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Abstract. In this paper, a novel parallel leaf-spring carrying mechanism (PLCM) is investigated using a
compliance-matrix-based approach. For the analytical modeling and attitude calculation, the geometric errors
of the flexible arm, including the height and the top plane’s direction, are considered, and the displacement
method is used to calculate the equilibrium attitude. The influence of the equilibrium attitude at different heights
and the initial tilts of the top planes are analyzed separately. The validity and effectiveness of the attitude calcu-
lation are illustrated by experimental verification. The laser triangulation coordinate method is used for attitude
measurement. The deviations of the normal vector between the calculation results and measurement results are
smaller than 2× 10−4, which is small enough to satisfy practical requirements. This can be used to guarantee
stable and accurate wafer transfer in a lithography machine. Therefore, it can be concluded that the methods
employed for analytical model establishment and attitude calculation can be used as a reference for the analysis
and design of a complex parallel compliant mechanism.

1 Introduction

A compliant mechanism (CM) is a new type of mecha-
nism that transfers or transforms force, motion, or energy
via the deformation of flexible members. CMs can reduce
the number of components, the assembly time, and mainte-
nance requirements; simplify the manufacturing process; and
improve both precision and reliability. Industrial examples
of precision manipulation are wafer positioning and trans-
fer in a lithography machine as well as posture adjustment
in remote center compliance (RCC) and microsurgery. The
principle of exact constraint design and kinematic design is
often applied to obtain a deterministic behavior (Yuanqiang
and Wangyu, 2014; Smith, 2017). Leaf springs are used in
distributed CMs, and their deflection is not concentrated in
a small local region. Thus, higher stress and a wider range
of motion are allowed. However, parasitic error deterioration
in stiffness performance is observed as the range of motion
increases (Smith, 2000).

Parallel leaf springs (PLSs) provide an approximate
straight motion over relatively short strokes. As shown in
Fig. 1, PLSs have 1 compliant degree of freedom (DOF)

in the drive direction y. In the other two translational di-
rections, x and z, and in the rotational directions, Rx , Ry ,
and Rz, the support stiffness are several orders of magnitude
higher than that in the drive direction. The material is as-
sumed to be linear elastic in this paper. Since the pioneering
work of Bernoulli and Euler, many related studies have been
published for a single beam (e.g., Timoshenko, 1922; Awtar
and Sen, 2010; Meijaard, 1996). Much work has also been
done by Awtar et al. (2007) and Howell (2001) on parallel
leaf springs.

A parallel leaf-spring carrying mechanism (PLCM) is con-
sidered to be a parallel mechanism. Investigation of the com-
pliance and stiffness of parallel mechanisms can be dated
back to the study of elastically suspended robotic systems
(Patterson and Lipkin, 1993). More recently, a vibratory
bowl feeder was modeled as a parallel mechanism with leaf-
spring compliance legs (Dai and Ding, 2006; Ding and Dai,
2008), and a compliance device was built using parallel slen-
der beams in remote-center compliance (Ciblak and Lipkin,
2003). Other methods of modeling compliant mechanisms
include finite-element-based approaches (Pashkevich et al.,
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Figure 1. Parallel leaf-spring structure.

2009; Klimchik et al., 2013), and these approaches have been
used to model the complex shapes of elastic limbs, which
is usually straightforward and computationally affordable. In
terms of the simple shape of limbs, such as slender beams and
blades, analytical models like the Euler–Bernoulli model or
the Timoshenko model are computationally efficient and can
be used to reveal the intrinsic characteristics of a compliant
mechanism.

The position and orientation accuracy of a compliant car-
rying mechanism is an important performance index. The ge-
ometric error of a rigid connector influences the terminal tra-
jectory and equilibrium pose. Much work has been done on
the influence of uncontrollable factors, such as the geomet-
ric error, the clearance, and the assembly error. For example,
Meijaard et al. (2010) analyzed the consequences of static
and dynamic misalignments in a parallel leaf-spring mech-
anism; Luo et al. (2015) analyzed the influence of parasitic
displacement and connector deflection on lumped and dis-
tributed compliant parallel-guiding mechanisms; Ding and
Dai (2008) considered the mass and the hysteresis damping
of flexible members and proposed a complete model for a
vibratory bowl feeder; and Ropponen and Arai (1995) con-
sidered the hinge position error, the driving error, and the
clearance of a kinematic joint and proposed an attitude cal-
culation model for a Stewart platform.

