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Abstract. This paper presents the bifurcation approach to analyze divergent loss of stability of the symmetric
solution of a nonlinear dynamic model in Lyapunov’s critical case of a single zero root. Under such a condition,
material birth-annihilation bifurcations of multiple stationary states take place. Moreover, the equilibrium surface
of stationary states in a small neighborhood of the symmetric solution is a generalized Whitney fold. In the
simplest case of a fold peculiarity, the corresponding bifurcation manifold locally coincides with the discriminant
manifold of a third-degree polynomial that determines the manifold of stationary states in a small neighborhood
of the symmetric solution.

An algorithm to construct the corresponding polynomial is introduced. Through the algorithm, the bifurcation
manifold is determined, and the conditions for safe/unsafe loss of stability of the symmetric solution are derived
analytically.

The proposed approach to analyze divergent loss of stability is implemented for a nonlinear bicycle model of a
two-axle wheeled vehicle. It represents a further development of Pevzner–Pacejka’s well-known graph-analytical
method. The paper determines the critical values of constructive parameters that are responsible for safe/unsafe
loss of stability of the vehicle’s straight-line motion, and it discusses strategies for the bifurcation approach to
analyze divergent loss of stability.

1 Introduction

The graph-analytical method (Pevzner, 1947) is the first ex-
ample of qualitative analysis of divergent loss of stability
of the nonlinear model of a two-axle vehicle, and it illus-
trated the main peculiarities of the bifurcation method. Ap-
proximately 25 years later, Pacejka (1973a, b, c) re-ignited
interest in the graph-analytical method that allowed the sta-
bility analysis of the whole manifold of stationary states to
take place without the prior determination of the manifold
itself. Pacejka (1973a, b, c) recognized the significant po-
tential of the approach of Pevzner (1947), and he actively
developed it with the tools that became available in the
digital era. He contributed to popularizing the method, and
he expanded it with the corresponding database known as
the famous “Magic Formula” and its modifications (Pacejka

and Besselink, 2012). Nevertheless, subsequent research fo-
cused primarily on numerical algorithms to investigate ve-
hicles’ stability and determine their bifurcation manifolds
(Troger and Zeman, 1984; Kwatny et al., 2003; Della Rossaa
et al., 2012; Chen et al., 2016; Sun and He, 2017), even
though the graph-analytical method (Verbitskii and Lobas,
1981; Verbitskii et al., 2018; Bobier-Tiu et al., 2019; Jazar et
al., 2020) and its extension to the tractor-semitrailer model
(Pauwelussen, 2001; Ren et al., 2012) were sporadically ap-
plied. These applications unfortunately did not get much at-
tention. We believe that the main obstacle to a wider usage
of the graph-analytical method was the inability to apply an-
alytical methods within it.

The paper presents a solution to overcome this obstacle.
Specifically, the way forward is to use the functions that
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are inverted with respect to nonlinear dependencies of side
forces along the axles. This makes it possible to utilize the
bifurcation method and to obtain an analytical expression for
the bifurcation manifold of stationary states of the vehicle’s
model in the vicinity of the straight-line motion (Verbitskii
and Lobas, 1994).

As the theory of continuous projections states (Poston and
Stewart, 1980; Arnold, 2012), the “geometry” of a surface of
stationary states determines the contours of a bifurcation dia-
gram, when the surface gets projected onto the plane of con-
trol parameters with only the multiple points of the surface
creating the projection (Fig. 2a). Accordingly, the bifurcation
diagram is a graph of critical values of control parameters un-
der which divergent loss of stability of the corresponding sta-
tionary states takes place. For example, only two types of pe-
culiarities (fold and cusp) can occur on the surface of station-
ary states in the case of a dynamic system with two control
parameters. A smooth curve is the projection of a fold-type
surface, and a semi-cubic parabola with a cusp results from
the projection of a cusp type surface. The cusp point itself
corresponds to the projection of a triple stationary regime.
Proceeding with the construction of the bifurcation manifold,
we are going to be interested in the conditions under which
multiple stationary regimes take place. This requires knowl-
edge of the equilibrium surface of stationary states as a func-
tion of a phase variable and control parameters. There is no
generalized approach for calculating the surface. Instead, we
propose an algorithm to construct a corresponding determin-
ing polynomial that approximates the equilibrium surface in
the vicinity of the straight-line stationary regime. The dis-
criminant of the determining polynomial defines the bifurca-
tion manifold. It is a semi-cubic parabola (p/3)2

