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Abstract. Among parallel robots, spherical robots occupy an important place. Most applications of spherical
manipulators can be found in orienting devices, such as camera orienting and medical instrument alignment.
A spherical parallel robot is, in general, made up of the base platform and the moving platform. This mobile
platform and base are connected by three equally spaced legs, each consisting of revolute joints only. The axes of
all joints intersect at a common point, which is called the center of rotation. The motion of the moving platform is
confined on the surface of a sphere centered at the rotation center. A spherical parallel robot provides 3 degrees
of freedom of pure rotations. These robots have been the subject of many papers dealing with the structure,
the problems of position and velocity, workspace modeling, singularity analysis, and some problems with the
dynamic analysis. However, not all the important problems have been solved. These concern the problem of
accuracy. This paper presents accuracy of the spherical parallel. In the considered spherical manipulator, each leg
consists of five kinematic pairs. The kinematic accuracy is determined on the kinematic problem. The dynamic
accuracy is estimated on the equation of motion. Examples of solving the problem of determining the positioning
error of the output level are presented.

1 Introduction

Production automation is ensured by the use of robotic com-
plexes and systems. One of the important characteristics of
assessing the quality of functioning of robotic systems is
the positioning accuracy. The task of ensuring this accuracy
should be solved at the design stage of machinery and equip-
ment.

Most of the production of light industry requires laser cut-
ting and surface treatment, welding, and medical robotics.

The positioning error of the output link, when it is repeat-
edly withdrawn to a given point, is expressed for a spherical
mechanism in angular units. The positioning error is deter-
mined by systematic (inaccuracy of the control system and
deviations from the nominal dimensions of the links) and ran-
dom components (gaps in the joints, loosening in fasteners,
temperature fluctuations, robot vibrations caused by adjacent
equipment, residual vibrations, and fatigue deformations of
links). The positioning accuracy is determined by the posi-
tioning error of the output link (capture) when it is repeatedly

brought to a given point and is expressed in angular or linear
dimensions.

Systematic errors can be partially or completely compen-
sated. Reducing random errors should be considered in de-
sign and operation. Most robotic systems consist of spatial
mechanisms, including mechanisms of a parallel structure
(Merlet, 2000; Kong and Gosselin, 2007; Gogu, 2008). Mod-
ern control systems allow for the introduction of appropriate
amendments. Also, the negative impact of vibrations at the
base of the robot on the positioning accuracy can be reduced
by organizational measures (i.e., coordination of the manip-
ulation cycle with the cycle of the equipment that caused the
vibration). The purpose of cycle matching is to establish the
time interval between the impact and the final stage of the
manipulation cycle. This allows vibrations to dim before the
positioning is complete. Residual oscillations of the output
link, resulting from insufficient rigidity of the link drives and
instability of the control system, have a significant effect on
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accuracy. The nature of the residual vibrations depends on
the dynamic properties of the manipulator.

When creating robots, they strive to perform links with a
uniform, constant cross section along the length. In this case,
there is no need to describe the links through the distribution
of length over mass, moments of inertia, and stiffness. In this
case, the task of dynamic accuracy is simplified, since, in this
case, the Lagrangian equations describe mechanical systems
with lumped parameters.

In most cases, the positioning error is determined from
solving problems on the position of the mechanism. How-
ever, this approach is not universal, since inaccuracies in
the manufacture of links of mechanisms are inevitable, the
temperature of the working environment is not constant, the
mechanism can be located on a moving base, external influ-
ences can be present, and instability of motion occurs at a
given law of motion.

An interesting approach is one that takes into account the
determination of the accuracy of finding the executive body
while taking into account the above restrictions and the pos-
sibility of their compensation. The paper shows a sequential
approach to determining the kinematic, then dynamic, accu-
racy of the executive body and the positioning errors during
control. Thus, an integrated approach to assessing the perfor-
mance of the actuator is presented.

2 Kinematic accuracy of the spherical mechanism

The article presents a solution to the problem of determining
the positioning error of the working body, using the example
of a spherical manipulator with 3 degrees of freedom of a par-
allel structure (Fig. 1). Such manipulators are used in orient-
ing devices, in test benches, medical robotic complexes, for
processing spherical surfaces, in mixers, and for performing
rotational movements (Huda and Takeda, 2007; Mianovski,
2007; Leguay-Durand and Reboulet, 1997; Bai et al., 2016;
Chaker et al., 2011; Nosova et al., 2018). The paper considers
a spherical manipulator with 3 degrees of freedom and inves-
tigates the issues of the kinematic and dynamic accuracy of
the positioning of the executive body.

