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Abstract. Test planning is a crucial step in the operational modal analysis (OMA) of wind turbines (WT), and
it is an essential part of choosing the best positions for installing the sensors of the structures. On the other hand,
updating the finite element model (FEM) with the OMA results implies a better prediction of the real structure’s
dynamic and vibrational behavior. This paper aims to show how the OMA of a nonuniform and two-section wind
turbine tower can be performed more effectively, using the required test planning and optimal sensor placement.
Then, accordingly, the OMA is used in operating and parked conditions to find the objective bending mode
characteristics. Moreover, the updating of the applicable FEM of the multi-sectional wind turbine tower will be
described. The tailor-made genetic algorithm (GA) is used to find the MEMS (micro electro-mechanical system)
sensors’ optimal positions of the WT under study. The OMA was performed and the acquired data analyzed
using the stochastic subspace identification (SSI) method. Based on the OMA results, the FEM is updated by
applying the sensitivity method. The results show that a tailor-made GA is a practical and quick approach to
finding the optimal position of the sensors to obtain the best results for the objective modes of the WT. The
OMA results, under operating and parked conditions, prove some modal characteristics of WTs. Based on the
sensitivity analysis and engineering judgment, the modulus of elasticity was selected as a parameter for updating.
Finally, we found that the updated FEM had less than 1 % error compared to the obtained frequencies from the
test.

1 Introduction

Providing economic and reliable wind turbines is the most
significant challenge for wind turbine designers. Understand-
ing wind turbine dynamics is essential for meeting the re-
quirements (Tittus and Diaz, 2020). Finding out or predict-
ing the dynamic behavior can be obtained from creating a fi-
nite element model and modal testing. In this respect, using a
modal test as a tool to understand wind turbine (WT) dynam-
ics based on measured data seems very helpful. Generally,
there are two methods for modal testing of massive struc-
tures like wind turbines, namely experimental modal anal-
ysis (EMA) or operational modal analysis (OMA). The en-
gineering field that studies the modal properties of systems
under ambient vibrations or normal operating conditions is

called operational modal analysis (OMA) and provides use-
ful methods for modal analysis of many structural engineer-
ing areas (Brincker and Ventura, 2015). Since testing large
structures with the traditional method that requires the arti-
ficial excitation of the structure is difficult, time-consuming,
and costly, OMA (operational modal analysis) is proposed
as a practical and optimal solution for testing wind turbines
(Carne et al., 1988). James et al. (1992, 1996) did the com-
plementary research on modal testing using natural excita-
tion. Then, Carne and James (2010) published their research
reviews and then compared the OMA versus EMA of wind
turbines and revealed the advantage of OMA for wind tur-
bines’ modal tests. Also, Osgood et al. (2010) did the modal
field test on an on-shore wind turbine and compared the re-
sults.
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Ozbek et al. (2013), and other studies by Lorenzo et
al. (2015), Allen et al. (2011) and Tcherniak et al. (2011),
discussed the most crucial challenges in the operating modal
analysis of wind turbines. To solve the problems, a care-
ful test planning for considering the OMA is essential. Sev-
eral matters like test objectives, sensor placements, equip-
ment, measurement duration, and FE analysis should be de-
termined. Brincker and Ventura (2015) reviewed the effec-
tive test planning for a successful OMA of wind turbines.
Zierath et al. (2018) present a contribution that summa-
rizes the comprehensive experimental modal analysis tech-
niques on a 2 MW industrial wind turbine. Also, in this study,
CMA (classical modal analysis) and OMA techniques for a
rotor blade are applied, while the dynamics of the entire wind
turbine with a locked rotor are analyzed by means of opera-
tional modal analysis. For the OMA, different identification
procedures are applied, and then the resulting modal param-
eters are compared to each other.

