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Abstract. In order to prevent the aggravation of global environmental problems, all industries are facing the
challenge of green development. In the automotive field, the development of “new-energy vehicles” (plug-in
electric vehicles) is particularly necessary. Hybrid electric vehicles (HEVs) have been proven to be an efficient
way of solving environmental and energy problems. As the core of HEVs, the energy management strategy
(EMS) plays an important role in fuel economy, power performance, and drivability. However, considering the
randomness of actual driving conditions, there are great challenges involved in the establishment of an EMS.
Therefore, it is critical to develop an efficient and adaptable EMS. This paper presents a systematic review of
EMSs for HEVs. First, different issues that can affect the performance of EMSs are summarized. Second, recent
studies on EMSs for HEVs are reviewed. Third, the advantages and disadvantages of different categories of
EMSs are compared in detail. Finally, promising EMS research topics for future study are put forward.

1 Introduction

In the world today, the greenhouse effect is becoming more
and more serious, and the global energy crisis is intensify-
ing. In addition, the quantity of vehicles is increasing year by
year. Because of the severe situation, governments around
the world have published policies for the development of
“new-energy vehicles” (plug-in electric vehicles) to promote
the transformation and development of the traditional auto-
mobile industry. Under the current industrial conditions, hy-
brid electric vehicles (HEVs) have become one of the most
important divisions of new-energy vehicles with respect to
solving energy and environmental problems. Compared with
electric vehicles (EVs), HEVs can get rid of the limitations
of battery technology, improve endurance with lower energy
consumption and emissions, realize the complementary ad-
vantages of multiple power sources, and improve the integral
performance of the vehicle.

A HEV is a nonlinear, multi-input, multivariable com-
plex system with two or more power sources. One power
source is a traditional internal combustion engine (ICE), and
the other power source is a fuel cell, generator, electric mo-
tor (EM), or other components (Miller, 2010). One or more
power sources provide the demand power for HEVs accord-

ing to different working conditions. A HEV includes the mu-
tual conversion process of electrical energy, mechanical en-
ergy, and internal energy (Xue et al., 2020). In general, HEVs
can be divided into series, parallel, and power-split types
(Sabri et al., 2016). In series-type HEVs, the ICE does not
directly drive the vehicle but instead provides energy to the
EM and the battery through the ICE generator. This structure
has fewer driving modes, and there is no dynamic coupling
problem between various power sources, so the control pro-
cess is relatively simple (Miller, 2006). For the parallel-type
and power-split-type HEVs, multiple power sources can be
driven individually or jointly according to the working con-
ditions (Singh et al., 2019). A coupling mechanism between
the power sources is applied to realize the power output under
different working conditions, so the control process is more
complicated (Husain 2005). The coupling mechanism can be
divided into a torque-coupling type, a speed-coupling type,
and a power-coupling type (Krithika and Subramani, 2018).
It can be adopted to adjust and optimize the working state
of each power source, thereby improving the performance of
the vehicle (Xiang et al., 2010).

As the core technology of HEVs, the energy management
strategy (EMS) directly affects the economy, power perfor-
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Figure 1. Types of energy management strategies (EMSs) for hybrid electric vehicles (HEVs). Please see Appendix A for a full list of the
abbreviations used in the figures.

mance, driving performance, and reliability of the vehicle.
The EMS solves the problem of energy distribution between
different power sources (Wang et al., 2017a; Hannan et al.,
2014). According to the state of charge (SOC), the driver’s
pedal signal, the characteristics of the ICE and the EM, and
the power demand of the vehicle, the power or torque distri-
bution of each power source is solved to improve the fuel
economy of the vehicle (Sulaiman et al., 2015; Zhao and
Guo, 2016).

In recent years, as the level of research has increased, var-
ious EMSs have been developed and have gradually matured
(Panday and Bansal, 2014). At first, scholars developed rule-
based EMSs based on experience. Following this, global op-
timization EMSs, based on dynamic programming (DP) and
Pontryagin’s minimum principle (PMP), and instantaneous
optimization EMSs, based on the equivalent consumption
minimization strategy (ECMS) and model predictive control
(MPC), were successively proposed. With the emergence of
various intelligent algorithms and the continuous progress of
EMSs, genetic algorithm (GA), game theory (GT), convex
optimization (CO), reinforcement learning (RL), and neu-
ral networks (NNs) have been gradually applied in EMSs.
In addition, with the continuous development of the intelli-
gent transportation system (ITS) and “Internet of Vehicles”
(IoV) technology, the information interaction between vehi-
cles, roads, and people has gradually deepened. Information
based on the ITS has also been gradually applied to EMSs, as
it extends the energy management issue from a vehicle to the
transportation system. With the development of HEV tech-
nology, the existing EMSs have been updated and optimized,
and EMSs based on multi-method fusion are continuously
proposed. The performance of EMSs is continuously being
improved, and multiple efficient EMSs are gradually being
applied to HEVs. The specific types of EMSs for HEVs are
shown in Fig. 1 (F. Zhang et al., 2020). Many scholars have
conducted extensive and in-depth research on HEV energy

