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Abstract. A planar three-revolute (3R) serial chain is an important part of many mechanisms. The classical
approach in motion generation of a planar 3R serial chain is to construct closed-loop equations based on complex
numbers, which yields a large-scale polynomial system. In this study, a new approach of planar 3R serial chain
motion generation by establishing the relative kinematics model based on conformal geometric algebra (CGA)
is proposed. The simpler design equations are obtained, which can be used to design a planar 3R serial chain
that can accurately achieve the N poses. In the numerical examples, the number of different poses is used to
verify the correctness and efficiency of the proposed method by using polyhedral homotopy continuation. The
results indicate that the design equations obtained via CGA are more concise for improving the solving efficiency
compared with the previous method. Finally, a geared five-bar mechanism with a seven-pose motion generation
example is considered.

1 Introduction

Dimensional synthesis is the process of designing link di-
mensions for a given task or set of tasks (Bottema et al.,
1979; Hunt, 1978; Hartenberg and Danavit, 1964). The mo-
tion generation task ensures that the design of the mechanism
can reach a set of poses comprising positions and orientations
(Husty et al., 2007). Burmester (1888) first solved the dimen-
sional synthesis of planar mechanisms for motion generation
by using graphic methods, and Freudenstein (1954) subse-
quently transformed the geometric methods into analytical
equations and started the use of computers to generate solu-
tions. McCarthy and Soh (2011) introduced the methods of
perpendicular bisector constraint and dyad triangle for planar
mechanism dimensional synthesis. Zhao et al. (2016) and Ge
et al. (2013) explored the use of kinematic mapping in di-
mensional synthesis. Han and Qian (2009), Bai et al. (2016)
and Glabe and McCarthy (2019) also investigated the syn-
thesis of planar mechanisms. However, these studies only fo-
cused on the motion generation of planar four-bar linkages.
Generally, the dimensional synthesis of a planar two-revolute

(2R) serial chain is the first step in designing four-bar mecha-
nisms. In addition, a planar 2R serial chain can be accurately
synthesized with up to five poses in motion generation. When
the mechanism needs to reach more than five poses, the pla-
nar 2R serial chain fails to reach the end effector precisely at
the given design positions.

A planar three-revolute (3R) serial chain can accurately
reach any given pose in the working space because it has
three degrees of freedom and satisfactory flexibility. This se-
rial chain forms part of many single- and multi-loop mech-
anisms, such as the six-bar, eight-bar and planar parallel
mechanisms (Zhao et al., 2020; Soh and McCarthy, 2008).
Dimensional synthesis of a planar 3R serial chain for mo-
tion generation is an important process in many mechanisms’
design. Wampler and Sommese (2011) systematically intro-
duced forward and inverse kinematic analysis and planar 3R
serial chain synthesis. Chase et al. (1987) performed planar
3R serial chain synthesis for five prescribed positions and
applied it to the design of planar six-bar linkages. Subbian
and Flugrad (1993) also investigated the five-position syn-
thesis of a planar 3R serial chain and used it to design a four-
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bar function-generating mechanism and a six-bar linkage.
Lin and Erdman (1987) applied the compatibility linkage ap-
proach to obtain the Burmester curves of a planar 3R serial
chain for a six-position synthesis problem. Using a contin-
uation method, Subbian and Flugrad (1994) accomplished
six- and seven-position syntheses of a planar 3R serial chain
for motion generation with prescribed timing. Perez and Mc-
Carthy (2005) derived design equations from the relative
kinematic equations of the chain to design nR planar serial
chains.

However, the above-mentioned studies were all on the ba-
sis of standard form equations (Erdman and Sandor, 1997),
which created loop equations for a given chain from a refer-
ence position of the end effector to a desired position. The
design equations established by this method contain numer-
ous sine and cosine trigonometric functions. To solve these
equations, the trigonometric functions are replaced by the in-
troduction of new variables or eliminated using half-tangent
substitutions, which unavoidably increases the scale of poly-
nomial equations. Therefore, it is important to find a simpler
mathematical model in the mechanism design process.

Conformal geometric algebra (CGA) is a new mathemat-
ical language and calculation tool with remarkable advan-
tages in geometric modeling and calculation (Hildenbrand,
2012; Li, 2005) which is widely used in physics, computer
vision, computer graphics and robotics (Perwass, 2009).
Hildenbrand et al. (2008) used CGA to analyze the inverse
kinematic solution of a robot. Kim et al. (2015) applied CGA
to solve inverse kinematics and analyze the singularity of the
mechanism of 3-SPS/S redundant motion. Zhu et al. (2022)
and Zhang (2018) analyzed the forward kinematic modeling
of the 3-RPR planar parallel mechanism based on CGA. Fu
et al. (2013) proposed an effective method to solve the in-
verse kinematics problem of a 6R offset wrist robot based
on geometric algebra. Hrdina et al. (2016) solved the local
controllability of a three-link robotic snake with CGA and
assembled the forward, differential and non-holonomic kine-
matic equations of the robot. Therefore, CGA can be applied
to the dimensional synthesis of the mechanisms to obtain a
simpler and more intuitive kinematic model.

In this study, a new method for constructing the kinematic
synthesis model of a planar 3R serial chain based on CGA
is proposed. The simpler design equations are obtained by
the relative kinematics model of the chain, established by the
rotor in CGA and solved using polyhedral homotopy contin-
uation. The proposed method simplifies the formulation to
solve the equations clearly and efficiently.

The rest of this paper is organized as follows: the concept
of CGA is introduced in Sect. 2. In Sect. 3, the kinematic
equations of the planar 3R serial chain are established using
rotors in CGA. The motion synthesis of different numbers of
precise poses of the planar 3R serial chain is discussed, and
some numerical examples are solved in Sect. 4. In Sect. 5,
the proposed method is applied to design a single degree-
of-freedom (DOF) geared five-bar mechanism. Lastly, the

results are discussed, and the conclusions are presented in
Sect. 6.

2 Basics of CGA

In this section, a brief overview of CGA is presented, and its
basic elements and transformations are discussed in a geo-
metrically intuitive manner. More details about CGA can be
found in Hildenbrand (2012), Vince (2008) and Wareham et
al. (2004).

2.1 Basic elements

The fundamental algebraic operator in geometric algebra is
the geometric product, which can be expressed as

uv = u · v+u∧ v, (1)

where “·” and “∧” denote the inner and outer products, re-
spectively, which can be derived from Eq. (1):

u · v =
1
2

(uv+ vu)u∧ v =
1
2

(uv− vu) . (2)

The inner product of two vectors is the same as the well-
known Euclidean scalar product of two vectors. The outer
product of the two vectors u and v represents a directed par-
allelogram that u sweeps along v. For vectors u, v, and w,
u∧ v∧w represents a three-dimensional solid with a direc-
tion.