One of the most critical steps of the test planning proce-
dure is the optimal placement of the available sensors on
the wind turbine components to access the test objectives.
In this regard, many techniques have been proposed for op-
timal sensor placement problems in the last 2 decades. Maul
et al. (2007) reviewed the literature. In recent years, com-
putational intelligence approaches have been applied to op-
timal sensor placement (OSP) effectively. The genetic algo-
rithm (GA), as a computational intelligence method, is based
on natural evolution theory. Jung et al. (2015) investigated
the optimal layout of a flexible two-dimensional rectangu-
lar plane using the genetic algorithm method. Then, they
compared it with the results of the proposed optimal layouts
of the general methods like EI, EI-DPR, EVP, and ADPR.
The results show that GA gives the best results compared
to the other methods. Schulze et al. (2016) used GA for
the optimal locations of 19 sensors for OMA of wind tur-
bine blades, leading to high-quality and optimized results.
Downey et al. (2017) developed an optimal sensor place-
ment within a hybrid dense sensor network to construct ac-
curate strain maps for large-scale structural components. The
objective function and genetic algorithm are experimentally
validated for a cantilever plate under three loading cases. So-
man and Malinowski (2019) present a novel implementation
of the genetic algorithm (GA) to improve the sensor network
coverage for damage detection using guided wave structural
health monitoring.

Also, a wind turbine’s practical design needs a finite el-
ement model or numerical models. Model updating is es-
sentially a process of adjusting specific parameters of the fi-
nite element model. The sensitivity method is probably the
most successful of the many approaches to updating finite el-
ement models of engineering structures based on vibration
test data. Camargo et al. (2019) investigated the dynamic be-
havior of a reinforced and post-tensioned concrete structure
for applications in wind turbine towers by considering the ob-
tained modal parameters from the OMA results. Also, since

the vibration behavior originates from the mode’s inherent
properties, forces exciting the system at resonant frequencies
yield large vibration responses that lead to discomfort or even
damage.

First, this paper focuses on selecting the best location
of the available sensors on the nonuniform tower, which is
rarely applied, of studied wind turbine using genetic algo-
rithms to achieve its bending modes. Then, the results of the
wind turbine’s OMA reveal its dynamic behavior. Finally,
a sensitivity analysis was performed using a finite element
model (FEM) to understand which parameters have the most
significant effect on modal frequencies. Also, model adjust-
ments were performed by updating the selected parameters
to obtain the same values as in the experimental results.

2 Optimal sensor placement (OSP)

A successful wind turbine OMA is closely dependent on the
quality of the data obtained by careful test planning. So, the
critical step in obtaining useful quality data is that the test
has been planned carefully and executed. Due to the enor-
mous wind turbines and a limited number of sensors, an es-
sential issue in the test planning is to find the best location
of the existing sensors to reach the test objectives. The struc-
ture has many nodes onto which the sensor may be mounted.
However, because of the limited number of sensors, they can
only place at some locations. This notwithstanding, from a
practical perspective, the OMA needs to optimize the sen-
sor locations to obtain as much information on the structural
system as possible.

In this study, the operational modal analysis aims to take
the modal parameters of the tower’s first and second bend-
ing pair modes (fore-and-aft – FA; side-to-side – SS) in the
100 kW wind turbine installed at a research site. The studied
wind turbine has three blades, a magnetic generator, and a
medium-speed gearbox, with a multi-sectional and nonuni-
form steel tower of about 40 m, as shown in Fig. 1.

2.1 OSP methodology

The aim of selecting the optimal sensor positions is to de-
termine the sensors’ best locations for obtaining precise re-
sponse data and the structural dynamic behavior. So, it is es-
sential to select the nodes on the large structure that extract
the objective modes with the least dependency. Therefore,
the OSP procedure is an optimization problem with a suit-
able fitness function to reach the objective mode shapes de-
pendency.

2.1.1 Fitness function

Considering the abovementioned concept, we should se-
lect the criterion that shows the modes’ relation. Alle-
mang (2003) reviewed the development of the original modal
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Figure 1. The studied wind turbine installed at a research wind
farm.

assurance criterion (MAC) and revealed how a simple statis-
tical concept becomes a handy tool in experimental modal
analysis and structural dynamics. Pastor et al. (2012) pointed
out that the modal assurance criterion (MAC) is a suitable
and most popular tool for evaluating this linear dependence.
Bakhary et al. (2014) compared some of the most useful
fitness functions (MAC; FIM – Fisher information matrix;
MSE – mean square error) and concluded that MAC function
performs the optimal sensor placement better. We determine
the auto-MAC matrix build-up with target mode shapes from
the following:

MAC=MAC
(
8Ti 8j

)
=

∣∣8Ti 8j ∣∣2(
8Ti 8i

)(
8Tj 8j

) , (1)

where 8i and 8j are ith and j th mode shape vectors at the
sensor position nodes, respectively. All diagonal elements of
the auto-MAC matrix are equal to 1, since the mode shapes
are correlated with themselves for the case i = j . In contrast,
for the case i 6= j , the off-diagonal elements take values be-
tween 0 and 1, depending on the linear dependency between
the mode shape pair 8i and 8j .