management, and many representative review articles have
been published that comprehensively summarize EMSs and
can be used as guidance.

The characteristics of the different reviews are summa-
rized in Table 1.

With the development and application of the ITS, EMSs
of HEVs are gradually separated from the limitation of one
vehicle and are oriented toward optimization based on the
whole traffic system. Therefore, on the basis of traditional
classification methods, EMSs are divided into rule-based,
optimization-based, and ITS-based strategies. This paper is
organized as follows: in Sect. 2, limitations of HEV driving
conditions and the issues considered in EMSs are summa-
rized; in Sects. 3–5, the research status of rule-based EMSs,
optimization-based EMSs, and ITS-based EMSs is reviewed
in detail; finally, in Sect. 6, promising EMS research topics
for future study are briefly put forward.

2 Research on energy management issues

Energy management is a key issue in the research of HEVs
and is fundamental for the efficient and clean operation of
the vehicles. Energy management aims to solve the problem
of energy distribution among different HEV power sources.
Based on different HEV driving conditions, the output of
each power source is reasonably distributed to meet the driv-
ing demands of HEVs; the performance demands of the vehi-
cle economy, emissions, and other aspects; and to extend the
service life in the meantime (Martínez et al., 2017; Yu et al.,
2006). During actual driving, HEVs are divided into different
working conditions according to the working state of the ICE
and the EM. Under different working conditions, the power
demand of each component is quite different (F. Zhang et al.,
2019); therefore, the role of the EMS is to fully exploit the
respective advantages of the ICE and the EM so that most of
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Table 1. Summary of exemplary works reviewing energy management strategies (EMSs).

Reference Characteristics

Panday and Bansal (2014) – Concentrates on battery-powered hybrid vehicles

– EMSs are divided into rule-based and optimization-based strategies

Zhao and Guo (2016) – Describes energy management issues

– EMSs are divided into rule-based and optimization-based strategies

Wang et al. (2017a) – Concentrates on plug-in hybrid electric vehicles

– Describes energy management issues

– EMSs based on different algorithms are presented in parallel

Krithika and Subramani (2018) – Concentrates on various architectures of HEVs and different methodologies

– Describes design criteria and optimization techniques for the driving cycle

– Describes different electric propulsion systems and control strategies

Xue et al. (2020) – Concentrates on the classification method and multilevel classification of HEVs

– Describes the principle and research status of EMSs for each type of HEV

– Compares and analyzes the EMSs of HEVs with respect to their characteristics

F. Zhang et al. (2020) – Concentrates on the power train topologies of HEVs

– EMSs are divided into online EMSs and off-line EMSs

– Describes the driving cycle prediction approach

the working parts can operate in the high-efficiency range in
order to improve the efficiency of the vehicle.

The energy management issues not only take the working
range and emissions of the ICE into account but also the effi-
ciency of the EM, the battery, and the transmission system. In
the process of energy management, modeling and optimiza-
tion should be carried out according to one or more optimiza-
tion objectives (Hannan et al., 2014). Irrespective of the kind
of EMS adopted, in addition to meeting the vehicle driving
demands, it needs to meet the safety performance demands.
Therefore, the implementation of the EMS needs to meet the
following boundary conditions:

Temin ≤ Te ≤ Temax

ωe_min ≤ ωe ≤ ωemax

Tmmin ≤ Tm ≤ Tmmax

ωmmin ≤ ωm ≤ ωmmax

SOCmin ≤ SOC≤ SOCmax,

(1)

where Te denotes the torque of the ICE, ωe denotes the speed
of the ICE, Tm denotes the torque of the EM, and ωm denotes
the speed of the EM.