In the considered mechanism, each input chain link is con-
nected to a rotary motor. The output link is a platform rotat-
ing at point O around three coordinate axes. The output co-
ordinates are the angles of rotation of the platform, with the
angle α of rotation around the x axis, the angle β of rota-
tion around the y axis, and the angle γ of rotation around the
z axis. The generalized coordinates are the angles φ11, φ21,
and φ31 of rotation of the input links, respectively, of the first
kinematic chain and second and third kinematic chain.

The solution to the positioning problem determines the
relationship between the input and output coordinates and
is presented in the following form (Kheylo and Glazunov,
2016; Nhan et al., 2019):

Figure 1. Mechanism of a parallel manipulator with 3 degrees of
freedom.

Figure 2. Angles between the axes of kinematic pairs θ11, θ22 in
the first kinematic chain.


F1 = tgφ11−

cosγ ·sinγ ·sinβ+cosγ ·sinα
cosα·cosβ = 0;

F2 =
sinβ

cosγ ·cosβ − tgφ21 = 0;
F3 =

cosγ ·sinβ·sinα−cosα·sinγ
cosα·cosγ+sinα·sinβ·sinγ + tgφ31 = 0.

(1)

In general, the positioning problem is specified in the form
of implicit functions, as follows:

Fi = (α,β,γ,θi1,θi2,φi1), (2)

where θi1, θi2 is the angle between the axes of the kinematic
pairs (Fig. 2).

The total differential of function (2) is written as follows:

∂Fi

∂α
δα+

∂Fi

∂β
δβ +

∂Fi

∂γ
δγ +

∂Fi

∂θi1
δθi1

+
∂Fi

∂θi2
δθi2+

∂Fi

∂φi1
δφi1 = 0. (3)
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Figure 3. Sequence of turns of the output link.

According to the linear accuracy theory, the increment in the
drives is zero, where δφ11 = δφ21 = δφ31 = 0.

The implicit function equations can be written as follows
(Kheylo and Glazunov, 2014):

∂F1

∂α
δα+

∂F1

∂β
δβ +

∂F1

∂γ
δγ =−

(
∂F1

∂θ12
δθ12+

∂F1

∂θ11
δθ11

)
∂F2

∂α
δα+

∂F2

∂β
δβ +

∂F2

∂γ
δγ =−

(
∂F2

∂θ22
δθ22+

∂F2

∂θ21
δθ21

)
∂F3

∂α
δα+

∂F3

∂β
δβ +

∂F3

∂γ
δγ =−

(
∂F3

∂θ32
δθ32+

∂F3

∂θ31
δθ31

)
. (4)

In the considered mechanism, the angles between the axes of
the kinematic pairs θi1, θi2 are not equal to 90◦. The sequence
of rotations of the output link from a movable coordinate sys-
tem to a fixed one is shown in Fig. 3.

The transition matrix, from a moving coordinate system to
a fixed one, will have the following form:

B1 = Fz ·Fx ·B′x ·C
′
y ·B

′
y ·C

′
x ·B

′
z,

where, in the following:

B′x =

 cosφ11 −sinφ11 0
sinφ11 cosφ11 0

0 0 1

 ,
B′y =

 cosφ12 −sinφ12 0
sinφ12 cosφ12 0

0 0 1

 , and

B′z =

 cosφ13 −sinφ13 0
sinφ13 cosφ13 0

0 0 1

 ,
which are the rotation matrices of the first kinematic pairs
and second and third kinematic pairs around the movable axis

z by the angles ϕ11, ϕ12, and ϕ13, respectively.

C′x =

 1 0 0
0 cosθ11 −sinθ11
0 sinθ11 cosθ11

 , and

C′y =

 cosθ12 0 −sinθ12
0 1 0

sinθ12 0 cosφ12

 ,
which are the matrices of rotations around the x and y axes
by the angles θ11 and θ12, respectively. θ11 and θ12 are the
angles between the adjacent pairs.