+(q/2)3 for
a third-degree polynomial x3

+p ·x+q = 0. The conditions
for safe/unsafe loss of stability of the vehicle’s straight-line
motion are an important issue that is related to the subject of
this paper. They are directly connected to stability/instability
of the straight-line motion in Alexander Lyapunov’s critical
case of a single zero root (Liapunov, 1966). Their interpre-
tation in the context of real bifurcations of stationary states
is straightforward. An annihilation bifurcation of the stable
straight-line motion and two unstable saddle regimes hap-
pens under the “unsafe” loss of stability, and a birth bifurca-
tion of two stable circular regimes out of the stable straight-
line motion regime occurs under the “safe” loss of stability.
In the latter scenario, the symmetric regime itself loses its
stability (Andronov et al., 1966; Bautin, 1949).

2 Characteristic peculiarities of the generalized
mathematical model of a wheeled vehicle

The models of symmetrical vehicles are characterized by the
equivalence of left-right turns. The trivial solution for such
systems corresponds to a stationary rectilinear regime. We
assume that when v = v+, θ = 0 there is a divergent loss of

stability of the trivial solution of the system: dx/dt = f (x,u) , x ∈ R2,

where u= {v,θ} , v ∈ R+, θ ∈ R,

f (−x,v,−θ )=−f (x,v,θ ) , f (0,v,0)= 0.
(1)

Stability of the zero solution at v = v+ (the critical case of a
single zero root) is determined by Lyapunov’s first non-zero
coefficient g3 (Liapunov, 1966). If g3 < 0, the symmetric so-
lution of the system Eq. (1) is asymptotically stable (Lobas,
2001), and the boundary of the stability domain in the param-
eter space is safe (Verbitskij and Lobas, 1996) – small varia-
tions in the system parameters that lead to crossing the safe
boundary of stability generate only a limited growth of phase
variables in the vicinity of the symmetric solution. In the case
g3 > 0 the symmetric solution is unstable, and the boundary
of the stability domain in the parameter space is dangerous
– even small variations of the system parameters that violate
the unstable stability boundary in the parameter space lead
to an unlimited increase in perturbations of phase variables
in the vicinity of the symmetric solution. The reasons for this
mechanism will be explained based on the analysis of steady
states of the system in the vicinity of the symmetric solution
(real bifurcations of steady states).

3 The methodology of the bifurcation approach for
analysis of the divergent loss of stability of the
generalized model of a wheeled vehicle

We assume that zero is the regular value of the right-hand
parts of the system Eq. (1) and, in addition, that they can be
approximated as

dx1/dt = ax1+ bx2+ a30x
3
1 + a21x

2
1x2

+a12x1x
2
2 + a03x

3
2 + a50x

5
1 + . . .

dx2/dt = cx1+ dx2+ b30x
3
1 + b21x

2
1x2

+b12x1x
2
2 + b03x

3
2 + b50x

5
1 + . . .

(2)

Since when v = v+, θ = 0 there is a divergent loss of stability
of the trivial solution (the linear approximation system has
one zero eigenvalue), at least certain coefficients of the linear
approximation system depend on the parameters v, θ .

Our next step is to present a geometric interpretation of the
stability conditions of a stationary regime for the realization
of the critical case of a single Lyapunov zero root.

Stationary regimes of the system (singular points) corre-
spond to the intersection points of two curves which are de-
fined by the right parts of the system (Eq. 2), fi(x1,x2)= 0.
The critical value of the parameter v = v+ corresponds to the
zero root of the linear approximation matrix; therefore, at the
critical value of the parameter, these curves have the same
inclination angles at the origin (the determinant of the matrix
of linear terms turns to zero). Indeed, we will solve each of
the equations fi(x1,x2)= 0 (i = 1,2) in the vicinity of the
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origin relative to, for example, a variable x2:

x2 = F1 (x1)= F (1)
1 (0)x1+

1
3!
F

(3)
1 (0)x3

1 + . . . (3)

x2 = F2 (x1)= F (1)
2 (0)x1+

1
3!
F

(3)
2 (0)x3

1 + . . . (4)

The slopes of these curves at the origin are set by the relations

γ1 = F
(1)
1 (0)=−

a

b
(5)