In the research regarding EMSs, the energy management
issues can be transformed into a cost function problem with
different optimization goals (Gu et al., 2019). Generally, the
energy management issues can be transformed into the en-
ergy management issue of the SOC, the energy management
issue of equivalent fuel consumption, the energy manage-

ment issue of the instantaneous condition, and the energy
management issue of emissions.

2.1 The energy management issue of the SOC

The battery is the key component of HEVs, and the SOC is
closely related to the battery capacity and charge–discharge
characteristics. If the SOC is too high or too low, it will af-
fect the performance of the battery. Thus, it is necessary to
control the working range of the SOC, and many EMSs take
the SOC as one of the optimization goals, aiming to optimize
the working range and prolong the service life of the battery.
Therefore, the SOC can be regarded as a threshold value that
limits the operation interval of the EMS; it can also be re-
garded as a weighting item for calculating the cost function
of the HEV. In addition, frequent charging and discharging
will affect the life of the battery, thereby affecting its output
power. X. Hu et al. (2020) state that the loss and degradation
of the battery can affect the accuracy of the EMS; thus; the
state of health is introduced into the EMS. The expression in
the cost function is as follows:
Cbat,j =Mbat(soh(tk)− soh(tk+ tp))

N =
3600Atol
Q

soh(tk+ 1)= soh(tk)− |i(tk)|1t
2NQ ,

(2)

where Cbat,j denotes the cost item of the battery degradation
in the cost function, which constitutes the cost function of
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the EMS and other items; soh(tk) denotes the state of health
of the battery; Mbat denotes the cost of the battery system;
Q denotes the nominal capacity of the battery;N denotes the
number of cycles at the end of battery life; Atol denotes the
total discharged Ah (ampere hour) throughput; and i(tk) de-
notes the current of the battery.

2.2 The energy management issue of equivalent fuel
consumption

While calculating the cost of a HEV, the energy consumption
is usually converted into the sum of the fuel consumption of
the ICE and the power consumption of the EM, which can be
regarded as the equivalent fuel consumption. Generally, the
cost function is applied to describe the equivalent fuel con-
sumption. The proportion of the fuel consumption of the ICE
and the power consumption of the EM in the cost function
can be adjusted according to the actual driving conditions to
make the control more accurate. This energy management is-
sue can be described as follows (Wang et al., 2017a):{
J =

∫ tk+p
tk
[α1(t)f (t)+α2(t)g(t)]dt

EF(t)= α2(t)
α1(t) ,

(3)

where J denotes the energy consumption cost function of
the HEV in the period from tk to tk+p, including the fuel
consumption cost f (t) and the power consumption cost g(t);
α1(t) denotes the weighting coefficient of the fuel consump-
tion; and α2(t) denotes the weighting coefficient of the power
consumption. The equivalent factor (EF) can be defined as
EF(t) and can convert the power consumption cost into the
fuel consumption cost. The EF can be regarded as a fixed
value designed based on experience, or it can be designed as
an adaptive EF that is adjusted in real time according to the
characteristics of the EM and the battery. The optimization
goal of this energy management issue is to minimize the cost
function over a period or instantaneously.

2.3 The energy management issue of instantaneous
conditions

During the HEV driving process, the vehicle may experience
instantaneous driving conditions, such as start–stop and gear
shifting, over a long period. Frequent starting and stopping
of the ICE will cause an increase in fuel consumption. There-
fore, the fuel consumption of instantaneous conditions is usu-
ally converted into the cost function. According to the model
of instantaneous conditions, the fuel consumption of shifting,
frequent starting and stopping of the ICE, and starting and
braking conditions are considered. They can be regarded as
the weighted terms in the cost function, which improve the
accuracy of the cost function and can better reflect the fuel
consumption during actual driving. In Yan et al. (2012), the
fuel consumption during the ICE start–stop process is added
into the EMS, which forms the cost function along with the

SOC and equivalent fuel consumption.
J =

∫ tk+tp
tk
{α1(t)f (t)+α2(t)g(t)

+α3(t)[1− key_on(tk+ tp)]}dt
g(t)= SOC(tk)−SOC(tk+ tp)

(4)

Here, the first term denotes the equivalent fuel consump-
tion of the HEV within time interval tp, the second term de-
notes the equivalent fuel consumption of the SOC within the
time interval, the third term denotes the equivalent fuel con-
sumption of the ICE start–stop process, g(t) can be defined as
the function of the SOC, key_on(t) denotes the start or stop
state of the ICE, and α3(t) denotes the weighting coefficients
of the fuel consumption cost caused by the start–stop state of
ICE in the cost function.