In geometric algebra, the basic elements are blades. An n-
dimensional geometric algebra consists of blades with grades
varying from 0 to n, where a scalar is a 0-blade (a blade of
grade 0) and the 1-blades are the basis vectors e1, e2, . . . , en.
The element with the highest grade n, I = e1∧e2∧. . .∧en, is
called the pseudo-scalar. The linear combination of k blades
is called k-vector, and the linear combination of blades with
different grades is called multi-vector. CGA is a type of 5D
geometric algebra that uses the three Euclidean basis vectors
e1, e2, e3 and two additional basis vectors e+, e− with the
properties of

eiej =

{
1, i = j

ei ∧ ej , i 6= j
, i = 1,2,3, (3)

e2
+ = 1,e2

− =−1, (4)
ei · e+ = ei · e− = e+ · e− = 0, i = 1,2,3. (5)

Therefore, the two null vectors can be defined as e0 =
1
2 (e−− e+), which represents the 3D origin, and e∞ = e−+

e+, which represents infinity.
These new basis vectors have the following properties:

e2
∞ = e2

0 = 0, e∞ · e0 =−1. (6)

As such, the five vector bases for CGA are
{e1,e2,e3,e0,e∞}.
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The duality of the multi-vector A is defined as

A∗ =AI−1
=A (−I ) , (7)

where I = e1∧e2∧e3∧e∞∧e0 is the pseudo-scalar in CGA.

2.2 Basic geometric entities

In CGA, many basic geometric bodies, such as points,
spheres, planes, circles, lines and point pairs, can be ex-
pressed indirectly and intuitively. These entities have two al-
gebraic representations: the inner-product null space (IPNS)
and the outer-product null space (OPNS). The IPNS and
OPNS describe the null spaces of algebraic expressions with
respect to the inner and outer products, respectively. These
representations are dual to each other (Hildenbrand, 2012).
This section only introduces the representation of points and
lines related to this study.

The point x of the three-dimensional Euclidean space can
be expressed in CGA as

P = x+
1
2
x2e∞+ e0, (8)

where x = x1e1+x2e2+x3e3 and x2
= x2

1+x
2
2+x

2
3 . Note that

the previous object is expressed in the IPNS representation.
Starting from the representation of a point in CGA, the

representation of several Euclidean geometric objects can be
generated with the outer product in the OPNS representa-
tion. The two points A and B on a line are presented in the
Euclidean space, as shown in Fig. 1. The line can be repre-
sented in CGA by

LO = PA ∧PB ∧ e∞, (9)

where PA and PB are the conformal representations of two
points on the line and LO denotes the OPNS representation
of the line.

Equation (9) shows that a line in the space can be con-
structed by using the outer product between two points that
lie on it and the point at infinity. In addition, the line can also
be represented by the six Plücker coordinates in the IPNS
representation. In Fig. 1, A and B are two different points on
the line, and their position vectors are a and b, respectively.
The Plücker coordinates of the line can be identified in CGA
as

LI = (a1− b1)e3 ∧ e2+ (a2− b2)e1 ∧ e3

+ (a3− b3)e2 ∧ e1+ (a2b3− a3b2)e1 ∧ e∞

− (a1b3− a3b1)e2 ∧ e∞

+ (a1b2− a2b1)e3 ∧ e∞ (10)

or

LI = ue123+m∧ e∞, (11)

where n= b−a and m= a×b represent the line orientation
and moment, respectively. Equation (11) is the IPNS repre-
sentation of the line.

Figure 1. Plücker coordinates of the line.

2.3 Transformations and motions

Rigid transformations, including rotation and translation, can
easily be described in CGA.

The rotation can be computed as a rotor

R = cos
(
θ

2

)
−Lsin

(
θ

2

)
, (12)

where L is an arbitrary line representing the axis of rotation
in the IPNS representation and θ is the rotation angle around
this axis.

The translation can be represented as a translator

T = 1−
1
2
te∞, (13)

where t = t1e1+ t2e2+ t3e3 is a vector representing the di-
rection and length of a translation.

Therefore, a rigid body motion, including a rotation and a
translation, is described by the following displacement motor
in CGA:

D = RT . (14)

A rigid body motion of an object o is described as follows:

origid_body_motion =DoD̃ = RT oT̃ R̃, (15)

where R̃ = cos
(
θ
2

)
+Lsin

(
θ
2

)
and T̃ = 1+ 1

2 te∞.
In CGA, the rotation and translation can be expressed

in one algebraic expression. The advantage of rigid trans-
formation representation in CGA is the simplification of
the composition of groups into geometric products (Bayro-
Corrochano, 2019).

3 Kinematic equations for planar 3R serial chains

3.1 Planar displacement

LetM be a coordinate frame attached to the moving body and
F be a fixed reference frame. The moving frame is rotated by
the angle θ and measured positive anti-clockwise relative to
F . The origin of M is located relative to F with a displace-
ment vector d, as shown in Fig. 2. Thus, the displacement
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Figure 2. Planar displacements.

that defines the position of the moving frame M relative to
the fixed frame F is the following coordinate transformation:{
X

Y

}
=

[
cosθ −sinθ
sinθ cosθ

]{
x

y

}
+

{
dx
dy

}
(16)

or

X =Ax+ d. (17)

In addition, CGA provides a convenient way to describe
planar rigid body displacements as follows:

X =DxD̃, (18)

where

D = cos
(
θ

2

)(
1−

dx2
+ dy2

2
e1∞

)
− sin

(
θ

2

)(
e12−

dx2
+ dy2

2
e2∞

)
and D̃ is the inverse of D.

3.2 Pole of relative displacement

A single point that does not move exists in the general pla-
nar displacement. This point is called the pole of the dis-
placement (see Fig. 3). A general planar displacement can be
viewed as a pure rotation around this pole. The two posesMi

and Mj of a rigid body are considered and defined by using
the displacements [Ti] and [Tj ] relative to F . The transfor-
mation [Tij ] is defined by[
Tij
]
=
[
Tj
]

[Ti]−1
=
[
Aj ,dj

]
[Ai,di]−1

=
[
Aij ,dij

]
. (19)

This equation explains the relative displacement from Mi to
Mj measured in F .

The pole is unchanged by the planar displacement [Tij ] =
[Aij ,dij ]. According to Eq. (19),

Pij =
[
Aij

]
Pij + dij .

The coordinates of Pij can be determined as

Pij =
[
I −Aij

]−1
dij , (20)

Figure 3. Relative pole of the two positions.

where

I =

 1 0 0
0 1 0
0 0 1

 ,
Aij =

 cosθij −sinθij 0
sinθij cosθij 0

0 0 1

 and

θij = θj − θi .