On the basis of predecessors’ work, a new problem has
arisen: the geometric error of a flexible arm, including the
height and the top plane’s direction in the parallel compli-
ant mechanism, causes the attitude of the carrier (wafer) to
change after handover. This issue requires the innovative use
of the compliance matrix method combined with spatial bal-
ance and geometric constraints to establish an attitude cal-
culation model in order to achieve an accurate solution for
the spatial flexible support wafer attitude change in the par-
allel compliance mechanism. Therefore, the analytical model
of a novel parallel leaf-spring carrying mechanism is investi-
gated in this paper. Moreover, the geometric errors of a flex-
ible arm are considered, and the equilibrium attitude is cal-
culated. The influence of the equilibrium attitude at different
heights and the initial tilts of top planes are also analyzed
separately. In addition, attitude measurement experiments of

Figure 2. A computer-aided design (CAD) model of a PLCM.

wafer exchange are used to verify the analytical model and
attitude calculation.

2 Description of structure

As shown in Fig. 2, a PLCM consists of a fixed base, a voice
coil motor, three flexible arms, an aerostatic slideway, and
a carried object (wafer). Each flexible arm is formed by two
PLSs and rigid connections (straws). PLCMs can realize flex-
ible loading and unloading as well as stable and gentle car-
rying. A PLCM is applied to situations that required fast,
stable, and accurate transport of the carried object, such as
lithography.

The slideway uses an air-bearing structure, and the mov-
ing distance of slideway is small, which can effectively re-
duce the inclination and the offset of the overall movement.
Through high-precision machining and assembly, for exam-
ple, there are very high requirements for the verticality and
straightness of the slideway, and its influence on the attitude
after exchange is very small and can be ignored. In addi-
tion, the initial position of the carried object is detected using
an approach such as edge detection, and adjusting the corre-
sponding position can ensure accuracy below the micrometer
level, so that the object is in a relatively perfect position after
exchange.

Each flexible arm has the drive direction z where the com-
pliance is high, whereas the other translation directions, x
and y, where the compliance is low, and the rotation direc-
tions, Ry and Rx , have suitable compliance to complete the
flexible loading and unloading. The angle between two flex-
ible arms is 120◦, as shown in Fig. 3. As shown in Fig. 4,
the global coordinate frame O(x,y,z) is established at the
center of the carried object, and the ith arm coordinate frame
Oi(xi,yi,zi) can be established at the top of the ith flexible
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Figure 3. Top view of a PLCM.

Figure 4. Front view of a flexible arm.

arm. The parallel leaf-spring set coordinate frame is estab-
lished at the end of parallel leaf spring set, as shown in Fig. 5.

3 Generation of compliance matrix

A PLCM is equivalent to a compliant mechanism. The major
components are three flexible arms. Each arm consists of two
parallel leaf springs. A 6-DOF compliance matrix is intro-
duced for the leaf spring. Each leaf spring can be described
as a beam. This combines bending, extension, and torsion.
A small deflection of the leaf spring can be considered as a
deflection screw in the axis coordinates.

ζ (x)= {δx δy δz θx θy θz}
T,ζ ∈ se(3), (1)

where δ (x)= {δxδyδz}T represents the three translational de-
flection elements along the corresponding axes in the local
coordinate frame shown in Fig. 6. θ (x)= {θxθyθz}T gives the
three rotational deflection elements about the corresponding
axes of the local coordinate frame. According to the Euler–
Bernoulli model, the leaf-spring compliance matrix can be
given in axis coordinates as shown below.

Figure 5. Side view of a leaf-spring set.

Figure 6. Structure of a leaf spring.

Co = diag [CxoCyoCzoCxCyCz]

= diag
[
l

EA

l3

12EIz

l3

12EIy

l

GIx

l

EIy

l

EIz

]
(2)

Here, the beam is assumed to have constant rectangular
cross section A= b∗t and length l. The shear effect is ig-
nored. Moments of inertia Iy and Iz are given as Iy = 1

12 tb
3

and Iz = 1
12bt

3, the torsion constant Ix is given by Roark et
al. (1976), G is the shear modulus, and E is the elastic mod-
ulus.

