrix.
This will allow for fine tuning of the adaptation of the learn-
ing operator. Also, this research will consider the changes
of the dynamics of the robotic manipulator when a different
payload (or different end effector) is attached to the robot.
Even when a simple SCARA-type robot is considered, the
dynamics and, therefore, the inertia matrix of the robot are
dependent on the attached payload. The ILC process most
likely will compensate for the error of the estimated iner-
tia matrix caused by the different payload but will require
a higher number of iterations. The proposed approach will
adapt and fine-tune the inertia matrix estimation without the
need of additional knowledge of the inertia characteristics of
the payload. The adaptation process will be done on a pre-
defined reference trajectory, and the adaptation gains found
will be used for any other desired trajectory when the same
payload is attached.

This paper is organized as follows. Section 2 formulates
the problem of applying ILC to trajectory tracking of a
robotic manipulator with a payload and proposes an approach
for ILC adaption for a specific payload. Section 3 validates
the proposed algorithm through a numerical experiment and
presents a computer simulation. Section 4 summarizes the
results and proposes future research directions.

2 Formulation of payload-adaptive ILC

Figure 1 shows the standard ILC scheme. P denotes the robot
arm, L represents the learning controller, M represents the
control’s system memory, l = 1, . . .,N denotes the current it-
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Figure 1. Iterative learning control scheme.

eration number, N represents the total number of iterations,
ul represents control law’s the feed-forward term for itera-
tion l, q l denotes the output trajectory for iteration l, and
qd represents the desired output trajectory. After each itera-
tion, the feed-forward term ul+1 is computed offline and is
used to reduce the trajectory tracking error for iteration l+1.

The synthesis of the learning update law of the conven-
tional ILC requires the definition of feed-forward and feed-
back controllers. The update control law iteratively improves
the feed-forward control term by the following rule:

ul+1 = ul +L(q l)(q̈d− q̈ l), (1)

where L(q l(t)), l = 0,1, . . .,N is a learning operator, u0(t)≡
0 is the initial feed-forward control input, q̈d are the desired
joint torques, q̈ l is the output joint torque during iteration l,
and t ∈ [0,T ] denotes time, where [0, T ] is the trajectory
tracking time interval.

The COILC procedure described by Yovchev et al. (2020a)
can be used for the control of any type of robotic manipulator
with k joints and state space constraints (defined as Qmin

j ≤

qj ≤Q
max
j ,1≤ j ≤ k), which is supposed to minimize the

tracking error of any attainable desired trajectory qd:

a. Start with initial iteration number l = 0, and proceed
with the iterative procedure.

b. Starting from the initial position q l(0), the system tracks
the desired trajectory under the control ul(t) until the
first moment Sl for which there exists j : 1≤ j ≤ k, and
either q lj (Sl)=Qmin

j or q lj (Sl)=Qmax
j or the end po-

sition q l(T ) is reached. When t = Sl , Sl ∈ (0, T ], the
tracking process stops.

c. After the current tracking performance has finished,
the learning controller updates the feed-forward control
term according to the following learning update law:

ul+1(t,Sl)= ul(t,Sl−1)+u∗l (t,Sl),

u0(t,S−1)≡ u0(t),

u∗l (t,Sl)=


L(q l(t), t)(q̈d(t)− q̈ l(t)),

t ∈ [0,Sl], Sl ∈ (0,T ];
0, ∀t ∈ (Sl,T ].

(2)

d. Calculate the current maximum trajectory tracking er-
ror, defined as |δq l(t)|∞. If the error is less than or
equal to a predefined acceptable accuracy, then exit
from the learning procedure, or else set l = l+ 1, and
go to step (b).

Figure 2. Schematics of SEIKO Instruments TT-3000 robot with
attached payload.