Thus, the off-diagonal terms of the auto-MAC matrix can
be used to check the mode shapes’ linear independence for
optimal sensor placement. For this purpose, the sum of off-

diagonal terms should be close to 0, as far as possible. So,
the OSP optimization problem aims to find the auto-MAC
matrix with the minimum number off-diagonal elements. The
fitness function (F ) can be defined as follows:

F =

N∑
i,j=1,i≺j

MACij . (2)

2.1.2 Genetic algorithm

A genetic algorithm is an optimization algorithm which
evolves analogously, as does the Darwinian principle of nat-
ural selection. To obtain the optimal solution for design prob-
lems, the GA has been implemented to progress similarly
to natural evolution. A combination of selection, mutation,
crossover, and recombination is at work to evolve those stor-
age individuals from an initial population (Zhao el at., 2020).
The optimization process through a genetic algorithm is ei-
ther carried out randomly or by selecting candidate design
variables to create the initial population. This initial pop-
ulation is generated through natural selection tools so that
newer or better generations achieve the optimization goals.
The quality and value of the produced generations are evalu-
ated based on a fitness function. Depending on the goal, the
optimization of this fitness function can be programmed to
maximize or minimize. To perform the genetic algorithm, it
is necessary to define a coding system to express the opti-
mization variables. The design variables should be coded by
binary expression.

In order to apply a genetic algorithm to the sensor opti-
mization placement problem, we have the following steps.

(1) Create an initial population randomly, and calculate the
fitness values of the strings.

(2) Select the fittest individuals according to fitness values,
and apply the crossover operation and mutation opera-
tion.

(3) Calculate the fitness values of the new strings.

(4) Repeat steps (2) and (3) until the termination criterion
is met.

This study used the genetic algorithm toolbox in MATLAB
to select the sensors’ optimal position. We linked it to the
FEM model in Ansys to evaluate each generated sensor
placement’s fitness function.

In optimizing the sensor’s position by a genetic algorithm,
the set of possible positions for the sensors’ arrangement is
considered to be an individual. A simple way to encode an
individual is to use a binary vector to combine the possible
positions of the sensor installation as follows:

sp = [0 1 0 0 1 · · · 0 1] . (3)

The length sp is equal to the available degrees of freedom
(DOF) for installing the sensors (n). The value of 1 in the
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Figure 2. Algorithm for optimal sensor placement, based on the genetic algorithm.

vector indicates that one sensor is located on the DOF of a
node. Therefore, the sum of the Sp0 element’s values (as an
initial individual) indicates the number of existing sensors in
the optimization. Thus, the studied population in this opti-
mization includes a set of sp layouts (possible arrangements
for installing sensors in available locations and its related de-
grees of system freedom).

After coding the individuals, it is necessary to determine
the fitness function to achieve the optimization goals. The fit-
ness function indicates an individual’s ability and determines
how to ascend to the next generation. The value index is de-
fined as follows:

Fitness function→Minimize

[
N∑

i,j=1,i≺j
MACij

]
. (4)

As mentioned above, the objective function to optimize sen-
sor placement is defined to minimize the non-diagonal ele-
ments of the auto-MAC matrix.

It is necessary to generate an initial population Sp0 with
random individuals and the examined the fitness function to
start optimization. The genetic selection criterion is defined
by a genetic algorithm that determines which individual is
passed on to the next generation. In the GA process calcu-
lation, the population size of 50, the crossover rate of 90 %,
and the mutation with a probability of 10 % are used. To en-
sure that the best generations are not eliminated from the
next stage by random selection, it states that the top 10 %
of the generated generations automatically go to the next
stage. Most generations are not eliminated by random se-
lection, and the remaining 90 % is generated using genetic
algorithms.