Coordinate frame {Oe,xe,ye,ze} is located at the end of a
leaf spring. When external wrench is applied at the free end
of a leaf spring, deflection twist T is generated depending on
the integrated compliance Ce. According to the screw theory,
the relationship betweenCe andCo can be written as follows:
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Ce = AdTe C0Ade

=



l
EA

0 0 0 0 0
0 l3

3EIz
0 0 0 l2

2EIz
0 0 l3

3EIy
0 −

l2

2EIy
0

0 0 0 l
GIx

0 0

0 0 −
l2

2EIy
0 l

EIy
0

0 l2

2EIz
0 0 0 l

EIz


, (3)

where Ade is the adjoint transformation matrix between the
local coordinate frame {Oo,xo,yo,zo} and the global coordi-
nate frame {Oe,xe,ye,ze}.

Ade =

(
Re 0

PeRe Re

)
, Pe =

 0 0 0
0 0 −l/2
0 l/2 0

 (4)

Re is the coordinate rotation matrix, which is a 3× 3 unit
matrix, and Pe is the antisymmetric matrix of the coordinate
translation vector.

As shown in Fig. 5, two parallel leaf springs constitute a
parallel leaf-spring set. According to the screw theory, the
compliance matrix of the ith leaf spring in the global coor-
dinate frame Og and the corresponding adjoint mapping can
be given by

Cgi = AdT
giCeAdgi, Adgi =

(
Rgi 0

PgiRgi Rgi

)
. (5)

Rgi is a 3× 3 unit matrix, and Pgi is the antisymmetric ma-
trix of the ith leaf spring. The latter represents a coordinate
translation vector and can be given by

Pg1 =

 0 p+b
2 −

t
2

−
p+b

2 0 0
t
2 0 0

 ,
Pg2 =

 0 −
p+b

2 −
t
2

p+b
2 0 0
t
2 0 0

 ,
Pg3 =

 0 p+b
2 q + t

2
−
p+b

2 0 0
−q − t

2 0 0

 ,
Pg4 =

 0 −
p+b

2 q + t
2

p+b
2 0 0

−q − t
2 0 0

 .
The PLS set consists of four leaf springs in parallel. Thus, the
relationship between Cg and Cgi can be written as follows:

C−1
g =

∑
i
C−1

gi = C
−1
g1 +C

−1
g2 +C

−1
g3 +C

−1
g4 . (6)

Figure 7. The local coordinate frame Oi (xi ,yi ,zi ) and the global
coordinate frame O(x,y,z).

4 Attitude calculation

When the flexible arms carry an object like a wafer, forces
and torques may occur to make the end of the arm deviate
from the ideal position and orientation; these deviations are
related to static compliance (stiffness). Therefore, the static
compliance is used to calculate the equilibrium attitude of the
carried object.

The attitude changes in the PLCM are small under nor-
mal operating conditions, comprising only small translation
and rotation. Considering the geometric errors of a flexible
arm, including length variation and direction variation of the
top plane, the equilibrium attitude calculation of the carried
object is modeled using the displacement method in order
to analyze the influence of geometric errors. As shown in
Fig. 7, global coordinate frame O(x,y,z) is established at
the center of the carried object, and local coordinate frame
Oi(xi,yi,zi), where i = 1, 2, 3, is established at the top cen-
ter of ith flexible arm. The unknown variables are the direc-
tion vector nf(a,b,c) and the coordinate (xi,yi,zi) of the top
center of the ith flexible arm at equilibrium.

4.1 Displacement and rotation of the flexible arms’ top
planes

For stiffness matrix K1 of flexible arm 1 in coordinate frame
O1(x1,y1,z1), the relationship between the compliance of a
parallel leaf-spring set and the stiffness matrix K1 can be
given by

K1 = C
−1
1 = Ad1

−1C−1
g (Ad−1

1 )T,

Ad1 =

(
R1 0
P1R1 R1

)
. (7)

Here, R1 = rot(−π/2,z). Translation P1 is completed by
shifting the coordinate along axis x by d and then along axis
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y by h.