In Y. Qi et al. (2017), experimental data from the ICE are
applied to solve the dynamic response model of the ICE and
the controller, and they are introduced into the cost function
along with the output characteristics of the EM in order to
reduce the impact of ICE instantaneous characteristics on en-
ergy management issues.

J =

tk+tp∫
tk


ωωe(t)

(
ωe(t)−ωref

e (tk)
)2
+ωte(t)

×
(
T act

e (t)− T ref
e (tk)

)2
+ωωA(t)

(
ωm(t)−ωref

m (tk)
)2

+ωDe(t)(De(t))2

dt (5)

As the perdition control model, tk denotes the time at the
kth prediction horizon, and tp is the time duration of the pre-
diction horizon; ωωe(t), ωte(t), ωωA(t), and ωDe(t) denote
the respective weight function of the reference ICE target
speed, reference target torque of the ICE , reference target
speed of EM, and reference fuel consumption rate of the
ICE (which can also be regarded as the penalty functions);
ωref

e (tk), T ref
e (tk), and ωref

m (tk) denote the reference values of
the respective ICE speed, output torque of the ICE, and EM
speed; De(t) denotes the reference index of the fuel con-
sumption rate of the ICE.

2.4 The energy management issue of emissions

The emergence of HEVs has stemmed from the requirement
to save energy and reduce emissions. The EMS is not only re-
lated to the dynamic performance but also directly affects the
emission performance of vehicles. Therefore, emission indi-
cators and emission control are integrated into the study of
energy management issues. The emission of pollutants such
as CO2 and NOx is usually introduced into the cost function
through certain methods, and the cost function is constructed
to explore the multi-objective optimization of energy con-
sumption and emissions. (Nüesch et al., 2014a).

J =

tk+tp∫
tk

[α1(t)f (t)+α2(t)g(t)+µERn(t)]dt, (6)
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where ERn denotes the calculated value of specific emis-
sions (NOx), and µ is the weighting coefficient of the emis-
sion performance. A larger value of µ indicates that the
cost function pays more attention to emission performance,
whereas a lower value of µ indicates that energy consump-
tion is more important in the search for the instantaneous op-
timal solution.

3 The rule-based energy management strategy

The rule-based EMS is one of the most important EMSs ap-
plied to HEVs. The principle of this EMS is relatively simple,
and it does not require the use of a complex algorithm; there-
fore, it has been widely used in early-stage engineering (Jalil
et al., 1997). At present, there are two main forms of rule-
based EMS: one is the deterministic rule-based EMS, which
regulates the working state of various vehicle parts accord-
ing to different driving demands and the working range lim-
its; the other is the fuzzy logic rule-based EMS, In the latter
EMS, according to multi-input and time-varying characteris-
tics, the advantages of fuzzy logic control are integrated into
the EMS, the membership function (MF) of state variables
and the rate of change of state variables are established, and
the fuzzy logic rules are determined for energy management
and the SOC regulation. The rule-based EMS is based on ex-
perience, the driving mode, and a static map, and it is widely
used and less affected by the external interference. The idea
is simple and easy to implement, and it can be designed based
on the existing vehicle control concept. In addition, modern
algorithms such as NNs and GA can be used to optimize
the EMS, which can improve its adaptability, to a certain ex-
tent, with respect to dealing with complex dynamic changes.
However, the engineering experience directly determines the
performance of the EMS, and it is difficult to obtain the op-
timal control effect.

3.1 The deterministic rule-based energy management
strategy

In this EMS, the deterministic rule was established based on
the parameter characteristics of each component, existing en-
gineering experience, and research results. It can adjust the
working status and power distribution according to the driv-
ing demands and the working conditions of each component.
The main idea of this EMS is to use the EM to adjust the
working range of the ICE so that the ICE is always work-
ing in the high-efficiency range. In addition, it is necessary
to combine the battery to select a suitable driving mode for
the HEV. The input variables of this EMS are mostly the
demand power and the SOC. It has an optimization effect
for any driving condition, with certain adaptability. Gener-
ally, the deterministic rule-based EMS can be divided into
the logic threshold strategy and the “following” strategy. The
logic threshold strategy takes the limiting conditions, such
as the ICE working point and the SOC as threshold, and ad-

Figure 2. Mode-switching control of the logic threshold strategy.

justs the working state of each component according to the
threshold. The following strategy tracks one or more oper-
ating parameters and uses them as a basis to adjust the op-
erating status of each component. The tracking parameter is
mostly the output power of the ICE. Although, there are also
EMSs that set the speed or the load as the tracking parameter.