F′z =

 cosξ12 sinξ12 0
−sinξ12 cosξ12 0

0 0 1

 , and

F′x =

 1 0 0
0 cosξ11 sinξ11
0 −sinξ11 cosξ11

 ,
which are matrices of additional rotations for aligning the
moving and stationary coordinate system around the z and x
axes by tje angles ξ11, and ξ12, respectively, with ξ11 = 90◦,
and ξ12 = 90◦.

The unit vector of the axis of the pair of the output links

of the first chain has the following coordinates:

 0
0
1

 ,
which are substituted into the following constraint equation

A ·

 0
0
1

= B1 ·

 0
0
1

. Using the found values of the ma-

trices A and B′, we obtain the following equation:

 sinγ · sinα+ cosα · cosγ · sinβ
cosα · sinγ · sinβ − cosγ · sinα
cosβ · cosα



=


cosθ12 cosθ11+ sinφ12 sinθ11 sinθ12
cosφ11 cosθ12 sinθ11− sinθ12

(
cosφ12 sinφ11

+cosφ11 cosθ11 sinθ12
)

sinθ12 (cosφ11 · cosφ12− cosθ11 sinφ11 sinφ12)
+cosθ12 sinφ11 sinθ11

 .

For the second kinematic chain, the transition matrix from a
moving coordinate system to a fixed one will have the fol-
lowing form:

B2 = Fx ·Fy ·B′′y ·C
′′
z ·B

′′
z ·C

′′
y ·B

′′
x,
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where, in the following:

B′′y =

 1 0 0
0 cosφ21 −sinφ21
0 sinφ21 cosφ21

 ,
B′′z =

 1 0 0
0 cosφ22 −sinφ22
0 sinφ22 cosφ22

 , and

B′′x =

 1 0 0
0 cosφ21 −sinφ21
0 sinφ21 cosφ21

 ,
which are rotation matrices of the first kinematic pairs and
second and third kinematic pairs around the movable axis x
by the angles ϕ21, ϕ22, and ϕ23, respectively.

C′z =

 cosθ22 −sinθ22 0
cosθ22 sinθ22 0

0 0 1

 , and

C′y =

 cosθ21 0 sinθ12
0 1 0

−sinθ21 0 cosφ12

 ,
which are matrices of rotations around the z, y axes by the
angles θ22 and θ21, respectively, and θ21 and θ22 are the an-
gles between adjacent pairs.

F′′y =

 cosξ22 0 sinξ22
0 1 0

sinξ22 0 cosξ22

 , and

F′′x =

 1 0 0
0 cosξ21 sinξ21
0 −sinξ21 cosξ21

 ,
which are matrices of additional rotations for aligning the
moving and stationary coordinate systems around the z and
x axes by the angles ξ22 and ξ21, respectively, with ξ21 = 90◦

and ξ22 = 90◦.
For the third kinematic chain, the transition matrix from a

moving coordinate system to a fixed one will have the fol-
lowing form:

B3 = F′′′y ·F
′′′
z ·B

′′′
z ·C

′′′
x ·B

′′′
x ·C

′′′
z ·B

′′′
y

B′′′z =

 cosφ31 0 sinφ31
0 1 0

−sinφ31 0 cosφ31

 ,
B′′′y =

 cosφ32 0 sinφ32
0 1 0

−sinφ32 0 cosφ32

 , and

B′′′x =

 cosφ33 0 sinφ33
0 1 0

−sinφ33 0 cosφ33

 ,
which are matrices of rotations of the first kinematic pairs
and second and third kinematic pairs around the movable axis

y by the angles ϕ31, ϕ32, and ϕ33, respectively.

C′′′z =

 cosθ31 −sinθ31 0
cosθ31 sinθ31 0

0 0 1

 , and

C′′′x =

 1 0 0
0 cosθ32 sinθ32
0 −sinθ32 cosθ32

 ,
which are matrices of rotations around the z and x axes by
the angles θ31 and θ32, respectively. θ31 and θ32 are the angles
between adjacent pairs.