R1 =

 1 0 0
0 0 1
0 −1 0

 , P1 =

 0 0 h

0 0 −d

−h d 0

 ,

Ad1 =


1 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 −h 0 1 0 0
0 d 0 0 0 1
−h 0 d 0 −1 0

 (8)

The center points of the top planes O1,O2, and O3 are lo-
cated in plane xoy. They are uniformly distributed in a circle
with radius r0. Arm 2 is in the same arrangement but rotated
about axis z by α. In coordinate frame O2(x2,y2,z2), stiff-
ness matrix K2 can be given as follows:

K2 = C
−1
2 = TTC−1

1 T. (9)

Transformation matrix T can be given as follows:

T=



−
1
2

√
3

2 0 0 0 0
−

√
3

2 −
1
2 0 0 0 0

0 0 1 0 0 0
0 0 0 −

1
2

√
3

2 0
0 0 0 −

√
3

2 −
1
2 0

0 0 0 0 0 1


. (10)

In the same way, stiffness matrix K2 in coordinate frame
O2(x2,y2,z2) can be given by

K3 = C
−1
3 = TC−1

1 TT. (11)

The following is an analysis of the displacement and rota-
tion of the flexible arms’ top planes. Local coordinate frame
Oi(xi,yi,zi) can follow the translation and rotation of the ith
top plane. Translation δi can be given by

δi =
(
δxi δyi δzi

)
=

(
xi − x

0
i yi − y

0
i zi − z

0
i

)
, (12)

where (x0
i ,y

0
i ,z

0
i ) is the initial coordinate of point Oi ; this

value can actually be measured.
The rotation of the local coordinate frameOi(xi,yi,zi) ex-

presses the rotation of the ith top plane. The initial normal
vector of the ith top plane is n0

i = (a0
i ,b

0
i ,c

0
i ) and can ac-

tually be measured. After rotation, the normal vector of the
carried object is nf = (a,b,c). According to Rodrigues for-
mula, the rotation matrix can be given by

rot(ωiθi )= ω2
xi (1−cosθi )+cosθi ωxiωyi (1−cosθi )−ωzi sinθi ωxiωzi (1−cosθi )+ωyi sinθi

ωxiωyi (1−cosθi )+ωzi sinθi ω2
yi (1−cosθi )+cosθi ωyiωzi (1−cosθi )−ωxi sinθi

ωxiωzi (1−cosθi )−ωyi sinθi ωyiωzi (1−cosθi )+ωxi sinθi ω2
zi (1−cosθi )+cosθi

. (13)

For a small rotation angle, 1− cosθi ≈ 0, cosθi ≈ 1, sinθi ≈
θi . Simplifying the above equation yields

rot(ωiθi)=

 1 −ωziθi ωyiθi
ωziθi 1 −ωxiθi
−ωyiθi ωxiθi 1


=

 1 −ξzi ξyi
ξzi 1 −ξxi
−ξyi ξxi 1


= rot(xiθi)rot(yiθi)rot(ziθi). (14)

Thus, a small rotation angle θi around axis ωi equals
small rotation transformations ξxi,ξyi , and ξzi . According to
Eqs. (13) and (14), rotation ξi can be given by

ξi = (ξxi ξyi ξzi)= (ωxiθi ωyiθi ωziθi), (15)

rotation about axis ωi can be given by

ωi =
(
ωxi ωyi ωzi

)T
= n0

i × nf =

 b0
i c− c

0
i b

c0
i a− a

0
i c

a0
i b− b

0
i a

 , (16)

and rotation angle θi can be given by

θi = sinθi = (1− (n0
i · nf)2)

1
2

= (1− (a0
i a+ b

0
i b+ c

0
i c)

2)
1
2 . (17)

4.2 Equilibrium attitude calculation

Equilibrium attitude calculation is used to calculate the car-
ried object’s attitude variation and the top planes’ displace-
ments after static equilibrium. Initial normal vector n0

i and
initial coordinate (x0

i ,y
0
i ,z

0
i ) of the center point of the ith top

plane as well as the gravity of the carried object are known
variables.

In the global coordinate frameO(x,y,z), according to the
stiffness of flexible arms and the attitude variations of top
planes, the forces and couples between the carried object and
each flexible arm can be obtained. The equilibriums of forces
can be expressed as follows:∑3

i=1
Fxi = 0,

∑3
i=1
Fyi = 0,

∑3
i=1
Fzi =−G, (18)

where Fxi , Fyi , and Fzi are the forces between the carried
object and each respective flexible arm.
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Table 1. Physical parameters of the PLCM in its initial state.