Let Â be the approximation of the inertia matrix A. Then
the ILC is robust and convergent if the learning operator from
Eq. (1) is chosen as L(q)≡ Â(q) (Delchev, 2012). The ap-
proximated inertia matrix evaluates how each joint’s param-
eters influence robot motion. The convergence rate will be
improved by a better estimation Â of A.

As stated in the research by Yovchev and Miteva (2021),
the performance of the ILC method depends on the selection
of the estimation. The research proposed an additional pa-
rameter of the COILC – the scalar learning gain s by which
the matrix Â will be multiplied and the learning operator will
become L(q)≡ sÂ(q). This will alter the u∗l (t,Sl) from the
COILC update law (Eq. 2) as follows:

u∗l (t,Sl)=


sÂ(q l(t))(q̈d(t)− q̈ l(t)), t ∈ [0,Sl] ,

Sl ∈ (0,T ];
0,∀t ∈ (Sl,T ].

(3)

This scalar is used to adapt the ILC process to a specific
set of trajectories. The goal of the current research is to pro-
pose a new approach for adaptation of the ILC method for
the specific type of executed task. The robot’s dynamics is
dependent of the end effector of the robot. When the end ef-
fector is changed, the estimation of the inertia matrix must
be recalculated.

This research will consider the well-known SEIKO Instru-
ments SCARA-type robot TT-3000. The kinematics of this
robot is shown in Fig. 2. The joint lengths are l1= 250 mm
and l2= 220 mm. The dynamical equations of motions and
the parameters of the dynamics of this robot are described in
research by Shinji and Mita (1990).

The standard formulation of the dynamics of this robot is
formulated by Shinji and Mita (1990) as follows:

a11(q2)q̈1+ a12(q2)q̈2− 2m2l1s2 sin(q2)q̇1q̇2

−m2l1s2 sin(q2)q̇2
2 +D1q̇1+ f1 = u1

a12(q2)q̈1+ a22q̈2+m2l1s2 sin(q2)q̇2
1

+D2q̇2+ f2 = u2. (4)
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Figure 3. Schematics of the workflow of the payload-adaptive ILC.

The inertia matrix A(q)= [aij (q2)], 1≤ ij ≤ 2, where

a11(q2)= I1+m1s
2
1 + I2+m2(I 2

1 + s
2
1 )

+ 2m2l1s2 cos(q2)

a12(q2)= I2+m2s
2
2 +m2l1s2 cos(q2)

a21(q2)= a12(q2)

a22(q2)= a22 = I2+m2s
2
2 , (5)

where for i = 1,2,Di is the viscous damping, fi is Coulomb
friction, li is the link length, si is the position of the centre of
mass, mi is the total mass of the link, Ii is the inertia of the
link about its centre of mass, and ui is the driving torque of
the link.

When we consider the attached payload, then the inertia
matrix A(q)= [aij (q2)], 1≤ ij ≤ 2 is as follows:

a11(q2)= a11(q2)+ Im+m(l21 + l
2
2 + 2l1l2 cos(q2))

a12(q2)= a12(q2)+ Im+m(l22 + l1l2 cos(q2))
a21(q2)= a12(q2)

a22(q2)= a22 = a22+ Im+ml
2
2 , (6)

where the payload is attached to the second link and has the
following characteristics: mass m and inertia about its centre
of mass Im.

The payload (the attached end effector) is supposed to
change the dynamics characteristics of the robotic manipu-
lator, as can be seen from Eqs. (5) and (6). This will lead
to a different performance of the ILC process when different
payloads are used. Also, for optimal ILC the inertia charac-
teristics of the payload must be known. The goal of this re-
search is to propose a new approach with an added ILC adap-
tation phase when a new payload is attached. The estimation
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Â(q)= [âij (q2)], 1≤ ij ≤ 2 of the inertia matrix A(q) of the
robot without payload will be modified by execution of a pre-
defined training trajectory when a new payload is attached.