Equation (20) can be used to define the translation compo-
nent of the displacement in terms of the coordinates of the
pole. Thus, the planar displacement [Tij ] = [Aij ,dij ] can be
defined directly in terms of the rotation angle θij and pole Pij
as follows:

[
Tij
]
=

 cosθij −sinθij
(
1− cosθij

)
xPij + sinθijyPij

sinθij cosθij
(
1− cosθij

)
yPij − sinθijxPij

0 0 1

. (21)

Thus,

Mj =
[
Tij
]
Mi . (22)

Moreover, in CGA, Eq. (22) can be defined as

Mj = R
(
θij
)
MiR̃

(
θij
)
, (23)

where R(θij ) represents the rotor that rotates θij around the
point Pij .

3.3 Kinematic equations for the planar 3R serial chain
of CGA

A kinematic chain connected by 3R joints with parallel axes
is called a planar 3R serial chain (see Fig. 4). The relative ro-
tation angles in Fig. 4a, the absolute rotation angles in Fig. 4b
and the link lengths are denoted as θ1, θ2, θ3, ϕ1, ϕ2, ϕ3 and
a1, a2, a3, respectively.

Then, the kinematic equation of the planar 3R chain is pre-
sented as

[D]= [G] [Z (θ1)] [X (a1)] [Z (θ2)] [X (a2)] [Z (θ3)] [X (a3)] , (24)

where

[Z (θi)]=

 cos(θi) −sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

 , i = 1,2,3,
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Figure 4. Planar 3R serial chain and its kinematic skeleton.

and [X(ai)] defines the translation ai distance along the x
axis. The transformation [G] defines the position of the base
A relative to the world frame. Therefore, the matrix [D] de-
fines the position of the end effector of the planar 3R serial
chain as follows:

[D]=

[
cos(ϕ3) −sin(ϕ3) a cos(ϕ1)+ bcos(ϕ2)+ ccos(ϕ3)
sin(ϕ3) cos(ϕ3) a sin(ϕ1)+ b sin(ϕ2)+ c sin(ϕ3)

0 0 1

]
,

where ϕ2 = θ1+ θ2 and ϕ3 = θ1+ θ2+ θ3.
The product of the transformation matrices defines the

kinematic equation of the planar 3R serial chain. In the same
way, CGA provides an elegant and compact method for de-
scribing the kinematics of the planar 3R serial chain. Al-
though the classical approach is based on transformation ma-
trices, the proposed approach only needs the elements of the
motor group.

The rotors and translators can be defined as follows:

Rθi = cos
(
θi

2

)
− sin

(
θi

2

)
e12, (25)

Tai = 1−
ai

2
e1∞, (26)

and the motors are defined as

Mi = RθiTai = cos
(
θi

2

)
− sin

(
θi

2

)
e12

−
cos(θi/2)ai

2
e1∞−

sin(θi/2)ai
2

e2∞. (27)

Therefore, Eq. (24) can be determined in CGA as follows:

Q′ =M1M2M3QM̃3M̃2M̃1. (28)

This equation represents the position of the end effector via
the transition point, and the transition line indicates the orien-
tation of the end effector. Given the values of the joint angles,
the forward kinematic problem is the computation of the po-
sition and orientation of the end effector. The converse of the
forward kinematic problem is the inverse kinematic problem,
which determines the joint angles that place the end effector
in the desired position and orientation.

The purpose of the design problem in this study is to de-
termine the dimensions of the planar 3R serial chain, which

Figure 5. Planar 3R serial chain in two finitely separated positions.

can enable the end effector to reach a given set of task poses.
The locations of the base, the link dimensions, and the joint
angles are considered design variables.

A planar 3R serial chain in two finitely separated positions
is shown in Fig. 5. The initial position can be expressed by
the position vectors Z1, Z2, and Z3. These vectors represent
the three binary links, which are denoted by the positions of
joints A, B, C, and D. After the mechanism moves to another
position (j th position), the joint positions are expressed asA,
Bj , Cj , and Dj . The displacement equation of the planar 3R
serial chain can then be obtained from the vector loop closure
of the pivots of A–B–C–D–Dj–Cj–Bj–A:

Z1

(
eiθ1j − 1

)
+Z2

(
eiθ2j − 1

)
+Z3

(
eiθ3j − 1

)
= δ1j , j = 2. . .N, (29)

where θ1j , θ2j , and θ3j denote the angular displacements of
the three links from their initial positions, and δ1j is the end-
point displacement of the planar 3R serial chain. Erdman and
Sandor (1997) called Eq. (29) the standard form equation.

In this study, a new modeling method based on CGA to
obtain the design equations of a planar 3R serial chain is
proposed. According to Sect. 3.2, the relative displacement
from one location to another is equivalent to a pure rotation
around the pole. Similarly, the two given posesD1 andDj at
the end of the planar 3R serial chain are shown in Fig. 5. In
accordance with Sect. 3.2, the movement from position D1
to positionDj can be regarded as the rotation ϕ1j around the
pole P 1j to obtain the following:[
Dj
]
=
[
Rφ1j ,P1j

]
[D1] , j = 2. . .N. (30)

Furthermore, the end effector can also move from position
D1 to position Dj by rotating θ3j , θ2j , and θ1j around hinge
points C, B, and A, respectively.[
Dj
]
=
[
Rθ1j ,A

][
Rθ2j ,B

][
Rθ3j ,C

]
[D1] ,

j = 2. . .N. (31)
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According to Eqs. (30) and (31), it is easy to obtain[
Rθ1j ,A

][
Rθ2j ,B

][
Rθ3j ,C

]
=
[
Rϕ1j ,P1j

]
,

j = 2. . .N. (32)

The above equation only contains four rotation relationships
around the fixed point. In CGA, this relationship can be ex-
pressed as the geometric product between the rotors.

Firstly, a point X = (x,y) in the plane can be obtained
from the Plücker coordinates in CGA as the z axis that
passes through that point as L= ue123+m∧e∞, where u=

(0 · e1+ 0 · e2+ 1 · e3) represents the direction of the z axis
and m=−y · e1+ x · e2 denotes the moment of this axis to
the origin.

Then, a point in the plane can be expressed in the CGA as
the axis passing through that point in space, as follows:

L= ue123+m∧ e∞ = e12+ xe2∞− ye1∞. (33)

The three revolution joints of the planar 3R serial chain and
the pole can be expressed as

LA = e12+ xAe2∞− yAe1∞,

LB = e12+ xBe2∞− yBe1∞,

LC = e12+ xCe2∞− yCe1∞,

LP1j = e12+ xP1j e2∞− yP1j e1∞.