The above process continues until the defined termination
criterion is met to achieve the individual that gives us the
sensors’ best position. The termination criterion is defined as
follows:

Criterion→ |fave− fmin| ≤ ε. (5)

The termination criterion is the difference between the fitness
function’s best value fmin and the fitness function’s average
values fave. The termination value for stopping optimization
is assumed to be 0.05.

2.1.3 Assumptions

To do an effective and easy optimization procedure, consid-
ering some assumptions and limitations is necessary.

The wind turbine tower’s finite element model was made
using the beam element in Ansys software. Since finding the
bending modes of the wind turbine tower in the fore-and-aft
and side-to-side directions are the goals, UX and UY of the
available nodes on the finite element were considered to be
the individual element. Limitations or lack of access to some
part of the tower lead us to remove their related nodes from
the optimization process.

Also, there are six sensors to be mounted on the tower to
measure objective bending modes.

2.1.4 Optimization results

The considered mode shapes for selecting the sensors’ opti-
mal arrangement were the first and second bending modes in
the fore-and-aft (UX) and side-to-side (UY ) directions of the
wind turbine tower structure under study.

The tower mode shape vectors were extracted from Ansys
software and defined as optimization inputs in the MATLAB
software optimization toolbox.

The fitness plot to reach the sensors’ best configuration,
using a genetic algorithm, is presented in Fig. 3. The col-
umn shows the obtained fitness value for each generation,
and the row is the number of produced generations in the
optimization problem up to obtain the best sensor configura-
tion. This diagram shows the comparison of the best value of
the fitness function and the average values of the fitness func-
tion obtained among each generation’s population to find the
best result. It is observed that, by increasing the number of
generations, the fitness function’s optimal and average values
become closer to lower values. Obviously, all the minimum
fitness (best) values tend to a constant quickly, and the aver-
age fitness value steadily tends to the best fitness value along
with the increasing number of generations. It shows a good
characteristic of convergence.

Based on the OSP results that considered available nodes
on the actual tower structure, the six sensors (nos. 1, 2, 5, 6, 7,
and 8) were mounted at levels of 38.8 m (Sect. 3; UX, UY ),
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Figure 3. A fitness function plot to obtain the best configuration
sensors on the nonuniform wind turbine tower.

Figure 4. The sensor placement layout on the wind turbine tower,
based on GA.

26 m (Sect. 2; UX, UY ), and 15.33 m (Sect. 1; UX, UY ) to
detect the first and second tower bending pair modes (FA/SS)
of the wind turbine. The final sensor arrangement is shown
in Fig. 4.

3 Finite element modeling (FEM)

Finite element modeling helps to provide a preliminary un-
derstanding of the system’s primary modes’ structural dy-

Table 1. Natural frequency of the tower obtained from FEM.

Tower bending modes Frequency (Hz)

First tower bending mode (FA) 1.565
First tower bending mode (SS) 1.568
Second tower bending mode (FA) 9.57
Second tower bending mode (SS) 9.59

namics, natural frequencies, and mode shape. So, finite el-
ement modeling should be created before the modal test
for test planning and should specify the requirements, such
as measurement duration, sampling frequency, and sensor
placement.

In this research, the 3-D finite element model of the wind
turbine tower was created by Ansys software. The parametric
FE model was created with changeable design parameters to
improve the model updating parameters.

Various types of Ansys library finite elements were tested
to achieve a better numerical result of the wind turbine tower
behavior, and finally, shell 281 was selected. It was also used
in modeling the Ansys CERIG command, which creates a
massless web of rigid bars. The extra masses of the nacelle,
rotor hub, and blades are considered to be point masses lo-
cated at the tower top on the height of the wind turbine.

To access the optimized mesh grid size, many of the mesh
sizes are examined in the FEM, and the comparison shows
that the first frequency has remained fixed, approximately for
a size smaller than 30 cm.

Based on the modal analysis of the FEM model, the natu-
ral frequencies and related mode shapes of the wind turbine
tower were obtained and are revealed in Table 1 and Fig. 5.

