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Abstract. Non-destructive stress measurement is necessary to provide safety maintenance in some extreme
machining environments. This paper reports a case study that reveals the potential application of automatic
metal stress monitoring with the aid of the magnetic Barkhausen noise (MBN) signal and deep learning algo-
rithms (convolutional neural network, CNN, and long short-term memory, LSTM). Specifically, we applied the
experimental magnetic signals from steel samples to validate the feasibility and efficiency of two deep learning
models for stress prediction. The results indicate that the CNN model possesses a faster training speed and a
better test accuracy (91.4 %), which confirms the feasibility of automatic stress monitoring applications.

1 Introduction

During manufacturing, machine failure leads to fatal dam-
age to both people and the environment, inducing a high cost
and low productivity (Liao et al., 2012). Consequently, the
timely diagnosis of the serving status, deformation, and fail-
ure possibilities of steel materials has become a necessity.
Stress/strain can be used to describe the internal deformation
status of a steel material/structure (Rasmussen, 2003), to pre-
dict the serving time of components (Zhang et al., 2020), and
to prevent material/structure failures (Pejkowski et al., 2018).
However, traditional measurements require well-prepared
samples and laboratory environments (Motra et al., 2014),
which are not suitable for on-site measurement under ex-
treme conditions such as failure monitoring of supporting
bearings, high-speed rolling and moving components, and
large steel structures. For example, the most widely used
strain gauge methods need to stick the strain gauge onto the
sample surface and to link to the train bridge box, which is
not suitable for moving samples. Stress/strain measured by
crosshead motion is not accurate. Moreover, the optical strain
measurement method is only suitable transparent materials
with photoelasticity.

The magnetic properties of steel materials and their mag-
netic responses towards applied magnetic stimuli could be
influenced by external forces. The magnetic signals include
magnetic flux leakage (MFL) (Wu et al., 2021), magnetic
acoustic emission (MAE) (Watson et al., 2005), magnetic
Barkhausen noise (MBN) (Rocío et al., 2015), and metal
magnetic memory (MMM) (Yang et al., 2013). Correspond-
ing methods have been developed for measuring the stress
of steel and other ferromagnetic materials. However, mag-
ical signals can be influenced by many internal and exter-
nal factors, such as the material components, defects, the
material processing history, the temperature, and the sur-
face quality. All of these factors cause significant uncertainty
in stress measurements. Therefore, an analytical model has
been developed to study the effect of applied stress on mag-
netic Barkhausen noise (MBN) in force-exerted steel ma-
terials (Rocío et al., 2015). Moreover, Jiles (1993) estab-
lished a coupled magnetoelastic theory to compute changes
in magnetic hysteresis; Alessandro et al. (1990) proposed
a Langevin description to build up the computational ba-
sis of statistical properties of Barkhausen noise; and Sab-
lik (1993) further extended this model to confirm the equiv-
alent linear increase of the Barkhausen amplitude. Neverthe-

Published by Copernicus Publications.



292 Y. Ji et al.: Stress monitoring with non-destructive stress measurement and deep learning algorithms

less, the material-dependent and hard-measured parameters
in the model lead to issues with model application.

With the application of artificial intelligence, convolu-
tional neural network (CNN) models can easily detect ob-
jects from an image that would be impossible to detect using
analytical methods (Lee et al., 2019). Recurrent neural net-
works (RNN) can accurately convert a sequential voice to
text (Graves and Jaitly, 2014). In addition, a fully CNN can
segment surface defects by supervised learning without pre-
or post-processing (Huang et al., 2020). Using a deep RNN,
the spatial frequency–sequential relationships for motor im-
agery classification can even be explored (Luo et al., 2018).
Furthermore, the microstructural/mechanical properties and
thickness variations in API X65 steel can be determined in a
non-destructive way with magnetic hysteresis loop and arti-
ficial neural networks (Mirzaee et al., 2020). However, there
have been few attempts to intelligently monitor metal mate-
rials using Barkhausen noise signals. One of the few such ex-
isting studies is that of Wang et al. (2013), who extracted the
multiscale features of Barkhausen noise using wavelet de-
composition and used these features as the input for a back-
propagation neural network to predict the temperature ef-
fect (Wang et al., 2013). Hence, this paper focuses on the fea-
sibility and capacity of deep learning algorithms (CNN and
long short-term memory recurrent neural networks, LSTM-
RNN) in stress prediction using Barkhausen noise signals,
obtained from a series of uniaxial compressive tests on a typ-
ical steel material.