The estimated inertia matrix Â(q) considers how the char-
acteristics of each joint affect the robot’s motion. Correct es-
timation of this matrix will lead to a robust and convergent
ILC process. The learning operator cannot be randomly cho-
sen due to a slow or non-convergent ILC process. For the
purposes of this research, we will assume that the inertia ma-
trix Â is estimated correctly for a robotic manipulator with
no payload. We will introduce two additional parameters of
the COILC – the scalar learning multiplier gain s and fine-
tuning gain p by which the matrix Â will be modified to be
used as a learning operator: L(q)≡ sÂ(q)+p. This will alter
the u∗l (t,Sl) from the COILC update law (Eq. 2) as follows:

u∗l (t,Sl)=

(sÂ(q l(t))+p)(q̈d(t)− q̈ l(t)), t ∈ [0,Sl],
Sl ∈ (0,T ];

0,∀t ∈ (Sl,T ].
(7)

When a new payload is attached, the robot will execute
several consequent ILC processes with a predefined refer-
ence trajectory. These consequent ILC executions will eval-
uate multiple pairs of parameters (s, p).

The COILC constrains the output trajectory at each itera-
tion l, so that the state space constraints cannot be violated
during the ILC procedure, and the adaptation step can be
safely executed.

The workflow of the proposed payload adaptation ILC
process is shown in Fig. 3. The steps which are bordered with
the dashed rectangle are the new addition to the ILC proce-
dure – the payload adaptation phase. During this phase, mul-
tiple ILC procedures are executed to find the optimal multi-
plier gain s and fine-tuning gain p for the current payload.
This adaptation requires several additional ILC executions
and is applicable when the current payload is supposed to be
used for multiple execution of multiple trajectories. The goal
of this payload adaption phase is to reduce the number of re-
quired ILC iterations for achieving a precise trajectory track-
ing when the dynamics and the mathematical parameters of
the payload are unknown. As a payload, we are referring to
both the tools (end effectors) and the objects with which the
robot operates.

The performance of the proposed approach is evaluated
through numerical experiments and computer simulation in
the following section.

3 Numerical experiments and simulation results

For evaluation on the viability and applicability of the pro-
posed payload-adaptive ILC, we conduct numerical exper-
iments and a computer simulation with a specialized soft-
ware. For the numerical experiments, we will use GNU Oc-
tave software to solve the ordinary differential equations of
the dynamics (Eaton et al., 2019). For the computer simu-
lations, we will use the Cyberbotics Ltd. Webots™ robotic

Table 1. TT-3000 hard constraints for the computer simulation.

Joint constraint [rad] Qmin
1 Qmax

1 Qmin
2 Qmax

2

−2.50 2.50 −1.57 1.57

Figure 4. The grey dots represent the workspace of the robot. The
dashed red and the solid black lines represent two similar desired
trajectories A and E in the workspace.

simulator (Michel, 2004) and its simulation of the Universal
Robots’ UR5e robotic manipulator. The computer simulation
will be used for better explanation of the advantages of the
payload adaption of the ILC learning operator.

For the numerical experiments of the adaptive COILC
algorithm, a computer simulation is used, as described in
Sect. 2. The robot will have the following joint constraints
Qmin
i ≤ qi ≤Q

max
i , where 1≤ i ≤ 2 as described in Table 1.

The inertia matrix A from Eq. (5) of the simulated robot
with no payload will be as follows:

a11(q2)= 6596.2+ 3011.2cos(q2) kgcm2

a12(q2)= 1353.4+ 1505.6cos(q2) kgcm2

a21(q2)= a12(q2) kgcm2

a22(q2)= 1353.4kgcm2. (8)

The estimation Â of the matrix A which will be used for
the initial ILC learning operator will be defined as follows:

â11(q2)= 6600+ 3000cos(q2) kgcm2

â12(q2)= 1400+ 1500cos(q2) kgcm2

â21(q2)= â12(q2) kgcm2

â22(q2)= 1400kgcm2. (9)

When a payload with inertia about its centre of mass Im
and mass m is attached, the inertia matrix A of the simulated
robot will be altered in accordance with the payload as fol-
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Figure 5. Convergence comparison of the ILC process for Trajectory A for different values of the multiplier gain s and fine-tuning gain
p = 0: (a) maximum tracking error and (b) iteration times.