3.1.1 The logic threshold strategy

The working modes can be divided into the EV mode, the
charge-depleting (CD) mode, and the charge-sustaining (CS)
mode, according to the SOC threshold: in EV mode, the EM
is driven separately; in CD mode, the working state of the
ICE and EM is adjusted according to the high-efficiency in-
terval of the ICE; and in CS mode, it is necessary to maintain
the SOC around a threshold. In addition, one can switch be-
tween the CD and CS modes; thus, the working point of the
ICE is always in the efficient range, and the working state
of the EM is judged according to the driving demands (Peng
et al., 2015). The mode-switching control of the logic thresh-
old strategy is shown in Fig. 2.

In Y. Liu et al. (2019), a logic threshold strategy based
on the efficiency range of the ICE and the optimal operating
range of the battery was proposed to keep the SOC at a high
level and improve the efficiency of the ICE. In Asghar et al.
(2018), an EMS based on the Atkinson cycle ICE was es-
tablished, and the driving mode was determined according to
the speed and torque demand. Based on the fuel cell hybrid
power system, the SOC of fuel cells and lithium batteries and
the voltage state of supercapacitors were set in Y. Wang et al.
(2019), and the logic threshold strategy was proposed to as-
sign the different working states of various components. The
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system can utilize the charge–discharge limitations of power
capacity and residual energy to extend the service life. In
Hao et al. (2016), the working range of the ICE and battery,
the minimum throttle opening of the ISG (integrated starter
generator) motor and EM auxiliary conditions, and the min-
imum vehicle speed of the EM driving conditions were used
as the threshold. The direct algorithm can transform the EMS
into a direct optimization problem of seven-dimensional pa-
rameters. In Jeoung et al. (2019), the start–stop of the ICE
was controlled according to the threshold of demand power,
torque, and speed, and the battery charge–discharge process
was determined according to the SOC threshold in which the
charge–discharge speed can be used as a threshold. In Xia
and Zhang (2015), an EMS based on the quadratic perfor-
mance index which was independent of future driving condi-
tions was proposed. The operating conditions of the ICE and
EM were adjusted according to the speed and SOC as well
as the expected speed and SOC values. In Padmarajan et al.
(2016), an EMS based on mixed rules was proposed. The
driving information and estimated vehicle trip energy were
combined with a blended charge-depletion strategy to reduce
the ICE start–stop times. In Zhou et al. (2018), the working
state of the ICE was determined according to the SOC thresh-
old, and DP was applied to determine the optimal trajectory
of the ICE and the corresponding SOC threshold.

3.1.2 The following strategy

The following strategy can be divided into the power-
following strategy (PFS), the speed-following strategy (SFS),
and the load-following strategy (LFS). The essence of the
PFS is to ensure that the output power of the ICE and EM
as well as the vehicle load power match the sum and main-
tain ICE function within the highly efficient range (Li, 2019).
The SFS adjusts the driving conditions in real time according
to the speed. The LFS mainly adjusts the charge–discharge
process of the battery according to the power demand and
indirectly adjusts the working state of each component. At
present, the most widely used strategy is the PFS.

In Li (2019), discrete speed switching and the best fuel
consumption curve of the PFS were compared. The per-
formance of the best fuel consumption curve of the PFS
was better. In Zuo et al. (2009), a full-vehicle mode transi-
tion algorithm was proposed to switch vehicle modes, and a
PFS based on the minimum fuel consumption curve of the
ICE was adopted using the planetary row kinematics limit
model. In Luo et al. (2019), the PFS was combined with
two HEV DC-line voltage control strategies (CVPI, complete
zero voltage switching control, and PZVS, persistent zero
voltage switching control). According to the minimum mass
point of the equivalent fuel consumption, the comparative
study showed that the PFS PZVS had better fuel economy.
In B. Zhang et al. (2020), an adaptive smoothing PFS based
on the optimal efficiency graph was proposed, dividing the
demand power into the trend and the fluctuation parts. The

trend part was provided by the ICE, and the fluctuation part
was provided by the supercapacitor. In Chen et al. (2019),
according to the closed solution of optimal power diversion,
the truncated battery-following strategy was developed to re-
produce the global optimization solution of DP. In Geng et al.
(2019), an on/off PFS optimized by fuzzy logic was proposed
for a fuel cell HEV and was used for extended controllers. In
Mohamed et al. (2019), two following strategies were pro-
posed to select the driving mode of the HEV: one was the
SFS, which selected the start–stop of the ICE according to
the vehicle speed, and the other was the LFS, which selected
the operating mode according to a set power threshold and
the SOC. This comparative research found that the energy-
saving effect of the LFS was better. In Bizon (2019), an EMS
based on the LFS and real-time optimization was proposed
to evaluate the fuel cell economy and efficiency performance
indicators. Weighting coefficients were applied to mix per-
formance indicators into an optimization function.