γ2 = F
(1)
2 (0)=−

c

d
. (6)

The relative position of the curves Eqs. (3)–(4) at the critical
value of the parameter is determined by the coefficients for
nonlinear terms of the sequence (ab− bc = 0⇒ γ1 = γ2)

F
(3)
1 (0)= 6/b4

(
−a30b

3
+ 3a21ab

2
− 3a12a

2b+ a03a
3
)

(7)

F
(3)
2 (0)= 6/d4

(
−b30d

3
+ 3b21cd

2
− 3b12c

2d + b03c
3
)
. (8)

Keeping the order of curves in subcritical and critical posi-
tions corresponds to a safe loss of stability of the zero solu-
tion; breaking the order of curves corresponds to a dangerous
loss of stability:

g∗ = (γ1− γ2)(−)
[
F

(3)
1 (0)−F (3)

2 (0)
]
> 0. (9)

Divergent stability loss of a steady state is associated with
the realization of a multiple stationary regime: in the sim-
plest case of changing the stability of a symmetric solution, a
three-fold regime is realized. From the origin, either a pair of
stable steady states is born, which is possible while keeping
the order of the curves in Eqs. (3) and 4), or a pair of unstable
steady states comes to the origin and merges with the stable
steady state; this is in violation of the order of the curves in
Eqs. (3) and (4). An example of implementing this approach
for the tractor–semitrailer model is presented in Verbitskij
and Lobas (1996).

A formal algebraic approach to the analysis of the stabil-
ity of a stationary regime in the realization of the critical case
of a single Lyapunov zero root (promising from the point of
view of algorithmization) gives the opportunity to present bi-
furcation set in a small neighborhood of the three-fold steady
state in an analytical form.

In the system of equations defining steady states, we leave
the terms no higher than the third order of smallness: ax1+ bx2+ a30x

3
1 + a21x

2
1x2+ a12x1x

2
2 + a03x

3
2 = 0

cx1+ dx2+ b30x
3
1 + b21x

2
1x2+ b12x1x

2
2 + b03x

3
2 = 0.

(10)

Let us proceed from the system of Eq. (10) to a single deter-
mining equation, keeping only the terms to the third order of
smallness. From the first equation of the system (Eq. 10), we
have

x1 =−a/bx2+
(
− a30b

3
+ a03a

3
− a12a

2b

+ a21ab
2)/b4x3

2 + . . ., (11)

and substituting this solution in the second line of Eq. (10),
we get a “shortened” defining equation:

γ x3
+βx+α = 0, (12)

where β = β (v), and the function α (θ ) characterizes the sys-
tem’s asymmetry when θ 6= 0. The projection of a critical
set on the parameter plane (α,β) defines a bifurcation set
(a semi-cubic parabola). At each point of the critical set (in
multiple points of the equilibrium surface), the Jacobian of
the system (Eq. 1) vanishes.

Values of the coefficients of Eq. (12) at the critical value
of the parameter v = v+, θ+ = 0; (d = cb/a):

α
(
θ+
)
= 0 (13)

β
(
v+
)
= 0 (14)

γ+ =
[
b3 (ad30− ca30)+ ab2 (ca21− ab21)

+ a2b (ab12− ca21)+ a3 (ca03− ab03)/ab3]. (15)

For subcritical values of the parameters v = v+− ε, θ = θ+,
Eq. (12) has the form

γ
(
v+− ε

)
x3

2 +β
(
v+− ε

)
x2 = 0, (16)

and for a supercritical value v = v++ ε, θ = θ+,

γ
(
v++ ε

)
x3

2 +β
(
v++ ε

)
x2 = 0. (17)

Provided that γ
(
v+,θ+

)
6= 0, and provided a small enough

ε, we will have γ
(
v+− ε

)
· γ
(
v++ ε

)
> 0 and β

(
v+− ε

)
·

β
(
v++ ε

)
< 0. This makes it possible to assert that when

v = v++ ε, θ = θ+, there is a cusp bifurcation (three-
fold stationary regime is realized), depending on the ra-
tio of the coefficient γ

(
v+
)

and β
(
v+− ε

)
signs: γ

(
v+
)
·

β
(
v+− ε

)
< 0 – there is a merge of singular points at the ori-

gin; and γ
(
v+
)
·β
(
v+− ε

)
> 0⇒ γ

(
v+
)
·β
(
v++ ε

)
< 0 –

there is a birth of a pair of steady states at the origin.
Using information about the stability state of a symmetric

solution (v < v+, θ = 0, i.e., stability (node); v > v+, θ = 0,
i.e., instability (saddle)), it can be argued that in the case
of the merger bifurcation (γ

(
v+
)
·β
(
v+− ε

)
< 0), a pair

of saddle singular points comes to the origin, i.e., the cor-
responding symbolic reaction O2,0

+ (O1,1
1 ,O

1,1
2 )⇒O1,1.