Figure 6. Convergence comparison of the ILC process for Trajectory A for different values of the fine-tuning gain p and multiplier gain
s = 2: (a) maximum tracking error and (b) iteration times.

lows:

a11(q2)= 6596.2+ 3011.2cos(q2)+ Im

+m(1109+ 1100cos(q2)) kgcm2

a12(q2)= 1353.4+ 1505.6cos(q2)+ Im

+m(484+ 550cos(q2)) kgcm2

a21(q2)= a12(q2) kgcm2

a22(q2)= 1353.4+ Im+ 484mkgcm2. (10)

The trajectories used for adaptation (Trajectory A) and for
evaluation (Trajectory E) of the optimized learning operator
are shown in Fig. 4. They are trajectories with similar char-
acteristics. It is supposed that after the ILC learning operator
is adapted for Trajectory A, then the ILC process will have a
better performance (faster convergence rate) when the robot
must be trained for execution of Trajectory E.

The numerical experiments consider two types of pay-
loads, Payloads A and B, with the following characteris-

tics: Im= 150 kgcm2 and m= 7.5 kg for Payload A and
Im= 52.8 kgcm2 and m=2.5 kg for Payload B.

During the initial adaption for Payload A the following
values for the multiplier gain s are considered: 0.5, 1.0, 1.5,
and 2.0. The fine-tuning gain p is set to 0. The COILC is
executed with the desired trajectory set to Trajectory A. The
convergence of the ILC process is shown in Fig. 5.

Further, the multiplier gain s is set to the best value found
of 2.0, and additional adaptation is done by considering the
following values for the fine-tuning gain p: 0, 100, 200, 300,
and 400. The convergence results are shown in Fig. 6.

Figure 7 shows comparison of the generated ILC process
when the desired trajectory is set to Trajectory E. The results
show that the total ILC execution time is reduced from 109
to 55 s, which is about a 50 % faster ILC process with the
learning operator that is adapted to Payload A with gains s =
2 and p = 0.
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Figure 7. Convergence comparison of the ILC process for Trajectory E for non-adapted ILC and ILC adapted to the payload: (a) maximum
tracking error and (b) iteration times.

Figure 8. Convergence comparison of the ILC process for Trajectory E with Payload B for non-adapted ILC and ILC adapted to Payload A:
(a) maximum tracking error and (b) iteration times.

The next experiments are conducted for Payload B. Fig-
ure 8 shows the ILC convergence for Trajectory E when non-
adapted ILC and ILC adapted to Payload A is used. It can
be concluded that with the learning operator adapted to Pay-
load A, the ILC process will need a very high number of
iterations for trajectory tracking with Payload B. The ILC
process will still be convergent, but the number of iterations
will exceed more than 20.

Then, the adaptation process is repeated for Payload B
over Trajectory A. The found adaptation gains are s = 1.5
and p = 200. With the learning operator that is adapted to
Payload B, the total ILC execution time for Trajectory E is
reduced from 77 to 59 s, which is about a 23 % faster ILC
process. The convergence comparison is shown in Fig. 9.
The results confirm that after adaption to the payload, the
ILC performance will be improved, and a smaller number
of iterations will be required. The results from Figs. 8 and 9
also confirm that the payload adaption is a process specific

to the payload. When the payload is changed, the ILC can-
not be used with gains which correspond to another payload.
Either a new adaption must be executed, or the ILC should
use the non-adapted learning operator. The adaption to pay-
load makes sense when a specific payload is used for multi-
ple different trajectories. Such payloads are the different end
effectors or tools with which the robot operates.