Material properties Parameters of a leaf spring Parameters of a flexible arm

Young modulus Shear modulus Poisson’s ratio b t l p q r h

E (GPa) G (GPa) (υ) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

117 45 0.3 5 0.4 30 20 20 55 75

In the same way, the equilibriums of couples can be ex-
pressed as follows:



∑
Mx =

∑3
i=1Mxi −Fy1z1+Fz1y1

−Fy2z2+Fz2y2−Fy3z3+Fz3y3

=−
1
3G
∑3
i=1yi∑

My =
∑3
i=1Myi +Fx1z1−Fz1x1+Fx2z2

−Fz2x2+Fx3z3−Fz3x3

=
1
3G
∑3
i=1xi∑

Mz =
∑3
i=1Mzi −Fx1y1+Fy1x1

−Fx2y2+Fy2x2−Fx3y3+Fy3x3
= 0,

(19)

where (xi,yi,zi) is the coordinate of the center point of the
ith top plane.

Based on the stiffness definition,

(
Fi
Mi

)
=Ki

(
δi
ξi

)
. (20)

From equations above, the equilibrium Eq. (21) can be ob-
tained using Eqs. (18) and (19).

Q


(
K1 0 0
0 K2 0
0 0 K3

)
δ1
ξ1
δ2
ξ2
δ3
ξ3


=


0
0
−G

−
1
3G
∑3
i=1yi

1
3G
∑3
i=1xi

0



Q=


1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 −z1 y1 1 0 0 0 −z2 y2 1 0 0 0 −z3 y3 1 0 0
z1 −x1 0 0 1 0 z2 −x2 0 0 1 0 z3 −x3 0 0 1 0
−y1 x1 0 0 0 1 −y2 x2 0 0 0 1 −y3 x3 0 0 0 1

 (21)

Here, Q is the coefficient matrix.
The carried object is a rigid body, and the top planes are

in a coplanar condition after the static equilibrium; the geo-
metric constraint equations are given as Eqs. (23) and (24).
Normal vector nf(a,b,c) is a unit vector, and this relation-

Table 2. Geometric parameters of the PLCM.

Parameters of d (m) h (m) s (m) r0 (m)
the flexible arm

0.03 0.075 0.1472 0.085

ship is given by Eq. (22).

a2
+ b2
+ c2
= 1 (22)

a(x2− x1)+ b(y2− y1)+ c(z2− z1)= 0

a(x3− x1)+ b(y3− y1)+ c(z3− z1)= 0 (23)(
(x2− x1)2

+ (y2− y1)2
+ (z2− z1)2

) 1
2

= ((x3− x1)2
+ (y3− y1)2

+ (z3− z1)2)
1
2

= ((x3− x2)2
+ (y3− y2)2

+ (z3− z2)2)
1
2 = s (24)

Normal vector nf(a,b,c) and coordinate (xi,yi,zi) of point
Oi at equilibrium can be obtained by solving the nonlinear
equation group. Thus, the attitude variation of the carried ob-
ject caused by geometric errors can be calculated.

In this paper, the PLCM uses distributed leaf springs as
flexible units. The leaf-spring material is beryllium copper
alloy (C17200). It satisfies the four basic assumptions for de-
formable solids (continuity, homogeneity, isotropy, and low
deformation). The PLCM generally completes the bearing
and transportation of rigid objects with high precision and
low mass. The attitude changes in the PLCM are small under
normal operating conditions, comprising only small transla-
tion and rotation. The connecting pieces and the carried ob-
ject are considered to be rigid bodies, and the weight of the
connecting pieces is ignored. The physical parameters of the
PLCM in its initial state are shown in Table 1.

5 Numerical analysis of the attitude calculation
model

Considering the existence of geometric errors, the equilib-
rium attitude of the carried object can be calculated using
the displacement method. The geometric parameters of the
PLCM are shown in Table 2.
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Table 3. Numerical analysis of the height variation impact.