The characteristics of different deterministic rule-based
EMSs are illustrated in Table 2. The deterministic rule-based
EMS has a simple control process, convenient parameter ad-
justment, good robustness, and good stability. However, this
EMS does not provide the best performance; instead, it pro-
vides a range of preliminary optimization in a specific driv-
ing cycle or instantaneously. In addition, the control rules of
the deterministic rule-based EMS are mainly based on engi-
neering experience and test data, which have many uncer-
tainties and cannot meet the time-varying requirements of
HEVs. Moreover, there are obvious limitations in the actual
control process, and this method cannot entirely utilize the
energy-saving advantages of HEVs. Therefore, in the study
of deterministic rule-based EMS, optimizing multiple con-
trol parameters is of great significance to improve vehicle
performance.

3.2 The fuzzy logic rule-based energy management
strategy

Fuzzy control is a kind of control method with strong ro-
bustness, easy adjustment, and strong adaptability that can
imitate the uncertain thinking mode and logic of the human
brain. Fuzzy control uses the MF to reason some systems
with strong uncertainty, nonlinearity, or an unknown math-
ematical model; to solve problems that are difficult to solve
using conventional methods; and to simplify the calculation
process. The main process of fuzzy control is “fuzzification”
and “defuzzification”, and the core component is the fuzzy
logic controller. The input signals are transmitted to the fuzzy
logic controller where they are fuzzified, and the fuzzy re-
sults are then obtained according to the MF. Following this
process, the fuzzy results are defuzzified to obtain the output
signals used for precise control (Jager, 1995). Generally, the
input signals of HEVs are the power demands obtained from
the pedal signal and ground information, combined with the
status parameters, the working state, and the output power
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Table 2. Summary of exemplary works on deterministic rule-based EMSs

Reference Approaches Application scenarios Verification Performance

Zuo et al.
(2009)

Power-following
strategy with
parameter limits

Series-parallel HEV Simulation – Used the UDC

– Fuel consumption was 55.24 % lower than the ICE
driving condition

Peng et al.
(2015)

SOC threshold
strategy

Plug-in hybrid
electric bus

Simulation – The SOC is stabilized at around 30 %

– 13.7 L per 100 km diesel consumption

– 10.5 kW h per 100 km electricity consumption

Xia and Zhang
(2015)

Speed and SOC
threshold strategy

Power-coupling HEV Simulation – Based on the quadratic performance index

– Negligible calculation required

– Fuel economy was very close to the PMP

Y. Liu et al.
(2019)

ICE efficiency
threshold strategy

Power-split HEV Simulation – The SOC was stabilized at around 60 %

– The ICE always works in an efficient range

Li (2019) PFS considering
the SOC

Six-wheel skid-
steering series HEV

Simulation – Compared with the multispeed switching PFS,
fuel consumption was reduced by 9.35 %

– After considering the SOC, fuel consumption was
further reduced

Mohamed et al.
(2019)

SFS and LFS Parallel HEV Simulation – Used the normalized European driving cycle

– The energy-saving effect of the LFS was better
than the SFS

Bizon (2019) LFS Fuel cell hybrid
power system

Simulation – Weighting coefficients were applied to mix perfor-
mance indicators into an optimization function to
improve fuel economy.

B. Zhang et al.
(2020)

Adaptive smoothing
PFS

Series-tracked
hybrid bulldozer

HIL – Compared with the PFS based on experimen-
tal data and the ICE minimum fuel consumption
curve, the equivalent fuel-saving ratio was im-
proved by 7.8 % and 3.4 %, respectively

HIL denotes hardware in loop. UDC refers to the Urban Driving Cycle.

Figure 3. The basic principles of a fuzzy logic rule-based EMS.

of each component, which are obtained through fuzzification
and defuzzification (Li, 2008). The basic principle of a fuzzy
logic rule-based EMS is shown in Fig. 3.