Furthermore, the rotation around these points can be ex-
pressed as

R = cos
(
θ

2

)
− sin

(
θ

2

)
(e12+ xe2∞− ye1∞) . (34)

Hence, Eq. (32) can be expressed in CGA as follows:

RAjRBjRCj = RP1j , j = 2. . .N, (35)

where

RAj = cos
(
θ1j

2

)
−LA sin

(
θ1j

2

)
,

RBj = cos
(
θ2j

2

)
−LB sin

(
θ2j

2

)
,

RCj = cos
(
ϕ1j − θ2j − θ1j

2

)
−LC sin

(
ϕ1j − θ2j − θ1j

2

)
,

RP1j = cos
(ϕ1j

2

)
−LP1j sin

(ϕ1j

2

)
.

By using the inverse of the rotor, Eq. (35) can be converted
into

RCj = R̃Bj R̃AjRP1j , j = 2. . .N, (36)

and then expanding the left- and right-hand sides of the above
equation as follows:

RCj = cos
(
ϕ1j − θ2j − θ1j

2

)
− (e12+ xCe2∞− yCe1∞) sin

(
ϕ1j − θ2j − θ1j

2

)
= A1j +A2j −A3j +A4j

+
(
−A5j +A6j +A7j +A8j

)
e12

+
[(
A5j −A7j −A8j −A6j

)
yC
]
e1∞

+
[(
A7j −A5j +A8j +A6j

)
xC
]
e2∞, (37)

and

R̃Bj R̃AjRP1j =

(
cos

(
θ2j

2

)
+LB sin

(
θ2j

2

))(
cos

(
θ1j

2

)
+LA sin

(
θ1j

2

))(
cos

(ϕ1j

2

)
−LP1j sin

(ϕ1j

2

))
= A1j +A2j −A3j +A4j

+
(
−A5j +A6j +A7j +A8j

)
e12

+

 −A7jyA+A5jyP1j +A2j
(
xA− xP1j

)
−A8jyB +A3j (xA− xB )
+A4j

(
xB − xP1j

)
+A6j

(
yA− yB − yP1j

)
e1∞

+

 A7jxA−A5jxP1j +A2j
(
yA− yP1j

)
+A8jxB +A3j (yA− yB )
−A4j

(
yP1j − yB

)
+A6j

(
xB − xA+ xP1j

)
e2∞, (38)

where

A1j = cos
(ϕ1j

2

)
cos

(
θ1j

2

)
cos

(
θ2j

2

)
,

A2j = sin
(ϕ1j

2

)
sin
(
θ1j

2

)
cos

(
θ2j

2

)
,

A3j = cos
(ϕ1j

2

)
sin
(
θ1j

2

)
sin
(
θ2j

2

)
,

A4j = sin
(ϕ1j

2

)
cos

(
θ1j

2

)
sin
(
θ2j

2

)
,

A5j = sin
(ϕ1j

2

)
cos

(
θ1j

2

)
cos

(
θ2j

2

)
,

A6j = sin
(ϕ1j

2

)
sin
(
θ1j

2

)
sin
(
θ2j

2

)
,

A7j = cos
(ϕ1j

2

)
sin
(
θ1j

2

)
cos

(
θ2j

2

)
,

A8j = cos
(ϕ1j

2

)
cos

(
θ1j

2

)
sin
(
θ2j

2

)
.

The coefficients of the scalar and vector parts of the expanded
equation should be equal. By extracting and subtracting the
coefficients of the left- and right-hand sides, respectively, it
is found that the scalar part and e12 are eliminated. Further-
more, the coefficients of e1∞ and e2∞ are subtracted to ob-
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tain the following design equations:

A2j
(
xA− xP1j

)
+A3j (xA− xB )

+A4j
(
xB − xP1j

)
+A5j

(
yP1j − yC

)
+A6j

(
yA− yB − yP1j + yC

)
−A7j (yA− yC)−A8j (yB − yC)= 0

A2j
(
yA− yP1j

)
+A3j (yA− yB )

+A4j
(
yB − yP1j

)
−A5j

(
xP1j − xC

)
+A6j

(
xB − xA− xC + xP1j

)
+A7j (xA− xC)+A8j (xB − xC)= 0

,

j = 2. . .N. (39)

To simplify this equation, dividing the above two expressions
by A1j gives

B2j
(
xA− xP1j

)
+B3j (xA− xB )

+B4j
(
xB − xP1j

)
+B5j

(
yP1j − yC

)
+B6j

(
yA− yB − yP1j + yC

)
−B7j (yA− yC)−B8j (yB − yC)= 0

B2j
(
yA− yP1j

)
+B3j (yA− yB )

+B4j
(
yB − yP1j

)
−B5j

(
xP1j − xC

)
+B6j

(
xB − xA− xC + xP1j

)
+B7j (xA− xC)+B8j (xB − xC)= 0

,

j = 2. . .N, (40)

where

B2j = tan
(ϕ1j

2

)
tan
(
θ1j

2

)
,

B3j = tan
(ϕ1j

2

)
tan
(
θ2j

2

)
,

B4j = tan
(ϕ1j

2

)
tan
(
θ2j

2

)
,

B5j = tan
(ϕ1j

2

)
,

B6j = tan
(ϕ1j

2

)
tan
(
θ1j

2

)
tan
(
θ2j

2

)
,

B7j = tan
(
θ1j

2

)
, B8j = tan

(
θ2j

2

)
.

Equation (40) can be applied to design the planar 3R serial
chains. It is noteworthy that there are no cosine and sine
trigonometric functions, and no variable substitution is re-
quired in the solving, which greatly reduces the scale of the
polynomial system, thereby greatly improving the efficiency
of the design mechanism.

Table 1. Number of equations and number of unknowns of the pla-
nar 3R serial chain.

No. of No. of No. of
poses equations unknowns

2 2 8
3 4 10
4 6 12
5 8 14
6 10 16
7 12 18
. . . . . . . . .
N 2 (N − 1) 2 (N − 1)+ 6

4 Synthesis of the planar 3R serial chain

4.1 Number of design poses and free parameters

The planar 3R serial chain has three degrees of freedom and
can reach any set of positions within its workspace boundary.
However, the number of equations increases with the number
of designated positions. Using Eq. (40) to synthesize the pla-
nar 3R serial chain for N poses motion generation, and the
unknowns mainly include the six coordinate parameters of
the three revolution joints xA, yA, xB , yB , xC , yC and the rel-
ative angles θ1j , θ2j , θ3j (θ3j = ϕ1j−θ1j−θ2j ), j = 2, . . .,N
that increase with the positions. Table 1 presents the relation-
ship between the number of equations and unknowns when
Eq. (40) is used to synthesize the planar 3R serial chain.