4 Operational modal analysis (OMA)

The tower wind turbine’s OMA was carried out using the
MEMS accelerometer, the eight-channel data logger, and its
software based on the test planning. Based on the modal
frequency of interest and their expected magnitude consid-
erations, MEMS sensors ADXL320 are chosen to be sensi-
tive enough and have a suitable measurement and frequency
range. The sensors were calibrated and equipped with the
amplifier by considering the predicted cable lengths to pre-
vent signal noises as much as possible. The sampling fre-
quency of 100 Hz was chosen. Then for this study, it resam-
pled to the frequency of 24.8 Hz.

To achieve an acceptable OMA analysis, we selected a suf-
ficient measurement time length to identify the system’s low-
est natural frequency. Brincker and Ventura (2015) proposed
the total measurement time length (Ttot) by Eq. (6), as fol-
lows:

T tot>
20

2ζfmin
=

10
ζfmin

, (6)
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Figure 5. Mode shapes of the first and second tower bending pair modes.

where fmin is the lowest natural frequency, and ς is the struc-
tural damping.

Since the first natural frequency of a wind turbine tower
was estimated to be about 1.6 Hz, based on the results of
the initial finite element model, and with a damping ratio of
about 0.01, the minimum data collection time for analysis is
as follows:

T tot=
1000
1.6
= 625 s= 10min. (7)

The data were gathered in the two following cases during the
test time:

1. The parked condition, which refers to a situation in
which the wind turbine is not operating, and the rotor
speed is 0, and the blade’s pitch angle is fixed and in its
large values (≈ 90◦).

2. Under the operating condition, the rotor is rotating with
constant speed, the pitch angle is at a minimum, and the
nacelle direction is along the wind direction.

From the recorded data matched to the SCADA (supervi-
sory control and data acquisition) data, 10 min datasets cov-
ering OMA’s time invariance assumptions were checked and
screened. The few selected datasets were used in operational
modal testing software, Artemis, to required extract modal
parameters.

Finally, an operational modal analysis of the datasets was
done using stochastic subspace identification (SSI) meth-
ods in the software package. Stochastic subspace identifica-
tion (SSI) refers to standard algorithms for extracting modal
parameters in operational modal analysis. The SSI method
operates in the time domain, estimating the assumed time-
invariant matrices of a linear dynamic system (Overschee et
al., 2012; Boonyapinyo and Janesupasaeree, 2010). The SSI
method can identify the modal parameters with the random
input signal as the operational modal analysis. In the fre-
quency domain decomposition (FDD) method, the inputs are
unknown, similar to the SSI method. In this method, white
noise with a Gaussian distribution and zero mean is used,
and there is no need for using fast Fourier transform (FFT) to
transform the signal from the time domain to the frequency

Figure 6. Stabilization diagram of the wind turbine under parked
conditions (PA), with a rotor speed of 0 rpm (revolutions per
minute).

domain, and the data in the time domain are utilized directly.
This property eliminates the leakage error in the data and the
variation in the stiffness matrix due to the use of windowing
function (Mohammadi and Nasirshoaibi, 2017)

Accordingly, the stabilization diagrams under parked and
operating conditions are presented in Figs. 6 and 7, respec-
tively.

Other stable modes observed in the stabilization diagram
may occur due to the frequencies of other elements con-
nected to the tower, such as rotor blades, rotation harmon-
ics, and excitation of generators and foundations. Since, in
this study, the sensors were installed only on the wind tur-
bine tower, it is not possible to accurately identify the origin
of the other stable modes.

According to the results (Table 2), the first and second
tower’s bending pair frequencies, around 1.5 and 9 Hz under
the parked state, remained approximately constant in spite
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Figure 7. Stabilization diagram of the wind turbine under opera-
tional conditions (OP), with a rotor speed of 41 rpm.

Figure 8. FEM updating parameters.

of operating conditions. Therefore, changing the rotor speed
and pitch angles do not change these bending modes. In com-
parison, the changes in the damping ratios obtained in these
two cases are relatively significant. Also, the damping ratio
of the SS modes of the tower in case 1 (OP – operating wind
turbine conditions) is more than those for FA. Inversely, in
case 2 (OP), the damping ratios are higher in direction FA
compared to the ones in direction SS.