(x0
1 ,y

0
1 ,z

0
1) (x0

2 ,y
0
2 ,z

0
2) (x0

3 ,y
0
3 ,z

0
3) nf θz

(m) (m) (m) (◦)

1 (0.085,0,0) (−0.0425,0.0736,0) (−0.0425,−0.0736,0) (0,0,1) 0
2 (0.085,0,0) (−0.0425,0.0736,0) (−0.0425,−0.0736,0.0005) (0.000011,0.000019,1) 0.001266
3 (0.085,0,0) (−0.0425,0.0736,0) (−0.0425,−0.0736,0.0010) (0.000022,0.000038,1) 0.002532
4 (0.085,0,0) (−0.0425,0.0736,0) (−0.0425,−0.0736,0.0015) (0.000033,0.000057,1) 0.003798
5 (0.085,0,0) (−0.0425,0.0736,0.0005) (−0.0425,−0.0736,0.0005) (0.000022,0,1) 0.001266
6 (0.085,0,0) (−0.0425,0.0736,0.0005) (−0.0425,−0.0736,0.0010) (0.000033,0.000019,1) 0.002193
7 (0.085,0,0) (−0.0425,0.0736,0.0005) (−0.0425,−0.0736,0.0015) (0.000044,0.000038,1) 0.003350
8 (0.085,0,0) (−0.0425,0.0736,0.0010) (−0.0425,−0.0736,0.0010) (0.000044,0,1) 0.002532
9 (0.085,0,0) (−0.0425,0.0736,0.0010) (−0.0425,−0.0736,0.0015) (0.000055,0.000019,1) 0.003350
10 (0.085,0,0) (−0.0425,0.0736,0.0015) (−0.0425,−0.0736,0.0015) (0.000066,0,1) 0.003798

5.1 Height variations in the three flexible arms

The attitude variations cover a small scope, and the mass cen-
ter of the carried object is at the origin of the global coordi-
nate O. The three top planes of the flexible arms are uni-
formly distributed in a circle with radius r0. The initial nor-
mal vectors are n0

i (0,0,1). The height variation range is 0–
0.0015 m. Calculating 10 different groups, the results consist
of normal vector nf(a,b,c) as well as angle θz between nor-
mal vector nf and the positive axis z, which are shown in
Table 3.

As shown in Table 3, groups 4 and 10 have the same two
initial heights of the same two arms, whereas the other is dif-
ferent; as a result, they have the same angle θz but different
directions of the normal vector nf. Similar phenomena oc-
cur between groups 3 and 8 and between groups 2 and 5.
In groups 7 and 9, the first arm axis z initial values are 0
and 0.0015 m, whereas the second arm values are 0.0005 and
0.0010 m; they have the same angle θz but different direc-
tions. The reason for this is that the three top planes of the
arms are uniformly distributed in a circle, and the plane that
goes through the initial center points of the three top planes
has the same angle as the z axis but different directions.

5.2 Direction variations of the top planes of the three
flexible arms

The initial coordinates of the top planes’ center points
are (0.085, 0, 0), (−0.0425, 0.0736, 0), and (−0.0425,
−0.0736, 0). The initial normal vectors of the top planes,
n0
i , are changed in each group, and there are four cases:

(0, 0, 1), (0.01, 0, 0.99995), (−0.005, 0.00866, 0.99995),
and (−0.005, −0.00866, 0.99995). Calculating 10 different
groups, the results consist of the normal vector nf(a,b,c) as
well as the angle θz between nf and the z axis, as shown in
Table 4.

It can be found from Table 4 that the direction variation
impact is larger than the height variation impact. The first
group only shows translation in the z direction. Group 9 has

the largest θz in Table 4, as the initial directions of tilt are
separate along the length direction of the leaf spring. It can be
seen that groups 2 and 3 have same two initial angles between
n0
i and axis z but different directions; as a result, they have

the same angle θz but different directions of the normal vector
nf. Arms 2 and 3 of groups 8 and 10 have the same initial
angles between n0

i and the z axis but different directions, and
the three arms are circularly symmetric; thus, they have the
same angle θz but different directions of the normal vector
nf.