Table 1 demonstrates that the number of unknowns is al-
ways greater by six numbers compared with the number of
equations in any given position. This feature shows that re-
gardless of how many positions there are in the synthesis
of the planar 3R serial chain, six parameters should be pro-
vided. This finding is consistent with that of the Perez and
McCarthy (2005) theory. The six given parameters for the
synthesis of the planar 3R serial chain also indicate that the
number of synthesis mechanisms is infinite. Hence, design-
ing and optimizing the mechanism to achieve our purpose
becomes more convenient. In this section, Eq. (40) is used to
discuss the synthesis problem of the planar 3R serial chain
for N precision positions.

4.2 Numerical examples and discussion

In this section, a planar 3R serial chain is designed to en-
sure that it guides a rigid body through some precision poses.
These poses are defined by two elements, namely the posi-
tion coordinates of the origin of the end-effector frame with
respect to the fixed reference frame and the direction of the
end-effector frame with respect to the fixed reference frame.
The basic steps for motion synthesis of a planar 3R serial
chain reaching any N poses are as follows.

1. Giving N planar poses
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2. Selecting the first pose as the reference and computing
the relative displacement from the reference pose to the
other poses based on Eq. (19)

3. Using Eq. (20) to find the poles P 1j and the end-effector
relative angles ϕ1j = ϕj −ϕ1

4. Constructing Eq. (40) by using rotors in CGA

5. Substituting P 1j , ϕ1j , and six specified parameters into
Eq. (40) yields two (N − 1) design equations.

6. Solving the design equations

Based on this method, the design equations established by
CGA are used to carry out the motion synthesis of the num-
ber of different poses to be accurately realized by the planar
3R serial chain. The design equations are obtained by using
the CLIFFORD package (Ablamowicz and Fauser, 2005) in
the MAPLE 2017 software. All the computations were per-
formed using the HOM4PS-2.0 package (Lee et al., 2008)
in the MATLAB R2014a software, which runs on a 3.2 GHz
Intel (R) Core (TM) i7-8700 CPU with 64-bit Windows and
8 GB memory. The numerical results are shown in Table 2.
The second column in the table is the data sources for these
poses. By specifying six different parameters, the number of
solutions, the number of real solutions, and the time spent
by the CPU are obtained for each group of data, respectively,
and the path tracked by using HOM4PS-2.0 is counted.

As shown in the table, with the increase in the number
of poses, the number of solutions obtained also increases,
which indicates that the given six parameters impose more
constraints on the mechanism in the case of the synthesis
of fewer poses, while the six parameters impose fewer con-
straints on the mechanism in the case of the increase in
poses. So, more solutions can be obtained and more can-
didate mechanisms can be selected. It should be noted that
there are only two sets of physical solutions (Tables A4–A9
in the Appendix) in the real number solutions given of 10
and 11 poses, and the other real number solutions are dif-
ferent combinations of motion parameters. This is because
more poses add more constraints to the problem, but its mo-
tion form is flexible. At the same time, the computing time
used by the CPU is also increasing, because the scale of the
polynomial system is also increasing. In addition, all the real
solutions of different poses listed in the Appendix are veri-
fied, and all the results are correct.

As a concrete example, a planar 3R serial chain was de-
signed to enable its end effector to accurately reach seven
specified poses and was compared with the previous method.
The seven precision poses and prescribed values for θ1j are
the same as in the reference (Perez and McCarthy, 2005).
Substituting the specified parameters in Table 3 into Eq. (40),
the result is 12 equations with 12 unknowns of a planar 3R
serial chain. The HOM4PS-2.0 software package was used
to solve these equations, and 55 paths were tracked in ap-
proximately 1.16 s and 17 paths converge to the solutions,

Figure 6. A planar 3R serial chain corresponding to solution 1.

of which only 7 were real solutions. The real solutions are
listed in Table A3. Figure 6 shows that the design of a pla-
nar 3R serial chain reaches the seven poses corresponding to
solution 1.

As a comparison, Eq. (29) is used to construct the de-
sign equations, and 12 equations are obtained. However,
these equations are complicated and contain a huge num-
ber of sine and cosine functions. In order to solve these
equations, we replaced them and introduced constraint equa-
tions cos2(θ2j )+ sin2(θ2j )− 1= 0, j = 2, . . .,7. Therefore,
18 equations with 18 unknowns must be solved. Similarly,
the HOM4PS-2.0 software package was used to solve these
equations on the same computer. In this case, the tracking
path was 78 016, which took 20.4 min to compute, and the
same 17 sets of solutions were obtained. The comparison re-
sults show that the method presented in this paper is correct,
and the design equations obtained via CGA are simpler and
faster to solve compared with the previous closed-loop equa-
tions.

5 Application example

Many linkage mechanisms can be broken into components
consisting of planar 2R and 3R serial chains, such as the
five-bar and six-bar mechanisms. In this section, an appli-
cation example will be used to demonstrate the application
of dimensional synthesis of a planar 3R serial chain in link-
age mechanism synthesis. Figure 7 shows an equal-speed ra-
tio single-DOF geared five-bar mechanism, which can be de-
signed by simplifying it to a combination of planar 2R serial
chain EDP and planar 3R serial chain ABCP.

It is assumed that a 2-DOF planar 2R serial chain mech-
anism EDP can realize the seven positions in Table 3, and
the coordinate parameters of its rotation centers E andD are
xE =−2.4 mm, yE =−9.9 mm, xD1 = 72.2 mm, and yD1 =

49.8 mm. It is required to design a 1-DOF geared five-bar
mechanism that can make its end points pass through the
seven positions given in Table 3 in sequence.

According to the coordinate parameters of the pla-
nar 2R open-chain mechanism EDP, the relative angular
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Table 2. The numerical example results.

No. of Data sources Specified parameters Path All Real CPU
poses tracked solutions solutions time

5 Sun et al. (2019) θ1i , i = 2. . .5, xA, yA 9 4 4 0.22 s
6 Ye et al. (2019) θ1i , i = 2. . .6, xA 24 15 3 0.76 s
7 Perez and McCarthy (2005) θ1i , i = 2. . .7 55 17 7 1.16 s
10 Bai (2019) θ1i , i = 2. . .7 440 144 16 8.19 s
11 Zhao et al. (2016) θ1i , i = 2. . .7 880 512 32 22.46 s

Figure 7. Geared five-bar mechanism.

Table 3. Seven precision poses.