The following outlines the application of traditional fuzzy
logic rule-based EMSs to HEVs. In Hemi et al. (2014), an
EMS based on fuzzy logic was proposed that took the de-
mand power and SOC as the input for the fuzzy logic con-

troller and considered the influence of regenerative braking
on the battery in the MF design process in order to meet the
power demand and protect the battery. In Ma et al. (2019),
an EMS based on fuzzy logic that took the SOC and demand
torque as inputs was proposed to optimize the torque out-
put. The MF was established according to the SOC, and the
output torque of the ICE and the auxiliary output of the EM
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were obtained. According to the real-time transmission effi-
ciency of HEVs, a fuzzy logic rule-based EMS was proposed
based on the optimal working line of the ICE and mechani-
cal point control strategy in S. Wang et al. (2019a) to real-
ize the synchronous improvement of transmission efficiency
and fuel economy. In Mahyiddin et al. (2016), a triangular
MF was established for the battery charge–discharge process
and power split. Fuzzy logic was used to distribute the out-
put power between various power sources to compensate for
the power flow performance. In Denis et al. (2015), an EMS
based on fuzzy logic was established according to past and
current driving information as well as the expected travel dis-
tance, and DP was adopted to optimize it. In addition, the
driving information was used to achieve adaptive control of
different driving conditions. In Singh et al. (2020), the regen-
erative braking process was introduced into the fuzzy logic
controller, requiring the ICE and EM to work in an efficient
interval. The MF was designed based on the driving demands
and fuel economy.

With deepening research into HEVs, the adaptability of
EMSs has become more and more critical, and the adaptive
fuzzy logic rule-based EMS has been proposed and gradually
applied. In X. Zhang et al. (2017), a fuzzy EMS based on the
optimization algorithm of the adaptive neural fuzzy system
was proposed that took the demand torque of the clutch and
SOC as input and the torque of the ICE as output. Gradi-
ent search technology was applied to adjust the weight of
each layer and the output results so that the least squares
method between the actual output and the expected output
could reach the minimum. In Tian et al. (2018), an adaptive
fuzzy logic rule-based EMS for hybrid city buses was es-
tablished according to the optimal SOC curve. An NN was
used to learn the best SOC curve and realize the planning
and control of the battery working state according to future
driving information from the online ITS and navigation sys-
tem. In Shen et al. (2020), the efficiency and power change
rate of the fuel cell were considered to balance the load of the
power system, and the power slope of the fuel cell was lim-
ited to prevent the abrupt change. An incremental fuzzy logic
EMS was proposed to ensure that the fuel cell was working
in the high-efficiency range and to prolong its life. In Sabri
et al. (2018), a dedicated fuzzy logic EMS for “through-the-
road” HEVs was proposed that determined the power flow
based on the global discharge rate obtained from the cur-
rent vehicle speed, SOC, and remaining travel distance and
also gave priority to the output from the electric drive sys-
tem. In Sölek et al. (2019), an EMS combined with online
and off-line algorithms was proposed. The online algorithm
used fuzzy logic to select the control method and the driv-
ing mode, and the off-line part was established based on the
average consumption data in EV mode.

With the advancement of computer science, various real-
time algorithms have been proposed, and the fuzzy logic
EMS based on algorithm optimization has gradually been
applied. In Shi et al. (2018), the energy management issue

was described as a predictive control problem. A Markov
chain was used to solve the power demands and speed in
the predictive layer. A fuzzy logic controller was used to
achieve optimal tracking of the ICE speed in order to en-
sure that the ICE could realize the desired power stably. In
Peng and Xie (2017), the MF of the EMS based on fuzzy
logic was optimized using the GA to solve the SOC mainte-
nance and power distribution problems. In addition, the CO
and NOx emissions were taken into consideration. In Meng
et al. (2017), a fuzzy logic EMS based on GA optimization
was proposed. The GA was used to optimize the MF based
on historical data, which effectively prevented the EM from
generating peak torque, and the ICE mostly worked in the ef-
ficient zone. In Singh et al. (2021), an EMS based on fuzzy
logic and Ehrman NNs was proposed. The optimized fuzzy
logic controller’s input was the demand torque, the SOC, and
regenerative braking, which aimed to maximize fuel econ-
omy while maintaining battery health. In Liu et al. (2017),
an EMS based on fuzzy logic and RL was proposed. Fuzzy
logic and Q-learning were used to realize speed prediction,
and RL was used to learn the transition probability of power
demand. In Q. Xu et al. (2018a), a dual-optimization fuzzy
logic EMS based on the GA and DP was proposed: the GA
was used to optimize the MF, and DP was used to optimize
the fuzzy logic controller. The braking energy recovery was
considered. In Mohammad et al. (2020), a fuzzy logic EMS
based on the social spider algorithm was proposed to adjust
the scaling factor in the MF in real time to reduce speed-
tracking errors.