In the case of birth bifurcation (γ
(
v+
)
·β
(
v+− ε

)
> 0), a

pair of singular points with the Poincaré index+1 comes out
of the symmetric solution (origin), i.e., a symbolic reaction
(Andronov et al., 1966):

O2,0
⇒O1,1

+ (O2,0
1 ,O

2,0
2 ). (18)

The merger bifurcation corresponds to instability in the crit-
ical case and dangerous loss of stability in the sense of
Bautin (1949) (at subcritical speed v = v+− ε, a pair of sad-
dle singular points narrow the pool of attraction of a sym-
metrical solution, and at v = v++ ε, the symmetric solution
corresponds to an isolated “saddle”, so the perturbations of
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Figure 1. The vehicle’s model.

phase variables grow unlimitedly). Bifurcation of birth cor-
responds to stability in the critical case and safe loss of sta-
bility in the sense of Nikolai Bautin (at subcritical speed
v = v+− ε, the symmetric solution corresponds to an iso-
lated stable “node”, and at supercritical speed v = v++ ε,
in the small neighborhood of the saddle there are two stable
singular points that limit the growth of perturbations of phase
variables).

Up to a constant multiplier, Lyapunov’s coefficient deter-
mining the stability of the zero solution of the system (Eq. 2)
in the critical case of a single zero root coincides with the
coefficient (Liapunov, 1966; Lobas, 2001).

4 An example of divergent loss of stability in a
nonlinear model of a wheeled vehicle

Let us consider a single mass “bicycle” model of a vehicle
with fixed steering (Ellis, 1975; Gillespie, 1992) as repre-
sented in Fig. 1.

The model’s equations of motion are as follows:{
m (u̇+ vω)= Y1 (δ1)cosθ +Y2 (δ2)
J ω̇ = aY1 (δ1)cosθ − bY2 (δ2) , (19)

where v are u are the longitudinal and transverse projections
of the velocity vector of the vehicle’s center of mass onto the
vehicle’s axes; θ is the angle of rotation of the wheeled unit;
ω is the angular velocity around the vertical axis; m and J
are the mass and the central moment of inertia; a and b are
the distances between the vehicle’s center of mass and the
centers of the vehicle’s front (controlled) and back axles; and
l = a+ b is the base of the vehicle.

The stationary states can be determined as the solutions of
a finite nonlinear system:

mvω = Y1 (δ1)cosθ +Y2 (δ2)
0= aY1 (δ1)cosθ − bY2 (δ2) . (20)

The side force dependencies Y1 (δ1)Y2 (δ2) are nonlinear
functions of slipping angles that are determined by approxi-
mate linear relations (we are also going to assume cosθ ≈ 1):

δ1 = θ −
u+ aω

v
(21)

δ2 =
−u+ bω

v
. (22)

Defining Y i = Yi/Ni as the dimensionless side forces, where
Ni(i = 1,2): N1 =

mgb
l

, N2 =
mga
l

are the surface’s vertical

reaction forces on the vehicle’s axles, we transform the sys-
tem (Eq. 20) to a dimensionless representation:

vω

g
= Y1

b

l
+Y2

a

l
(23)

Y1−Y2 = 0, (24)

and it can be reduced to a single defining equation.
The side forces that occur in the stationary circular states

are found qualitatively as the solution to the linear system of
Eqs. (23)–(24):

Y1 = Y2 = Y ; Y =
vω

g
= ay, (25)

where ay is the vehicle’s dimensionless side acceleration in
the stationary circular state, that is the projection of the cen-
tripetal acceleration onto the transverse axes.