Pose Position Orientation
(mm) ϕj (◦)

1 (239.29, 27.21) −7.6
2 (247.72, 68.52) 20.4
3 (204.84, 49.48) 42
4 (190.61, −63.32) 12.3
5 (76.58, −175.5) −41.8
6 (7.47, −98.54) −58.9
7 (117.35, −31.26) −43.6

displacement data of the link ED when the open-chain
mechanism EDP reaches seven poses are obtained
through the inverse kinematics solution: these are αj =

[−26.73, −71.51, −110.61, −168.79, −255.02, −307.24◦].
Set the gear transmission ratio to −1 and cal-
culate the angular displacement data of the AB
link in the open-chain 3R mechanism ABCP
from the first position to the other positions
θ1i = [26.73, 71.51, 110.61, 168.79, 255.02, 307.24◦].
By substituting the pose data and θ1i in Eq. (40), HOM4PS-
2.0 was used to obtain 20 solutions, among which only 8
solutions in Table 4 were real. Each planar 3R serial chain in
Table 4 could be combined with planar 2R mechanism ED
to obtain a geared five-bar mechanism that could pass the
seven poses specified in Table 4.

Considering the compactness of the mechanism, solu-
tions 1, 4, 7, and 8 in Table 4 were first excluded because of
their large size. After confirming that there is a crank and that

the mechanism has no defect, the sixth solution in Table 4
was selected as the open-chain 3R mechanism ABCP and
combined with the given open-chain 2R mechanism ED to
form a five-bar mechanism. Figure 8 shows the state diagram
of the finally designed five-bar mechanism when it reaches
the seven given poses in Table 3. Coupling the gear with the
transmission ratio of −1 between the cranks AB and ED of
the five-bar mechanism can restrict the five-bar mechanism
to a single DOF gear five-bar mechanism. The mechanism
has a stable and continuous motion and reasonable design,
which further verifies the correctness and feasibility of the
proposed method.

6 Conclusions

In this study, a new method for the dimensional synthesis of
the planar 3R serial chain for motion generation based on
CGA is presented. The kinematic equations of the relative
displacement of the planar 3R serial chain were established
on the basis of the motion transformation operators in CGA.
This method greatly reduces the scale of the polynomial sys-
tem.

In the numerical examples, the motion synthesis of the
number of different poses to be accurately realized by the
planar 3R serial chain was verified via this method. When
the same problem is solved by the same software on the same
computer, the computational efficiency of the CGA method
has obvious advantages.

Finally, an application example is given to illustrate the ap-
plication of dimensional synthesis of a planar 3R serial chain
in the design of a geared five-bar mechanism. The proposed
method provides a new meaning for the motion synthesis of
planar serial chains and can be applied to many other types of
planar mechanisms. Furthermore, the application of CGA is
extended to the mechanism and theoretical method of kine-
matics synthesis.
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Table 4. Real solutions for the planar 3R serial chains.

Unknowns Real solutions

1 2 3 4 5 6 7 8

xA −1259.0 140.4 1672.0 296.1 4.377 214.9 59.16 152.7
yA −4859.0 232.1 2834.0 −78.82 −17.82 −6.91 205.11 −89.3
xB −1303.0 175.4 1695.0 287.1 10.71 209.8 79576 105.4
yB −4772.0 431.8 2927.0 −89.62 −18.89 67.28 1388526 6.31
xC 59.31 204.2 78.56 93.62 84.46 79.46 106.35 804171
yC 44.45 317.7 39.6 159.1 43.29 309.6 302.18 −1 602 907

Figure 8. The solution geared five-bar mechanism at the seven precision poses.
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Appendix A: Numerical results

A1 Five poses

Table A1. Specified parameters and real solutions.

Specified parameters Unknowns Real solutions

1 2 3 4

xB (mm) 29.4620 −109.5453 29.2911 5.1265
θ12 =−10◦ yB 29.4324 4.3013 45.0512 55.3996
θ13 =−20◦ xC 13.9256 −23.7454 19.5886 18.4275
θ14 =−130◦ yC 13.1680 66.1078 40.2124 74.7245
θ15 =−140◦ t22 (rad) 0.7113 −0.1026 1.2874 −0.1735
xA =−111 t23 1.8664 −0.1268 −122.5582 0.0555
yA = 5 mm t24 2.0126 −0.3769 0.3874 34.3419

t25 24.6859 −0.3296 −0.3910 4.0605

A2 Six poses

Table A2. Specified parameters and real solutions.

Specified parameters Unknowns Real solutions

1 2 3

yA (mm) −1780 −229.3452 33.3151
xB −19.1219 −10.1537 −10.4913

θ12 =−60◦ yB −1847 −243.2447 26.4722
θ13 =−100◦ xC −330.6745 61.3986 −27.1952
θ14 =−130◦ yC 639.1845 95.1480 −20.3629
θ15 =−140◦ t22 (rad) 0.5283 0.4587 1.2590
θ16 =−190◦ t23 1.0448 0.8928 6.9725
xA = 0 t24 1.7203 1.4170 −3.3150

t25 2.0633 1.6724 −1.9616
t26 30.5796 9.7263 −0.4125
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A3 Seven poses

Table A3. Specified parameters and real solutions.

Specified parameters Unknowns Real solutions

1 2 3 4 5 6 7

xA (mm) −0.1096 −27.351 −0.6053 0.3345 −0.2734 −0.1761 −0.2219
yA 0.0061 8.0246 0.1318 0.1275 0.0513 −0.0304 −0.0176
xB −0.8810 −56.099 −0.7321 0.3342 −0.4730 −0.4459 −0.4543

θ12 = 50◦ yB −0.4905 −2.2186 0.1377 0.2261 0.0774 −0.1780 −0.0198
θ13 = 100◦ xC −0.3860 −19.1795 −0.4763 −0.8878 −0.5436 −0.5136 −0.5165
θ14 = 150◦ yC −0.2883 −2490 0.2295 1.1248 0.0242 −0.0628 −0.2250
θ15 = 200◦ t22 (rad) 0.1005 −0.4288 −1.1868 −0.5629 0.4037 −0.6650 −0.0353
θ16 = 250◦ t23 0.2072 −0.7711 −2.2253 −1.1734 0.0243 −0.9173 −0.3641
θ17 = 300◦ t24 0.3346 −1.2947 2.9845 −1.8029 −1.0008 −0.8210 −0.9250

t25 0.4384 −1.7279 1.9548 −2.4522 −2.0077 −0.7229 −1.4476
t26 0.5829 −2.1595 0.8727 −3.0913 −3.0463 −0.5480 −1.8857
t27 0.8133 −2.5871 −0.3929 2.5538 1.5094 0.0569 −1.9558

A4 Ten poses

Specified parameters: θ12 =−10◦, θ13 =−30◦, θ14 =−50◦,
θ15 =−70◦, θ16 =−85◦, θ17 =−95◦.

Table A4. Real solutions 1–8.