F′′′y =

 cosξ32 0 −sinξ32
0 1 0

sinξ32 0 cosξ32

 , and

F′′′z =

 cosξ31 sinξ31 0
−sinξ31 cosξ31 0

0 0 1

 ,
which are matrices of additional rotations for aligning the
moving and stationary coordinate systems around the z and
x axes by the angles ξ31 and ξ32, respectively, with ξ31 = 90◦

and ξ32 = 90◦.
Position function F1 will look as follows:

F1 =
cosα sinγ sinβ − cosγ sinα

cosβ cosα

−

cosφ11 cosθ12 sinθ11− sinθ12(cosφ12 sinφ11
+cosφ11 cosθ11 sinθ12)

sinθ12(cosφ11 cosφ12− cosθ11 sinφ11 sinφ12)
+cosθ12 sinφ11 sinθ11

.

F2 =
− sinβ

cosγ cosβ

−

cosφ21 cosθ21 sinθ22− sinθ21(cosφ22 sinφ21
+cosφ21 cosθ22 sinφ22)

sinθ21(cosφ21 cosφ22− cosθ22 sinφ21 sinφ22)
+cosθ21 sinφ21 sinθ22

.

F3 =
cosγ sinβ sinα− cosα sinγ
cosγ cosα+ sinγ sinβ sinα

−

cosφ31 cosθ31 sinθ32− sinθ31(cosφ32 sinφ31
+cosφ31 cosθ32 sinθ32)

sinθ31(cosφ31 cosφ32− cosθ32 sinφ31 sinφ32)
+cosθ31 sinφ31 sinθ32

.

Partial derivatives will be equal to the following:

∂F1

∂θ11
=−

cos φ11 cos θ11 cos θ12
+cos φ11 sinφ12 sinθ11 sinθ12

sinθ12 (cos φ11 cosφ12− cos θ11 sinφ11 sinφ12)
+cos θ12 sinφ12 sin θ11

−

(cos θ11 cos θ12 sin φ11
+sinφ11 sinφ12 sinθ11 sinθ12)

(sinθ12(cosφ11 cosφ12− cos θ11 sinφ11 sinφ12)
+cos θ12 sinφ11 sin θ11)2

×
(

sinθ12 (cosφ12 sinφ12+ cosφ11 cosθ11 sinφ12)
− cosφ11 cos θ12 sinθ11

)
.
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∂F1

∂θ12
=−

cosθ12 (cosφ21 sinφ12+ cosφ11 cosθ11 sinφ12)
+cosφ11 sinθ11 sinθ12

sinθ12 (cos φ11 cosφ12− cos θ11 sinφ11 sinφ12)
+cos θ12 sinφ12 sin θ11

−

sinθ12(cosθ12 sinφ11+ cosφ11 sinφ12 cosθ11)
−cosφ11 cosθ12 sinθ11

(sinθ12(cosφ11 cosφ12− cosθ11 sinφ11 sinφ12)
+cosθ12 sinφ11 sinθ11)2

×
(

cosθ12 (cosφ11 cosφ12− sinφ11 cosθ11 sinφ12)
− sinφ11 sinθ12 sinθ11

)
.

∂F2

∂θ21
=−

cosθ21(cosφ22 sinφ21+ cosφ21 cosθ22 sinφ22)
+cosφ21 sinθ21 sinθ22

sinθ21 (cos φ21 cosφ22− cos θ22 sinφ21 sinφ22)
+cos θ21 sinφ21 sin θ22

−

sinθ21 (cosφ22 sinφ21+ cosφ21 sinθ22 sinφ22)
−cosφ21 cosθ21 sinθ22

(sinθ21 (cosφ21 cosφ22− cosθ22 sinφ21 sinφ22)
+cosθ21 sinφ21 sinθ22)2

×
(

cosθ21(cosφ21 cosφ22− sinφ22 cosθ22 sinφ12)
− sinφ21 sinθ21 sinθ22

)
.

∂F2

∂θ22
=

(cosφ21 cosθ21 cosθ22
+cosφ21 sinθ22 sinφ22 sinθ21)

sinθ21 (cos φ21 cosφ22− cos θ22 sinφ21 sinφ22)
+cos θ21 sinφ21 sin θ22

−

(cosθ21 sinφ21 cosθ22
+sinφ21 sinθ21 sinθ22 sinφ22)

(sinθ21 (cosφ21 cosφ22− cosθ22 sinφ21 sinφ22)
+cosθ21 sinφ21 sinθ22)2

×
(

sinθ21 (cosφ22 sinφ21+ cosφ21 cosθ22 sinφ22)
− cosφ21 cosθ21 sinθ22

)
.