Next, we switch to Y : δ1 =G1
(
Y
)
, δ2 =G2

(
Y
)
, where

δi =Gi
(
Y
)

denotes the inverse functions of Y i = Y i (δi).
From the definition of slipping angles, we obtain

ω =
v (θ + δ2− δ1)

l
. (26)

Taking the above into account, we derive the defining equa-
tion from the first equation of the system (23)–(24). It is ei-
ther

v2

gl
(θ + δ2− δ1)= Y (δ2− δ1) (27)

or

G
(
Y
)
=
gl

v2 Y − θ, (28)

where the function G
(
Y
)
=G2

(
Y
)
−G1

(
Y
)
. It is these two

relations that determine the equilibrium surface for the δ2−δ1
or Y phase variables. Both are tied to the phase variable ω,
which is the critical variable in our case, and they differ by a
constant multiplier.

Equation (28) is better suited, as it allows us to obtain
the defining polynomial analytically if the side force depen-
dencies are analytically given. It is impossible in the case
of Eq. (27) since Y (δ2− δ1) is defined graphically (Pacejka,
1980). We will assume that the dimensionless side forces are
defined by the following expression, with ki denoting the di-
mensionless coefficients of cornering stiffness on the vehi-
cle’s axles:

Y i = ki · δi/
(

1+ (ki · δi/ϕi)2
)1/2

(29)

Y i ≈ ki · δi − 1/2(ki · δi)3/ϕ2
i . (30)

If we consider a nonlinear approximation of the side forces
to the third order of smallness

Y i ≈ ki · δi −Ki · δ
3
i , (31)
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the inverse functions are

δi ≈ pi ·Y +Pi ·Y
3
, (32)

with the coefficients pi = 1
ki

; Pi = Ki
k4
i

. And the function

G
(
Y
)
=G2

(
Y
)
−G1

(
Y
)

becomes

G
(
Y
)
≈ 1/k2 ·Y+Y

3
/(2k2ϕ

2
2 )−1/k1 ·Y−Y

3
/(2k1ϕ

2
1 ). (33)

Therefore, the conditions for safe/unsafe loss of stability
of the stationary straight-line motion are obtained from
Eq. (28). Its cubic approximation defines the determining
polynomial (Eq. 12):[

1/
(

2k2ϕ
2
2

)
− 1/

(
2k1ϕ

2
1

)]
Y

3

+

(
−gl/v2

+ 1/k2− 1/k1

)
Y + θ = 0, (34)

where

γ = 1/
(

2k2ϕ
2
2

)
− 1/

(
2k1ϕ

2
1

)
(35)

β (v)=−gl/v2
+ 1/k2− 1/k1 (36)

α = θ. (37)

A semi-cubic parabola on the (v, θ ) parameter plane, where
the discriminant of the cubic Eq. (28) becomes zero, delim-
its the regions with different numbers of stationary states.
In other words, it determines the boundaries of divergent
loss of stability in the system’s parameter space. The con-
ditions under which the cusp bifurcation of the triple zero
state β

(
v+
)
= 0, α

(
θ+
)
= 0 unfolds set the coordinates of

the tension point.(
v+ =

(
k1k2gl

k1− k2

)1/2

, θ+ = 0

)
(38)

The critical velocity v+ in Eq. (38) coincides with the critical
velocity of the straight-line motion that is determined from
the linear approximation system of the vehicle’s model.

Two-fold stationary regimes (the fold bifurcation) corre-
spond to the regular points of the discriminant manifold (v∗,
θ∗). They form the boundaries of divergent loss of stability
of circular stationary regimes. For example, it is possible to
determine the maximum value of the angle of rotation of the
controlled module that would ensure the stability of a circular
stationary motion for a given velocity v.

4.1 The stability conditions in the critical case (the
conditions for safe/unsafe loss of stability à la
Bautin)

Let us rewrite the determining polynomial (Eq. 34), as we
incorporate the expression for the critical velocity of the

straight-line motion v+:[
1(

2k2ϕ
2
2
) − 1(

2k1ϕ
2
1
)]Y 3

+
k1− k2

k1k2

[
1−

(
v+

v

)2
]
Y + θ = 0. (39)

Three stationary regimes take place in the system un-
der γ

(
v+
)
> 0 and v < v+ or γ

(
v+
)
< 0 and v > v+. A

merger of critical points occurs in the origin under γ
(
v+
)
·

β
(
v+− ε

)
< 0, and as a consequence, the symmetrical so-

lution is unstable in the critical case; that is, unsafe loss of
stability à la Bautin (Bautin, 1949) takes place.