Unknowns Real solutions

1 2 3 4 5 6 7 8

xA (mm) 3372 3372 3372 3372 3372 3372 3372 3372
yA 8316 8316 8316 8316 8316 8316 8316 8316
xB 3372 3372 3372 3372 3372 3372 3372 3372
yB 8318 8318 8318 8318 8318 8318 8318 8318
xC 1.1432 1.1432 1.1432 1.1432 1.1432 1.1432 1.1432 1.1432
yC −0.4361 −0.4361 −0.4361 −0.4361 −0.4361 −0.4361 −0.4361 −0.4361
t18 (rad) 0.5505 0.5505 0.5505 0.5505 −1.2957 −1.2957 −1.2957 −1.2957
t19 −1.4852 −1.4852 0.6382 0.6382 −1.4852 −1.4852 0.6382 0.6382
t110 0.7009 −1.6337 0.7009 −1.6337 0.7009 −1.6337 0.7009 −1.6337
t22 0.0874 0.0874 0.0874 0.0874 0.0874 0.0874 0.0874 0.0874
t23 0.2678 0.2678 0.2678 0.2678 0.2678 0.2678 0.2678 0.2678
t24 0.4660 0.4660 0.4660 0.4660 0.4660 0.4660 0.4660 0.4660
t25 0.6997 0.6997 0.6997 0.6997 0.6997 0.6997 0.6997 0.6997
t26 0.9155 0.9155 0.9155 0.9155 0.9155 0.9155 0.9155 0.9155
t27 1.0902 1.0902 1.0902 1.0902 1.0902 1.0902 1.0902 1.0902
t28 −0.5503 −0.5503 −0.5503 −0.5503 1.2954 1.2954 1.2954 1.2954
t29 1.4852 1.4852 −0.6380 −0.6380 1.4852 1.4852 −0.6380 −0.6380
t210 −0.7006 1.6335 1.6335 −0.7006 1.6335 −0.7006 −0.7006 1.6335

Mech. Sci., 13, 275–290, 2022 https://doi.org/10.5194/ms-13-275-2022



L. Wang et al.: Motion generation of a planar 3R serial chain 287

Table A5. Real solutions 9–16.

Unknowns Real solutions

9 10 11 12 13 14 15 16

xA (mm) 0.4270 0.4270 0.4270 0.4270 0.4270 0.4270 0.4270 0.4270
yA −2.5823 −2.5823 −2.5823 −2.5823 −2.5823 −2.5823 −2.5823 −2.5823
xB 1.3340 1.3340 1.3340 1.3340 1.3340 1.3340 1.3340 1.3340
yB −0.7731 −0.7731 −0.7731 −0.7731 −0.7731 −0.7731 −0.7731 −0.7731
xC 1.8230 1.8230 1.8230 1.8230 1.8230 1.8230 1.8230 1.8230
yC −0.5687 −0.5687 −0.5687 −0.5687 −0.5687 −0.5687 −0.5687 −0.5687
t18 (rad) −0.7342 −0.7342 −0.7342 −0.7342 −1.2279 −1.2279 −1.2279 −1.2279
t19 −0.7949 −0.7949 −1.1951 −1.1951 −0.7949 −0.7949 −1.1951 −1.1951
t110 −1.0556 −0.8532 −0.8532 −1.0556 −0.8532 −1.0556 −1.0556 −0.8532
t22 0.1295 0.1295 0.1295 0.1295 0.1295 0.1295 0.1295 0.1295
t23 0.4965 0.4965 0.4965 0.4965 0.4965 0.4965 0.4965 0.4965
t24 0.8405 0.8405 0.8405 0.8405 0.8405 0.8405 0.8405 0.8405
t25 1.5678 1.5678 1.5678 1.5678 1.5678 1.5678 1.5678 1.5678
t26 2.5906 2.5906 2.5906 2.5906 2.5906 2.5906 2.5906 2.5906
t27 2.6867 2.6867 2.6867 2.6867 2.6867 2.6867 2.6867 2.6867
t28 −0.4404 −0.4404 −0.4404 −0.4404 2.0926 2.0926 2.0926 2.0926
t29 −0.1858 −0.1858 1.2444 1.2444 −0.1858 −0.1858 1.2444 1.2444
t210 0.7082 0.0942 0.0942 0.7082 0.0942 0.7082 0.7082 0.0942

A5 Eleven poses

Specified parameters: θ12 =−10◦, θ13 =−30◦, θ14 =−50◦,
θ15 =−70◦, θ16 =−85◦, θ17 =−95◦.

Table A6. Real solutions 1–8.

Unknowns Real solutions

1 2 3 4 5 6 7 8

xA (mm) 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557
yA −0.1762 −0.1762 −0.1762 −0.1762 −0.1762 −0.1762 −0.1762 −0.1762
xB 5.3133 5.3133 5.3133 5.3133 5.3133 5.3133 5.3133 5.3133
yB −1.8734 −1.8734 −1.8734 −1.8734 −1.8734 −1.8734 −1.8734 −1.8734
xC −0.0429 −0.0429 −0.0429 −0.0429 −0.0429 −0.0429 −0.0429 −0.0429
yC −1.0864 −1.0864 −1.0864 −1.0864 −1.0864 −1.0864 −1.0864 −1.0864
t18 (rad) 0.1379 −1.3137 0.1379 −1.3137 0.1379 −1.3137 0.1379 −1.3137
t19 −1.7175 −1.7175 −1.7175 −1.7175 0.3245 0.3245 0.3245 0.3245
t110 0.4925 0.4925 −2.5001 −2.5001 0.4925 0.4925 −2.5001 −2.5001
t111 0 0 0 0 0 0 0 0
t22 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974
t23 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038
t24 0.5194 0.5194 0.5194 0.5194 0.5194 0.5194 0.5194 0.5194
t25 0.8212 0.8212 0.8212 0.8212 0.8212 0.8212 0.8212 0.8212
t26 1.1660 1.1660 1.1660 1.1660 1.1660 1.1660 1.1660 1.1660
t27 1.6051 1.6051 1.6051 1.6051 1.6051 1.6051 1.6051 1.6051
t28 −0.2993 2.4353 −0.2993 2.4353 −0.2993 2.4353 −0.2993 2.4353
t29 4.6380 4.6380 4.6380 4.6380 −0.5056 −0.5056 −0.5056 −0.5056
t210 −0.7118 −0.7118 16.1361 16.1361 −0.7118 −0.7118 16.1361 16.1361
t211 0 0 0 0 0 0 0 0
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Table A7. Real solutions 9–16.