∂F3

∂θ31
=−

cosθ31 (cosφ32 sinφ31+ cosφ31 cosθ32 sinφ32)
+cosφ31 sinθ31 sinθ32

sinθ31 (cos φ31 cosφ32− cos θ32 sinφ31 sinφ32)
+cos θ31 sinφ31 sin θ32

−

sinθ31 (cosφ32 sinφ31+ cosφ31 cosθ32 sinφ32)
−cosφ31 cosθ31 sinθ32

(sinθ31 (cosφ31 cosφ32− cosθ32 sinφ31 sinφ32)
+cosθ31 sinφ31 sinθ32)2

×
(

cosθ31 (cosφ31 cosφ32− sinφ32 cosθ32 sinφ31)
− sinφ31 sinθ31 sinθ32

)
.

∂F3

∂θ32
=

(cosφ31 cosθ31 cosθ32
+cosφ31 sinθ32 sinθ31 sinφ32)

sinθ31 (cos φ31 cosφ32− cos θ32 sinφ31 sinφ32)
+cos θ31 sinφ31 sin θ32

−

(cosθ32 cosθ31 sinφ31
+sinφ31 sinθ31 cosθ32 sinφ32)

(sinθ31 (cosφ31 cosφ32− cosθ32 sinφ31 sinφ32)
+cosθ31 sinφ31 sinθ32)2

×
(

sinθ31 (cosφ32 sinφ31+ sinφ32 cosθ32 cosφ31)
− cosφ31 cosθ31 sinθ32

)
.

The values of the remaining partial derivatives are known
from solving the positioning problem. Let us determine the
positioning error of the output link in different positions with

Table 1. Output link angles deviation values.

Coordinate output link 1α 1β 1γ

(α; β; γ ; degree) (degree) (degree) (degree)

10; 10; 10 0.37 0.35 0.48
15; 15; 15 0.32 0.39 0.47
20; 20; 20 0.31 0.71 0.43
25; 25; 25 0.34 0.53 0.47

deviations of the angles between the axes equal to θ11 =

θ12 = θ21 = 0.50 and θ22 = θ31 = θ32 = 0.40.
The deviations of the angles of the output link are ex-

pressed, from Eq. (4), as follows:

δα =

∂F1
∂β

∂F2
∂γ
W3−

∂F1
∂β

∂F3
∂γ
W2−

∂F1
∂γ

∂F2
∂β
W3

+
∂F1
∂γ

∂F3
∂β
W2+

∂F2
∂β

∂F2
∂γ
W1−

∂F2
∂γ

∂F3
∂β
W1

∂F1
∂α

∂F2
∂β

∂F3
∂γ
−
∂F1
∂β

∂F2
∂γ

∂F3
∂β
−
∂F1
∂β

∂F2
∂α

∂F3
∂γ

+
∂F1
∂β

∂F3
∂α

∂F2
∂γ
+
∂F2
∂α

∂F1
∂γ

∂F3
∂β
−
∂F1
∂γ

∂F2
∂β

∂F3
∂α

,

δβ =

∂F1
∂α

∂F2
∂γ
W3−

∂F1
∂α

∂F3
∂γ
W2−

∂F2
∂α

∂F1
∂γ
W3

+
∂F2
∂α

∂F3
∂γ
W1+

∂F1
∂γ

∂F3
∂α
W1−

∂F3
∂α

∂F2
∂γ
W1

∂F1
∂α

∂F2
∂β

∂F3
∂γ
−
∂F1
∂β

∂F2
∂γ

∂F3
∂β
−
∂F1
∂β

∂F2
∂α

∂F3
∂γ

+
∂F1
∂β

∂F3
∂α

∂F2
∂γ
+
∂F2
∂α

∂F1
∂γ

∂F3
∂β
−
∂F1
∂γ

∂F2
∂β

∂F3
∂α

, and

δα =

∂F1
∂α

∂F2
∂β
W3−

∂F1
∂α

∂F3
∂β
W2−

∂F1
∂β

∂F2
∂α
W3

+
∂F1
∂β

∂F3
∂α
W2+

∂F2
∂α

∂F3
∂χ
W1−

∂F2
∂β

∂F3
∂α
W1

∂F1
∂α

∂F2
∂β

∂F3
∂γ
−
∂F1
∂β

∂F2
∂γ

∂F3
∂β
−
∂F1
∂β

∂F2
∂α

∂F3
∂γ

+
∂F1
∂β

∂F3
∂α

∂F2
∂γ
+
∂F2
∂α

∂F1
∂γ

∂F3
∂β
−
∂F1
∂γ

∂F2
∂β

∂F3
∂α

,

where, in the following:

W1 =−

(
∂F1

∂θ12
δθ12+

∂F1

∂θ11
δθ11

)
,

W2 =−

(
∂F2

∂θ22
δθ22+

∂F2

∂θ21
δθ21

)
, and

W3 =−

(
∂F3

∂θ32
δθ32+

∂F3

∂θ31
δθ31

)
.