The three top planes realize a coplanar condition when
equilibrium is established, and each top plane has a differ-
ent translation and rotation. It can be seen from analysis that
the normal vector nf of the carried object relates to the ini-
tial tilts of the normal vectors of the top planes. As shown in
Fig. 4, the compliance of a single flexible arm in directionRy
is relatively large, so the initial tilt in direction Ry has a great
influence on the normal vector nf. Thus, the compliance of a
single flexible arm in direction Rx is relatively small, so the
initial tilt in direction Rx has little influence on the normal
vector nf.

6 Experimental verification of the attitude
calculation

As shown in Figs. 8 and 9, an experimental wafer exchange
system was established. The attitude measurement of the
wafer exchange is the main purpose of this system, which
is used for the validation of the attitude calculation model.
The system includes the following parts: the PLCM, a sens-
ing module, a vacuum adsorption module, a moving module,
a signal-collecting module, and a computer.

The sensing module is divided into three parts: z-direction
displacement detection, wafer edge detection, and vacuum
pressure detection. It mainly measures the attitudes of the
wafer and the top planes of the arms. Laser triangulation
displacement measurement is used, which (combined with
the 3D moving stages) constitutes a 3D coordinate measure-
ment system. The laser displacement sensor is a LK-G30 sen-
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Table 4. Numerical analysis of the direction variation impact.

n0
1 n0

2 n0
3 nf θz (◦)

1 (0,0,1) (0,0,1) (0,0,1) (0,0,1) 0
2 (0,0,1) (0,0,1) (0.010000,0,0.99995) (0.001539,0.002437,0.999996) 0.165163
3 (0,0,1) (0,0,1) (−0.005,0.00866,0.99995) (0.001341,0.002552,0.999996) 0.165163
4 (0,0,1) (0,0,1) (−0.005,−0.00866,0.99995) (−0.004215,−0.007301,0.999964) 0.483060
5 (0,0,1) (0.01,0,0.99995) (0.010000,0,0.99995) (0.002828,0,0.999996) 0.162008
6 (0,0,1) (0.01,0,0.99995) (−0.005,0.00866,0.99995) (0.002645,0.000148,0.999996) 0.151780
7 (0,0,1) (0.01,0,0.99995) (−0.005,−0.00866,0.99995) (−0.001851,−0.009497,0.999953) 0.554370
8 (0,0,1) (−0.005,0.00866,0.99995) (−0.005,0.00866,0.99995) (−0.002096,0.009459,0.999953) 0.555122
9 (0,0,1) (−0.005,0.00866,0.99995) (−0.005,−0.00866,0.99995) (−0.0113978,0,0.999935) 0.653057
10 (0,0,1) (−0.005,−0.00866,0.99995) (−0.005,−0.00866,0.99995) (−0.002096,−0.009459,0.999953) 0.555122

Figure 8. Schematic illustration of the experiment.

sor (KEYENCE) that has a 0.01 µm repeat accuracy and a
±5 mm measurement range. The 3D moving stages are the
xy axis moving stages and the Rz rotary stage (BOCIC),
which have a respective 0.1 µm and 1.4 µrad resolution and
a respective 3 µm and 9.7 µrad positioning accuracy. Wafer
edge detection selects a racer linear array charge-coupled de-
vice (CCD) with a pixel size of 7 µm, an 8 bit output, and
1024 or 2048 units corresponding to a frequency of 18.35
or 9.42 kHz, respectively (BASLER). The position and ori-
entation of the top planes were measured and fitted using the
planar fit method without loading the carried object (Li et al.,
2016).

The attitude measurement of wafer exchange includes
three main processes: the attitude measurement of the three
top planes of the PLCM arms, the wafer exchange, and the
wafer exchange attitude measurement. There are three sets
of PLCMs for the wafer exchange experiment. The results of

the attitude measurement of the three top planes are given in
Table 5. The wafer exchange process is that the moving part
of the mechanism (slider mover and three flexible arms) pro-
ceeds to the handover position. The tops of the flexible arms
then use vacuum to absorb the wafer. After reaching the vac-
uum threshold, the moving part continues to rise to the fixed
position. Finally, the wafer is brought down to the specified
position of the lithography workpiece table, and the vacuum
adsorption is removed to complete the wafer exchange. The
control program of the motion part adopts the deadbeat con-
trol with constraint and no ripple method (Li et al., 2015).