2 Methods

2.1 Experiments and results

The steel material to be tested was typical low-carbon
steel (ASTM A36). For conducting uniaxial compressive
testing, we prepared 10 bar-shaped samples with a square
1 cm × 1 cm cross section and a length of 5 cm. A univer-
sal testing machine (CMT 5105) was used to apply uni-
axial compressive force (Fig. 1a). The applied forces in-
creased from 0 to 20 kN with a step of 2 kN. Strain gauges
were used to measure the train of the deformed sample and,
thus, to calculate the corresponding stress (Fig. 1b). Dur-
ing the test, periodically alternating magnetic fields (10 Hz)
were applied to the samples using a Rollscan 350 analyser.
When the external magnetic field changes, the internal do-
main walls are forced to move, generating Barkhausen noise
pulses. The Barkhausen noise of the sample was measured
using a Rollscan 350 analyser, as shown in Fig. 1a. For each
step force of each sample, 100 Barkhausen noise pulses were
taken. Considering that we had 10 samples and an 11-step
force action for each sample, we acquired 11 000 data items
for neural network training and testing.

2.2 Deep learning models

There are two types of widely used deep learning models:
convolutional neural network (CNN) and recurrent neural
network (RNN). To eliminate the issues of gradient van-
ishing in RNN (Hochreiter and Schmidhuber, 1997), addi-
tional modifications have been made on the traditional RNN.
LSTM (long short-term memory) is one of the most promis-
ing modifications and can effectively solve the vanishing
gradient problem in the traditional RNN. Both CNN and
LSTM-RNN can be used to predict stress via the measured
Barkhausen noise (BHN) signals; in this study, we will ex-
amine the performance of both models.

We used Keras to build the models and conduct the train-
ing process. Figure 1c shows the neural network structure of
the LSTM-RNN model used in this study. It consists of two
layers: the LSTM layer with 100 neural units and a dense
layer for outputting the prediction. The number of total train-
able parameters in this model is 40 901. Figure 1d shows
the neural network structure of the CNN model used in this
study. It consists of four layers: the “Conv-1D” layer with
32 filters, the “Max-Pooling-1D” layer, the “Flatten” layer,
and the “Dense” layer. The overall number of trainable pa-
rameters is 160 097. As we are interested in predicting the
value of stress, the activation function of the output layer in
both models is “linear”, and the loss function is the mean
square error. In data processing, 65 % of data items were used
for model training, 15 % of data items were used for vali-
dation, and the remaining 20 % of data items were used for
testing. The respective epoch and batch size were set to 1000.

3 Results

3.1 Experimental results

Figure 1b lists a sample set of the measured stress values un-
der different loads. The stresses of other samples are more or
less similar. All of the measured stress values will be used as
output for training the two deep learning models. Consider-
ing that 100 Barkhausen noise pulses will be taken in each
step force of each sample, these 100 items of signal will have
the same output stress.

Figure 2 shows the typical Barkhausen noise pulse for a
steel sample measured under different stress levels. It con-
veys that the maximum amplitude of the signal decreases as
stress increases. This is because the movement of DWs (do-
main walls) under compressive stress can be significantly
constrained, and the activation energy barrier of Barkhausen
noise will increase: the higher the stress, the higher the
energy barrier. Therefore, it is more difficult to activate
Barkhausen noise.

3.2 Model training behaviours

Figure 3 shows the changes in the loss function during the
training process of both models. It is clear that the loss in
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Figure 1. (a) A sketch of the experimental set-up; (b) a sample set of measured stresses under different loads; and the neural network
structure of the (c) LSTM-RNN and (d) CNN models.

the CNN model is much higher than that in the LSTM-RNN
model at the beginning of the training process. However, the
performance of the CNN model improved very rapidly and
finally achieved a very small loss value. On the contrary, the
improvement of the LSTM-RNN model during the training
was slow, and the final loss value was also high. This find-
ing is supported by the final training accuracies of two mod-
els: 95 % for the CNN model and 86 % for the LSTM-RNN
model. Furthermore, the prediction accuracy of the CNN
model in the validation and test datasets was 92.5 % and
91.4 % respectively. The prediction accuracy of the LSTM-
RNN model in the validation and test datasets was 83.3 %
and 78.9 % respectively. It was also noticed that the training
speed of the CNN model was much faster than that of the
LSTM-RNN model, although the latter model had less train-
able parameters. The mean stress prediction values from the

CNN and LSTM-RNN models are compared in Fig. 1b, and
the CNN datasets are closer to the experimental data.