Thus, the solution to the problem of determining the devia-
tion of the actuator of the mechanism in the case of the in-
accuracy of its manufacture is presented. The values of the
deviation of the coordinates of the output link at a given de-
viation between the axes are presented in Table 1.

3 Determination of dynamic accuracy

When assessing the dynamic positioning accuracy of the
grip, small fluctuations around the stable equilibrium posi-
tion are investigated.
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The equations of motion for a manipulator with 3 degrees
of freedom will be described by a system of differential equa-
tions (Kheylo and Glazunov, 2014; Nhan et al., 2019) as fol-
lows:

d
dt

(
∂T

∂φ̇i

)
−
∂T

∂φi
=−

∂
∏
∂φi

, i = 1, . . .3, (5)

where T is the kinetic energy of the system, and 5 is poten-
tial energy of the system.

The potential energy of the system is defined as follows:

∏
=

1
2

n∑
i=1

ci ·φ
2
i ,

where ci is the chain stiffness.
Kinetic energy is a quadratic function of generalized ve-

locities.

T =
1
2
· Jx ·ω

2
x +

1
2
· Jy ·ω

2
y +

1
2
· Jz ·ω

2
z , (6)

where ωx , ωy , and ωz are the angular velocities of the output
link around the x, y, and z axes, respectively. Jz = 1

2 ·m · r
2

and Jy = Jz = 1
12 ·m · r

2 are the moments of inertia of the
output link around the axes x, y, and z, respectively. m is the
mass of the output link (we take m= 0.5 kg, and r = 0.1 m).
r is the radius of the platform of the output link. Then, Eq. (6)
takes the following form:

T =
1
2
·

1
12
·m · r2

·ω2
x +

1
2
·

1
12
·m · r2

·ω2
y

+
1
2
·

1
2
·m · r2

·ω2
z . (7)

The problem of determining the deviation of the coordinates
of the input link when removing it from the equilibrium po-
sition is solved numerically (Fig. 4). Reducing the dynamic
error can be achieved by increasing the rigidity of the drive
or by introducing damping devices.

Automatic compensation of movements, using digital or
pulse controllers, is also an effective method of damping the
vibrations.

4 Evaluation of the positioning of the output link
when controlling the mechanism

The reduction of residual vibrations is possible by increas-
ing the stiffness of the drives. This must also be taken into
account when constructing a control algorithm (Nhan et al.,
2019).

Let us set the required movement of the output link in the
form of the law of coordinate change, i.e., αT (t), βT (t), and
γT (t). The required speeds are α̇T (t), β̇T (t), and γ̇T (t), and
acceleration is α̈T (t), β̈T (t), and γ̈T (t), which we obtain after
the differentiation.

Figure 4. Deviation of the output link along the coordinates α, β,
and γ .

Figure 5. Control algorithm.

The control problem is to minimize the coordinate er-
ror is as follows:11(t)= αT (t)−α(t),12(t)= βT (t)−β(t),
13(t)= γT (t)−γ (t), with the speed of 1̇1(t)= α̇T (t)−α̇(t),
1̇2(t)= β̇T (t)− β̇(t), and 1̇3(t)= γ̇T (t)− γ̇ (t), and accel-
eration of 1̈1(t)= α̈T (t)− α̈(t), 1̈2(t)= β̈T (t)− β̈(t), and
1̈3(t)= γ̈T (t)− γ̈ (t), where α (t), β (t), and γ (t) are the ac-
tual values of the coordinates of the output link.

We then simulate the movement of the output link of the
parallel structure mechanism along a given trajectory using
the developed algorithm for optimal motion control (Fig. 5).