Three stationary regimes materialize under γ
(
v+
)
< 0

and v > v+. The birth of a pair of critical states in
the origin happens under γ

(
v+
)
·β
(
v+− ε

)
> 0⇒ γ

(
v+
)
·

β
(
v++ ε

)
< 0, and the symmetrical solution is stable in the

critical case; that is, safe loss of stability à la Bautin takes
place.

Therefore, the conditions for unsafe loss of stability for the
vehicle’s model under γ

(
v+
)
> 0 are

k1− k2 > 0; (40)

k1ϕ
2
1 > k2ϕ

2
2 . (41)

The conditions for safe loss of stability under γ
(
v+
)
< 0: are

k1− k2 < 0; (42)

k1ϕ
2
1 < k2ϕ

2
2 . (43)

The determining polynomial will look somewhat different to
the one in Eq. (34) above if we apply the general approach
presented in Eqs. (10)–(12). Nevertheless, the conditions for
safe/unsafe loss of stability will remain the same.

v2

g · l
·

[(
1
k1
+
g · l

v2

)
K2−

K1 · k
3
2

k4
1

]
·Y

3

+
v2
· (k1− k2)
k1 · g · l

·

(
1−

k1 · k2 · g · l

v2 · (k1− k2)

)
·Y

+
v2

g · l
θ = 0, (44)

where Ki = 1/2 · k3
i /ϕ

2
i .

The polynomial above can be transformed into

k3
2

(
1

2k2ϕ
2
2
−

1
2k1ϕ

2
1

)
Y

3

+
k1− k2

k1

[
1−

(
v+

v

)2
]
Y + θ = 0 (45)

γ
(
v+
)
= k3

2

(
1

2k2ϕ
2
2
−

1
2k1ϕ

2
1

)
, (46)

and it shows that the two approaches do indeed result in the
same conditions for safe/unsafe loss of stability.
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Figure 2 illustrates the transition from unsafe to safe loss
of stability of the straight-line motion of the vehicle, as the
cornering stiffness ϕ1 decreases. The redrawing of the bifur-
cation manifold corresponds to the transformation of the cusp
surface as the parameter changes.

To better understand it, it is necessary to consider terms up
to the fifth degree in Eq. (34).

As Eq. (27) is used in Pevzner–Pacejka’s graph-analytical
method, we will use it to analyze the number of station-
ary regimes under a fixed velocity v < v+ and the values of
the parameter ϕ1 that correspond to cases (a), (b) and (c) in
Fig. 2.

For case (a), {ϕ1 = ϕ2, k1 ·ϕ
2
1 > k2 ·ϕ

2
2}. For (b), {ϕ1 <

ϕ2,k1 ·ϕ
2
1 > k2 ·ϕ

2
2}. For (c), {ϕ1 < ϕ2,k1 ·ϕ

2
1 < k2 ·ϕ

2
2}. The

parameter ϕ1 is smaller than the critical value ϕ1 < ϕ
∗

1 =

2

√
k2ϕ

2
2

k1
.

The change in the nature of the stability domain border is
connected to the emergence of a “butterfly” catastrophe with
a five-fold stationary regime. The additional inflection points
in Fig. 3b move to the origin, where the five-fold stationary
regime takes place. The cusp points on the bifurcation curve
correspond to the inflection points on the curve Y (δ2− δ1).

5 Discussion of the strategy for bifurcation analysis
of a dynamic system

For a system of equations,

fi (x,θ,v)= 0, x ∈ Rn (i = 1, . . .,n) , (47)

the solutions of which determine the set of steady states of a
nonlinear dynamic model (the right parts of the equations of
motion of the model depend on two scalar parameters). The
bifurcation values of the parameters (v∗, θ∗) correspond to
multiple solutions x∗ of the system Eq. (47). The Jacobian of
the system vanishes at all points of the critical set x∗:

J= ‖dfi/dxi‖x∗ = 0, x∗εMkr. (48)

If the rank of the Jacobi matrix is n− 1 (there is exactly one
zero eigenvalue of the linearization matrix), then the surface
of steady states in the vicinity of the corresponding criti-
cal point x∗ in cases of the “general position” is a fold or
cusp. The system shown by Eq. (47), together with Eq. (48),
defines a critical set on a manifold of steady states (it is a
parametrized smooth curve). Under these assumptions, it will
be possible to apply the numerical–analytical method of con-
tinuation for two parameters. There is a disappearance of a
stable steady state through the fold bifurcation in the points
of “turning” (“smooth return points”) of a critical set, and
“cusp” (“return point”) corresponds to the change of stabil-
ity of steady state (in a system with simplest symmetry, this
steady state corresponds to the rectilinear regime that loses
its stability when θ = 0, v = v+).