For the next experiment, a computer simulation is created.
For the computer simulation, we consider trajectory move-
ment of the UR5e with a duration of 2 s. All the joints of
the robot are fixed, except the second one (the elbow lift
joint), which moves from −0.01 rad to −2.60 rad. The robot
is in its maximum extended state, which requires the maxi-
mum torque when the robot holds the payload in its gripper.
For the experiment, two different payloads with a mass of 1
and 7 kg are considered. Some positions from the simulated
robot movement are shown in Fig. 10.
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Figure 9. Convergence comparison of the ILC process for Trajectory E with Payload B for non-adapted ILC and ILC adapted to Payload B:
(a) maximum tracking error and (b) iteration times.

Figure 10. Positions of the simulated movement of the UR5e robot holding the payload in the gripper.

The desired trajectory of the second link is shown with a
thin solid black line in Fig. 11a. The trajectory executions
with the two different payloads with the default robot control
without applying ILC are shown in Fig. 11a. For the com-
puter simulation, multiple ILC procedures are executed with
different values of the multiplier gain. In Fig. 11b the ILC
executions are shown for values 0.4 and 0.7 of the multiplier
adaptation gain.

These results clearly show that for different payloads, a
different multiplier adaptation gain will change the behaviour
of the ILC process. For the payload of 1 kg, we can con-
clude the higher multiplier gain s = 0.7 will result in a non-
convergent ILC process. For the higher payload of 1 kg, both
0.4 and 0.7 gains will preserve the convergence of the ILC
process, but the higher gain will need 9 iterations instead of
13 iterations for the lower to achieve the same value of max-
imum tracking error. For both payloads, we can use a gain
value of 0.4, and the ILC process will minimize the trajectory

tracking error. But with the payload adaptation proposed in
this research, the overall performance of the ILC can be im-
proved when the payload is also taken into consideration by
the robot control. Fewer iterations will be needed for mini-
mizing the trajectory tracking error.

4 Conclusion

This research considers the convergence of the ILC process
when it is applied to control of the same robotic manipula-
tor with different type of payloads (end effectors). The pro-
posed approach uses the estimation of the inertia matrix of
the robotic manipulator with no payload attached as the ba-
sis ILC learning operator. Afterwards, an approach for adap-
tation of this learning operator to a specific payload is pro-
posed. When the robot is equipped with a new payload, the
ILC learning operator must be adapted for the changes of
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Figure 11. (a) Desired trajectory and its execution with different payloads. (b) Comparison of the convergence of the ILC process with
different payloads and different values of the multiplier gain s.

the dynamics model and especially to the inertia matrix of
the robot. After this adaption is done, the performance of the
ILC will be higher, and the required number of ILC iterations
will be reduced for any desired trajectory when this payload
is being used. The conducted experiments confirmed the pro-
posed approach. They also concluded that the adaption must
be repeated when the payload is changed. This research con-
siders the control of state-space-constrained robotic manipu-
lators, and since the adaption process alters the learning op-
erator, it is required that those constraints are considered by
the control method. The research proposes the use of the ro-
bust and convergent COILC method. The proposed approach
for learning operator adaptation can be considered to be an
adaptive extension to the COILC. After the adaption there
are no additional computational costs during further execu-
tion of the ILC iterations. The proposed approach improves
the overall performance of the ILC for industrial robotic ma-
nipulators, which are supposed to execute a set of similar
trajectories but with different types of end effectors attached
or payloads carried. Further research should be done on ap-
plying payload adaption to ILC for redundant robotic manip-
ulators. Also, the multiplier and the fine-tuning gains can be
considered to be vector gains, and experiments can be con-
ducted to show whether these vector gains can further reduce
the required number of ILC iterations. Metaheuristic algo-
rithms (such as genetic algorithms, hill climbing, or simu-
lated annealing) can be used for automatization of the adap-
tation process.
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