The good performance of the CNN model can be ex-
plained as follows: although BHN is a time-series data type,
the applied stress mainly affects the envelope profile of the
BHN rather than the individual magnetic activation event.
Many studies have tried to establish a quantitative rela-
tionship between the envelope profile features of the BHN
pulse, including factors such as its amplitude and width.
The CNN model is good at abstracting general features of
a signal/image using convolutional filters. Therefore, in this
model, it can effectively learn the relationship between the
profile features and the applied stress. On the contrary, the
LSTM-RNN model is good at learning the local features of
sequential data/a signal, and its capacity to detect the long-
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Figure 2. The Barkhausen noise (BHN) of steel samples under different loads: (a) 0 kN, (b) 6 kN, (c) 12 kN, and (d) 20 kN.
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Figure 3. The loss curves of the LSTM-RNN and CNN models.

scale profile features is limited by its long-term memory
(LSTM modification has also been applied).

The fast training speed of the CNN model can be explained
as follows: although the CNN model used in this work has
more trainable parameters (40 901) than that of the LSTM-
RNN model (160 097), its real neural network is much deeper
than that of the LSTM-RNN model. This is due to the nature
of the RNN model. In every RNN model, the input data at
each step share the same neural network. However, as the
neural network is recurrent in each time step, and we have
10 000 time steps in one sample, the exact number of lay-
ers in the LSTM-RNN model used in this study is 10 000
rather than 1. This makes the training speed of the LSTM-
RNN model slower than that of the CNN model.

3.3 Comparison of the machine learning model and
analytical model

The above results have proven that deep learning models can
predict stress via Barkhausen noise with reasonable accuracy.
This provides an alternative way to mathematically describe
the functional relation in a complex system. In contrast to
traditional analytical models, deep learning models do not
need complex mathematical formula derivation, strong as-
sumptions, or simplifications, and they only rely on high-
quality experimental data. Therefore, they are very suitable
for solving various prediction problems in a wide engineer-
ing field. However, as the functions described by deep learn-
ing algorithms (both CNN and LSTM-RNN) are very com-
plex, the underlying physical meanings of parameters are not
explained. This causes difficulty in further exploring the un-
derlying mechanism of a physical phenomenon with insight.
Moreover, the prediction capacity of deep learning models is
normally limited to specific tasks. If one wants to change a
material, experiments should be carried out from the begin-
ning, and the model should be retrained as well. On the con-
trary, once a physical model is developed for a phenomenon,
it can be easily generalised and extended to other cases.
Therefore, deep learning can solve the prediction problem,

and traditional analytical models should also be studied to
explore the underlying mechanism and generalisation.

4 Conclusions

This paper reported a case study on stress prediction us-
ing both magnetic Barkhausen noise signal data and two
deep learning algorithms (CNN and LSTM-RNN). A total of
11 000 Barkhausen noise data points were obtained in a se-
ries of uniaxial compressive tests, and 65 % of the data items
were used for model training, 15 % of the model data items
were used for validation, and the remaining 20 % of the data
items were used for further testing. The results of this work
indicated the following:

– the CNN model provides better training accuracy (95 %)
and test accuracy (91.4 %) and should be more suitable
for learning and predicting the relationship between the
Barkhausen noise data and the targeted stress;

– the CNN model possesses a faster training speed and is
appropriate for designing intelligent real-time detecting
systems using cloud computing;

– the potential for future research regarding industrial ap-
plications.

Although CNN possesses better accuracy with respect to
training and testing for the uniaxial compressive tests, on-site
test results suffer from various environmental factors, such
as temperature and humidity. Therefore, future research will
focus on the confirmation of CNN feasibility and efficiency
in tests for a specific industry.
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