In describing this matter, since the blade angle is at a max-
imum in case 1 (PA), the blade surface is perpendicular to the
SS direction. While a high drag force is taking place in the
SS direction, the SS damping ratio will be higher than in the
FA direction.

On the other hand, in the operating wind turbine (OP),
the blade angle is close to 0, and more resistance occurs in
the FA direction. Therefore, the damping coefficients in the
wind turbine’s operating mode in FA modes are more than
SS. Generally, the tower’s bending damping ratios under the
operational case are higher than those for parked cases (es-
pecially for the first FA mode). This behavior is due to the
existing aerodynamic damping in the operation case. Aero-
dynamic damping has its origin in the wind load acting on
the rotor or, more accurately, in the interaction between the
wind flow and the motion of the structure. Kuhn (2001) de-
scribed aerodynamic damping and its effect on a wind turbine
performance.

5 Model updating

The FE model can be updated to validate the results obtained
from the wind turbine tower’s operational modal analysis us-
ing FEM updating. Since the finite element modeling was
carried out and analyzed for the parked condition, the modal
frequencies obtained from the OMA test, in this case, are
compared with FEM results, as shown in Table 3.

To perform the model updating process, every parameter
considered in an FE model can be a candidate for the updat-
ing parameter. Some parameters that can be improved in the
primary finite element model are Young’s modulus, density,
joints specifications, Poisson’s ratio, thicknesses, and model
dimensions.

Many references have suggested methods for selecting
the updating parameters. Most of the proposed methods are
based on sensitivity analysis. One of the easiest and efficient
methods that has been proposed is to combine the sensitivity
analysis with engineering judgment, based on the knowledge
of the original model.

As mentioned, the primary purpose of updating the finite
element model is to minimize the difference between the
model and the obtained natural frequencies from the test.
This optimization problem is solved in the software. This
method is a sensitivity-based method in which the physical
parameters are changed, and as a result of this change, the
mass and stiffness parameters of the structure are updated.
This makes it possible to weigh the structure’s physical pa-
rameters based on their effect on the structure’s dynamic re-
sponse, which is critical because the natural frequencies and
mode shapes have different uncertainty levels.

Assuming that the parameter exists in the finite element
model (as the initial value and the amount of variation), the
frequency sensitivity ( ∂ωi

∂p
) to the parameter needs to be ob-

tained.
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Table 2. Natural frequencies and damping ratios of a wind turbine tower during OP and PA conditions.

Tower bending modes Parked wind turbine Operating wind turbine

Frequency (Hz) Damping (%) Frequency (Hz) Damping (%)

First SS 1.471 3.74 1.418 1.543
First FA 1.495 1.352 1.422 8.266
Second FA 9.023 1.134 8.985 4.597
Second SS 9.116 1.416 9.031 2.193

Table 3. Test frequencies under PA vs. FEM.

Tower bending modes Frequency (Hz) Deviation (%)

FEM OMA (PA)

First tower bending (SS) 1.565 1.471 6.4 %
First tower bending (FA) 1.568 1.495 4.88 %
Second tower bending (FA) 9.57 9.023 6 %
Second tower bending (SS) 9.59 9.116 5.2 %

When the corresponding frequency is obtained in FE soft-
ware under these conditions, then ωi ′, i = 1,2, . . .,m.

If the parameter changes, p = p0+1p will use the finite
element again, and the frequencies of these conditions are
also calculated as ωi ′′, i = 1,2, . . .,m.

According to the definition, the natural frequency’s sensi-
tivity to changes in a parameter is as follows:

∂ωi

∂p
=
ωi
′′
−ωi

′

1p
,i = 1,2, . . .,m. (8)

The finite element model has many parameters that can
be changed, but only the parameters that affect the modes
are used to calculate the sensitivity. Based on engineer-
ing judgments in the finite element model of this study,
the parameters and their initial values that do not change
the dimensional characteristics of the structure are selected
for the model updating as E = 200 Gpa, υ = 0.3 and ρ =
7850 kg−1 m3.