Unknowns Real solutions

9 10 11 12 13 14 15 16

xA (mm) 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557
yA −0.1762 −0.1762 −0.1762 −0.1762 −0.1762 −0.1762 −0.1762 −0.1762
xB 5.3133 5.3133 5.3133 5.3133 5.3133 5.3133 5.3133 5.3133
yB −1.8734 −1.8734 −1.8734 −1.8734 −1.8734 −1.8734 −1.8734 −1.8734
xC −0.0429 −0.0429 −0.0429 −0.0429 −0.0429 −0.0429 −0.0429 −0.0429
yC −1.0864 −1.0864 −1.0864 −1.0864 −1.0864 −1.0864 −1.0864 −1.0864
t18 (rad) 0.1379 −1.3137 0.1379 −1.3137 0.1379 −1.3137 0.1379 −1.3137
t19 −1.7175 −1.7175 −1.7175 −1.7175 0.3245 0.3245 0.3245 0.3245
t110 0.4925 0.4925 −2.5001 −2.5001 0.4925 0.4925 −2.5001 −2.5001
t111 −0.7119 −0.7119 −0.7119 −0.7119 −0.7119 −0.7119 −0.7119 −0.7119
t22 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974
t23 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038
t24 0.5194 0.5194 0.5194 0.5194 0.5194 0.5194 0.5194 0.5194
t25 0.8212 0.8212 0.8212 0.8212 0.8212 0.8212 0.8212 0.8212
t26 1.1660 1.1660 1.1660 1.1660 1.1660 1.1660 1.1660 1.1660
t27 1.6051 1.6051 1.6051 1.6051 1.6051 1.6051 1.6051 1.6051
t28 −0.2993 2.4353 −0.2993 2.4353 −0.2993 2.4353 −0.2993 2.4353
t29 4.6380 4.6380 4.6380 4.6380 −0.5056 −0.5056 −0.5056 −0.5056
t210 −0.7118 −0.7118 16.1361 16.1361 −0.7118 −0.7118 16.1361 16.1361
t211 1.2354 1.2354 1.2354 1.2354 1.2354 1.2354 1.2354 1.2354

Table A8. Real solutions 17–24.

Unknowns Real solutions

17 18 19 20 21 22 23 24

xA (mm) 8.8226 8.8226 8.8226 8.8226 8.8226 8.8226 8.8226 8.8226
yA −3.9698 −3.9698 −3.9698 −3.9698 −3.9698 −3.9698 −3.9698 −3.9698
xB 6.1254 6.1254 6.1254 6.1254 6.1254 6.1254 6.1254 6.1254
yB −4.5361 −4.5361 −4.5361 −4.5361 −4.5361 −4.5361 −4.5361 −4.5361
xC −0.7813 −0.7813 −0.7813 −0.7813 −0.7813 −0.7813 −0.7813 −0.7813
yC −0.3939 −0.3939 −0.3939 −0.3939 −0.3939 −0.3939 −0.3939 −0.3939
t18 (rad) 0.1195 −1.2819 0.1195 −1.2819 0.1195 −1.2819 0.1195 −1.2819
t19 0.2115 0.2115 0.2115 0.2115 −1.5307 −1.5307 −1.5307 −1.5307
t110 −1.8111 −1.8111 0.2768 0.2768 −1.8111 −1.8111 0.2768 0.2768
t111 −0.6317 −0.6317 −0.6317 −0.6317 −0.6317 −0.6317 −0.6317 −0.6317
t22 0.0941 0.0941 0.0941 0.0941 0.0941 0.0941 0.0941 0.0941
t23 0.2936 0.2936 0.2936 0.2936 0.2936 0.2936 0.2936 0.2936
t24 0.4246 0.4246 0.4246 0.4246 0.4246 0.4246 0.4246 0.4246
t25 0.7797 0.7797 0.7797 0.7797 0.7797 0.7797 0.7797 0.7797
t26 1.0605 1.0605 1.0605 1.0605 1.0605 1.0605 1.0605 1.0605
t27 1.3376 1.3376 1.3376 1.3376 1.3376 1.3376 1.3376 1.3376
t28 −0.2970 1.6875 −0.2970 1.6875 −0.2970 1.6875 −0.2970 1.6875
t29 −0.4099 −0.4099 −0.4099 −0.4099 2.1542 2.1542 2.1542 2.1542
t210 2.6618 2.6618 −0.5008 −0.5008 2.6618 2.6618 −0.5008 −0.5008
t211 0.9263 0.9263 0.9263 0.9263 0.9263 0.9263 0.9263 0.9263
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Table A9. Real solutions 25–32.

Unknowns Real solutions

25 26 27 28 29 30 31 32

xA (mm) 8.8226 8.8226 8.8226 8.8226 8.8226 8.8226 8.8226 8.8226
yA −3.9698 −3.9698 −3.9698 −3.9698 −3.9698 −3.9698 −3.9698 −3.9698
xB 6.1254 6.1254 6.1254 6.1254 6.1254 6.1254 6.1254 6.1254
yB −4.5361 −4.5361 −4.5361 −4.5361 −4.5361 −4.5361 −4.5361 −4.5361
xC −0.7813 −0.7813 −0.7813 −0.7813 −0.7813 −0.7813 −0.7813 −0.7813
yC −0.3939 −0.3939 −0.3939 −0.3939 −0.3939 −0.3939 −0.3939 −0.3939
t18 (rad) 0.1195 −1.2819 0.1195 −1.2819 0.1195 −1.2819 0.1195 −1.2819
t19 0.2115 0.2115 0.2115 0.2115 −1.5307 −1.5307 −1.5307 −1.5307
t110 −1.8111 −1.8111 0.2768 0.2768 −1.8111 −1.8111 0.2768 0.2768
t111 0 0 0 0 0 0 0 0
t22 0.0941 0.0941 0.0941 0.0941 0.0941 0.0941 0.0941 0.0941
t23 0.2936 0.2936 0.2936 0.2936 0.2936 0.2936 0.2936 0.2936
t24 0.4246 0.4246 0.4246 0.4246 0.4246 0.4246 0.4246 0.4246
t25 0.7797 0.7797 0.7797 0.7797 0.7797 0.7797 0.7797 0.7797
t26 1.0605 1.0605 1.0605 1.0605 1.0605 1.0605 1.0605 1.0605
t27 1.3376 1.3376 1.3376 1.3376 1.3376 1.3376 1.3376 1.3376
t28 −0.2970 1.6875 −0.2970 1.6875 −0.2970 1.6875 −0.2970 1.6875
t29 −0.4099 −0.4099 −0.4099 −0.4099 2.1542 2.1542 2.1542 2.1542
t210 2.6618 2.6618 −0.5008 −0.5008 2.6618 2.6618 −0.5008 −0.5008
t211 0 0 0 0 0 0 0 0
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