With respect to exchanging the wafer and loading the car-
ried object, the results of the attitude calculation and attitude
measurement are given in Table 6, which includes the normal
vector nf(a,b,c) of the carried object as well as the angle θz
between the normal vector nf and the positive z axis. The
deviation δf of the normal vector nf of the attitude calcula-
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Table 5. Position and orientation of the top planes.

Top plane’s center position Top plane’s direction vector

(x0
1 ,y

0
1 ,z

0
1) (m) (x0

2 ,y
0
2 ,z

0
2) (m) (x0

3 ,y
0
3 ,z

0
3) (m) n0

1 n0
2 n0

3

1 (0.085, 0,
−0.000009)

(−0.041962,
0.07286,
0.000207)

(−0.040182,
−0.073438,
0.000316)

(−0.002239,
−0.00683,
0.999974)

(0.002609,
−0.002913,
0.999992)

(0.008343,
0.000717,
0.999965)

2 (0.085, 0,
−0.000212)

(−0.042135,
0.072899,
−0.000073)

(−0.040309,
−0.073538,
−0.000035)

(−0.001624,
−0.010369,
0.999945)

(0.002711,
−0.002215,
0.999994)

(0.009183,
−0.001019,
0.999957)

3 (0.085, 0,
−0.00018)

(−0.042121,
0.072815,
−0.000071)

(−0.040665,
−0.073794,
−0.000289)

(−0.003653,
−0.00963,
0.999947)

(0.00126,
−0.003304,
0.999994)

(0.002445,
−0.000358,
0.999997)

Table 6. Results of the attitude calculation and attitude measurement.

Attitude calculation Attitude measurement Deviation

nf θz (◦) n′f θ ′z (◦) δf

1 (0.001176,0.000281,0.999999) 0.069261 (0.001362,0.000328,0.999999) 0.080264 1.92× 10−4

2 (0.001138,−0.000026,0.999999) 0.065237 (0.001298,−0.000039,0.999999) 0.074389 1.60× 10−4

3 (−0.000736,−0.001429,0.999999) 0.092127 (−0.000714,−0.001595,0.999998) 0.100099 1.67× 10−4

Figure 9. Experimental setup for attitude measurement of wafer
exchange.

tion and the normal vector n′f of attitude measurement can be
given by

δf = ‖nf− n
′

f‖ =
√

(a− a′)2+ (b− b′)2+ (c− c′)2. (25)

It can be seen from Tables 5 and 6 that both the position and
orientation of top planes can cause a different equilibrium
attitude of the carried object. Different combinations of the

position and orientation of the three top planes change the di-
rections of the equilibrium attitude of the carried object. For
example, it can be seen from Table 6 that group 1 is located
in the first quadrant, group 2 is located in the fourth quad-
rant, and group 3 is located in the third quadrant. The nor-
mal vectors of the attitude calculation and attitude measure-
ment are located in the same quadrant; they are very close,
and the angles between the normal vector and the positive
z axis are also very close. The deviations δf of the normal
vector between calculation results nf and measurement re-
sults n′f are 1.92×10−4 for group 1, 1.60×10−4 for group 2
and 1.67× 10−4 for group 3, which are small enough to sat-
isfy practical requirements. The effectiveness of the attitude
calculation model is illustrated by experimental verification.
Using the Euler–Bernoulli model, which ignores shear defor-
mation and rotary inertia, makes calculation result relatively
small. Measurement error may be another reason for the de-
viations.

7 Conclusion

This paper presents a comprehensive study of a new parallel
leaf-spring carrying mechanism, covering analytical model-
ing to attitude calculation, and provides a better understand-
ing of the characteristics of PLCMs. With respect to the an-
alytical modeling, this paper establishes a compliance ma-
trix of the parallel leaf-spring set. Regarding the attitude cal-
culation, the respective carried object eccentricity and geo-
metric errors of the flexible arm are considered, and the dis-
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placement method is used to calculate the equilibrium atti-
tude. Moreover, the laser triangulation coordinate method is
used to carry out the attitude measurement. The effectiveness
of the attitude calculation model is illustrated by numerical
analysis and experimental verification. The proposed meth-
ods to address the mobility characteristic analysis and atti-
tude calculation are not only available for PLCM but also for
complex parallel compliant mechanisms.
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