According to the theory of the sensitivity analysis, to find
the most sensitive parameter to the first and second natural
frequencies of the wind turbine tower structure (first FA, first
SS, second FA, and second SS), optimization tools in AN-
SYS software were used. Based on the sensitivity analysis,
the model sensitivity values to the desired parameters are
shown in Table 4.

Based on the sensitivity analysis, the elastic modulus and
density parameters significantly impact the tower bending
modes’ natural frequencies. Since changing the tower den-
sity leads to varying its weight and its actual characteristics,
the model is updated by changes at the structure’s modulus
of elasticity.

As stated in the sensitivity analysis, the modulus of elas-
ticity was selected to update the studied wind turbine’s FE
model based on the OMA’s obtained frequencies. In this

Table 4. Sensitivity analysis of the wind turbine tower bending fre-
quencies to parameters.

p E υ ρ

∂ω1st FA
∂p

0.53 0.12 0.67

∂ω1st SS
∂p

0.52 0.1 0.67

∂ω2nd FA
∂p

0.35 0.14 0.51

∂ω2nd SS
∂p

0.36 0.12 0.54

manner, the objective function to minimize the error between
the frequency of the FEM and the test results is defined as
follows:

ERi =
∣∣∣∣fi − f eif ei

∣∣∣∣%. (9)

The error function (ER) is the differences between natural
frequencies of FEM (f ) and test results (f ei ). The natural
frequencies were updated in the model updating procedure.
But the objective function aims to minimize the error for the
first tower bending modes (ER≤ 1%).

As the tower of the studied wind turbine is divided into
two main parts (because of the simplicity in manufacturing
and erection), the FEM model is created in two pieces with
different properties parameters. So, E1 and E2 were the pa-
rameters to change for updating the model.

The updating procedure continued up to receive the error
limitation, and the elasticity module of pieces 1 (E1) 2 (E2)
obtained 176 and 178 Gpa, respectively. Finally, the updated
FE model’s natural frequency is compared to the ones from
the operational modal test in the parked condition (Table 5).

6 Conclusion

Wind turbines have complicated dynamic behaviour, so we
need to extend our knowledge about their dynamic. Opera-
tional modal analysis is one of the best ways to obtain real
information about the wind turbine dynamic. Optimal place-
ment of the existing sensors (as a step of test planning) is re-
quired to obtain accurate and acceptable results from OMA
of wind turbines with a large structure. In this paper, a genetic
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Table 5. Updated FE model vs. test results.

Tower bending modes Frequency (Hz) Deviation updated FEM to OMA (%)

Preliminary
FEM

Updated
FEM

OMA (PA)

First tower bending (SS) 1.565 1.477 1.471 0.4 %
First tower bending (FA) 1.568 1.481 1.495 −1 %
Second tower bending (FA) 9.56 9.031 9.023 0.09 %
Second tower bending (SS) 9.59 9.053 9.116 −0.7 %

algorithm was used to find the best sensors to mount on the
wind turbine tower. The fitness function is defined by auto-
MAC, which is the most popular tool to evaluate this linear
dependence. Some assumptions are then applied to limit the
available nodes based on the real structure, leading to accel-
erating the optimization procedure. This optimization proce-
dure puts the six sensors on three levels in two directions
(UX, UY ) of the tower to obtain the first and second bend-
ing pair modes of the wind turbine. Also, to extend the study,
two additional sensors were mounted on top of the tower. As
a result, using GA to find the sensor’s optimized location on
the wind turbine is a practical and quick approach.

The wind turbine’s operational modal analysis was then
done using the SSI method and the tower bending modes ob-
tained for two conditions (parked/operation). Natural bend-
ing frequencies were approximately constant in the parked
and operating wind turbine, but the wind turbine damping
ratios were varied significantly by changing its rotor speed
and pitch angle.

Finally, the parametric model updating was used to match
the natural bending frequencies of FEM to the test results. By
sensitivity analysis and engineering judgment, the modulus
of elasticity was selected to update the model. As the wind
turbine tower contains two assembled parts, the two modu-
lus of elasticity of each part (E1 and E2) were updated. The
correlation between the finite element model and the experi-
mentally obtained modal frequencies improved significantly
with less than 1 % error.

This study shows the effective procedure and application
of optimization tools to provide an acceptable test and model
updating to the wind turbine tower.
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