In the presence of small perturbations that violate the sym-
metry of a dynamic system with two control parameters,
the cusp does not disappear (it shifts, losing its symmetry),
which is a consequence of structural stability.

Generally speaking, any qualitative changes in the picture
of steady states when changing the controllable parameters of
the system are associated with the appearance–disappearance
of a pair of singular points or in general with the appearance-
splitting of a k-fold singular point (real bifurcations). In this
case, the surface of steady states (equilibrium surface) in a
small neighborhood of this k-fold stationary regime is de-
scribed by the corresponding catastrophe from the series
“Ak” of the Vladimir Arnold classification (Arnold, 2012)
Regardless of the dimension of the original system, only one
phase variable is required to describe the catastrophe surface
(the surface of equilibrium states) in the vicinity of the cor-
responding k-fold singular point, and the dimension of the
parameter space in which it is implemented irreversibly is
equal to k− 1.

This defines a strategy for analyzing singularities of k-
parametric families of steady states of a dynamic system
that includes identification of singularities of maximum rank
and construction of corresponding bifurcation sets that di-
vide the parameter space into regions with different numbers
of steady states.

When changing the stability of the stationary regime on
the surface of the equilibrium states, the singularity A3 cusp
is realized; two unstable regimes (two saddles) merge with
the stable stationary regime, forming a saddle node in the
critical case. The boundary of the stability area (θ = 0, v =
v+) is dangerous in this case. The birth of two stable station-
ary regimes corresponds to a safe boundary (θ = 0, v = v+).
Change of the hazard character of the boundary of the sta-
bility area (at the point (θ = 0, v = v+) can occur when a
five-fold stationary regime is implemented in this point. In
Fig. 4a–c, an illustration of the occurrence of the butterfly
catastrophe (A5) from the cusp catastrophe (A3) in a system
with symmetry is shown (three cusps on the equilibrium sur-
face, merging in one point, realize the butterfly catastrophe,
which is a five-fold stationary regime; in this case the space
of control parameters is three-dimensional).

Although the implementation of high-order singularities is
an “exceptional state” of the system (it corresponds to an ex-
ceptional set of characteristic control parameters), they give
a complete (global) picture of the stability change (determine
the scenario of the stability change of the entire set of steady
states).

The task of implementing a numerical–analytical method
of continuation in two parameters (it is necessary to take
into account an avalanche increase in the amount of com-
putation as the number of degrees of freedom or the number
of input-controllable parameters increases) is of independent
interest (Holodniok et al., 1991; Khibnik et al., 1993), and
this method has no alternative when describing the model in
more detail.
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Figure 2. Changes in the bifurcation manifold as ϕ1 decreases.

Figure 3. Stationary regimes under a fixed velocity v < v+ and
variations in the parameter ϕ1.

Figure 4. The surface of a fold and its bifurcation set.

6 Conclusions

The paper presents the successive stages of implementation
of the proposed bifurcation approach in the qualitative global
analysis of the conditions of divergent stability loss of non-
linear dynamic systems. It is shown that divergent loss of sta-
bility of a steady state (the critical case of a single Lyapunov
zero root) is associated with the realization of a multiple sta-
tionary regime: in the simplest case of change of the stabil-
ity of a symmetric solution, a three-fold regime is realized.
From the origin, either a pair of stable steady states is born,
or a pair of unstable steady comes to the origin and merges
with a stable steady state. A formal algebraic approach to the
analysis of conditions of dangerous–safe divergent stability
loss of the stationary regime is illustrated in a model of a
wheeled vehicle; it is shown that the change of the nature
of dangerous–safe loss of the stability of the rectilinear mo-
tion mode of a vehicle model is linked to the realization of a
higher rank butterfly bifurcation. For the bifurcation analysis
in the case of additional degeneracy of γ

(
v+
)
= 0, it will be

needed to consider the decomposition of the right parts of a
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dynamic system in Taylor series up to the terms of the fifth
order of smallness.
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