To measure the magnitude of the deviations, we use a
quadratic integral assessment as follows:

JS =

T∫
t0

(
12
i + k1 · 1̇

2
i + k2 · 1̈

2
i

)
dt.

There must be the following:

1̈+ γ1 · 1̇+ γ0 ·1= 0. (8)

We then rewrite Eq. (8) in a form appropriate to the oscilla-
tory link, as follows:{
τ 21̈+ 2ζ τ · 1̇+1= 0
τ 2
=

1
γ0
; 2ζ τ = γ1

γ0
,
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where τ is time, and ζ is the damping ratio.
The law of acceleration change corresponds to the oscilla-

tory link as follows:

α̈ = α̈T + γ1 · (α̇T − α̇)+ γ0 · (αT −α)

β̈ = β̈T + γ1 · (β̇T − β̇)+ γ0 · (βT −β)
γ̈ = γ̈T + γ1 · (γ̇T − γ̇ )+ γ0 · (γT − γ ). (9)

The equation of motion for a spherical mechanism with 3 de-
grees of freedom has the following form:

Jξ · φ̈ξ =M1 ·
∂φ11
∂φξ
+M2 ·

∂φ21
∂φξ

+M3 ·
∂φ31
∂φξ
+ φ̇η · φ̇ζ ·

(
Jζ − Jη

)
Jη · φ̈η =M1 ·

∂φ11
∂φη
+M2 ·

∂φ21
∂φη

+M3 ·
∂φ31
∂φη
+ φ̇ξ · φ̇ζ ·

(
Jξ − Jζ

)
Jζ · φ̈ζ =M1 ·

∂φ11
∂φζ
+M2 ·

∂φ21
∂φζ

+M3 ·
∂φ31
∂φζ
+ φ̇ξ · φ̇η ·

(
Jη− Jξ

)
,

where Jξ = Jη,Jζ are the moments of inertia about the axes
ξ , η, and ζ . M1,M2, and M3 are the moments in drives. ∂φij

∂φξ

are the variable coefficients.
φ̈ξ , φ̇ξ , φ̈η, φ̇η, φ̈ζ , and φ̇ζ are the projection of accelera-

tions and velocities on the moving axes of ξ , η, and ζ .
The dynamic properties of the system are determined by

transient processes. Transient processes (the overshoot time
and deviations of the output link from a given trajectory) are
regulated by feedback coefficients γ0 and γ1.

Let us set the law of motion of the executive link, as fol-
lows:

αT (t)= 0,1 · sin(ωt);

βT (t)= 0,1 · sin(ωt);
γT (t)= 0,1 · sin(ωt).

The differential acceleration in Eq. (9) takes the following
form:

α̈ = α̈T + 120 · (α̇T − α̇)+ 7200 · (αT −α)

β̈ = β̈T + 120 · (β̇T − β̇)+ 7200 · (βT −β)
γ̈ = γ̈T + 120 · (γ̇T − γ̇ )+ 7200 · (γT − γ ).

When moving with feedback, the graph of the changes in the
position error and the torque in the drive is shown in Fig. 6.

Thus, by changing the feedback coefficients, it is possible
to regulate the deviations of the output link from the desired
trajectory, while the overshoot time τ changes.

5 Conclusion

An integrated approach allows one to evaluate and determine
the positioning error of the output link from the standpoint of
kinematics, dynamics, and control. This approach will allow,
when synthesizing mechanisms, us to propose approaches to
compensate for or completely eliminate errors.

Figure 6. Graph of the changes in the position error 1α, 1β, and
1γ of the output link.

So, with the kinematic estimate, the proposed approach
to assessing the kinematic accuracy allows one to determine
the deviations in the output link using the theory of accuracy.
This allows one to determine the deviations in the output link
at any point in the working area and propose constructive so-
lutions for its compensation. This approach to determining
the positioning error makes it possible to calculate the devi-
ations in the output link for similar mechanisms of a parallel
structure.

From the perspective of dynamics with free oscillations of
the output link, or when it stops, a numerical estimate of the
positioning error is given, which makes it possible to assess
the technological requirements for the accuracy of operations
and propose solutions to reduce it. In this case, an increase
in the accuracy of the manipulation from the position of dy-
namics can be carried out by optimally selecting the rigidity
of the drive or by introducing additional damping devices.
In control, the minimization of the error during the transient
process is ensured by the choice of feedback coefficients.
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