The characteristics of different fuzzy logic rule-based
EMSs are illustrated in Table 3. In the control process, the
fuzzy control is not completely dependent on the precise
mathematical model, which can greatly reduce the amount of
calculation required. It also has high efficiency, good robust-
ness, and good economy. However, when designing fuzzy
rules and the MF, there are no certain rules to be followed.
Instead, it is an experience-based EMS that cannot take full
advantage of the energy-saving and emission reduction po-
tential of HEVs; therefore, it is not the optimal solution in
the scientific sense. In addition, the fixed control law leads to
poor dynamic characteristics of the system, which makes it
difficult to realize real-time control and optimization. There-
fore, in the current research process, the GA, NNs, and RL
are often used to optimize fuzzy logic in order to improve the
real-time application and controllability of fuzzy control.

4 The optimization-based energy management
strategy

In the optimization-based EMS, the cost function is designed
to combine the structural parameters of each vehicle compo-
nent and constraint. This EMS minimizes the cost function
to optimize the control objective. The control objective is
fuel consumption. Some scholars also integrate parameters
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Table 3. Summary of exemplary works on fuzzy logic rule-based EMSs.

Reference Approaches Application scenarios Verification Performance

Denis et al.
(2015)

Fuzzy logic
Blended control
DP optimization

Plug-in HEV Simulation – The driving information and the expected travel
distance were taken into consideration

– Fuel consumption was reduced by 27 %

Liu et al.
(2017)

Fuzzy logic
RL

Parallel HEV HIL – Q-learning-based speed prediction

– RL-based power demand TPM learning

– Fuel consumption was 17.54 % lower than rule-
based EMS

Sabri et al.
(2018)

Fuzzy logic
Global discharge rate

Through-the-road
(TtR) HEV

Simulation – Fuel economy improved by 19.8 % (HWFET)

– Fuel consumption was 7.48 L per 100 km (NEDC)
and 3.28 L per 100 km (HWFET)

Ma et al.
(2019)

Fuzzy logic Parallel HEV Simulation – The fluctuation in the SOC variation was lower

– Fuel consumption was reduced by 13.3 % and
4.5 %

S. Wang et al.
(2019a)

Fuzzy logic
Mechanical point

Power-split HEV Simulation – Improved the transmission efficiency and fuel
economy synchronously

Singh et al.
(2020)

Fuzzy logic Series-parallel HEV Simulation
HIL

– Considered regenerative braking

– Fuel consumption was 4.9 L per 100 km.

– Fuel economy improved by 50.56 %

Mohammad
et al. (2020)

Adaptive fuzzy logic
Social spider
algorithm

Fuel cell HEV Simulation – The MF of social spider algorithm optimization

– Fuel economy and reference speed-tracking were
better than power-tracking control

Singh et al.
(2021)

Fuzzy logic
Ehrman NNs

Power-split HEV Simulation
HIL

– Kept the battery healthy

– Fuel consumption was 13.49 kmL−1 (NEDC),
20.5 kmL−1 (UDDS), and 61.13 kmL−1 (FTP)

TPM represents transfer probability matrix. HWFET refers to the Highway Fuel Economy Test cycle. NEDC refers to the New European Driving Cycle. UDDS refers to the Urban
Dynamometer Driving Schedule. FTP represents Federal Test Procedure.

such as the battery power consumption, emissions, and the
battery health level into the cost function for multi-objective
optimization. In general, the optimization-based EMS can be
divided into two categories: one is the global optimization
EMS, which takes the operating cost of the whole driving
condition as the optimization objective and utilizes the opti-
mal control theory based on historical data to conduct global
optimization, and the other is the instantaneous optimization
EMS, which takes the instantaneous fuel consumption and
other parameters as the optimization objectives. Combined
with the instantaneous parameters, it controls the working
state of each power source and instantaneously minimizes
the cost function under unknown driving conditions.

4.1 The global optimization energy management
strategy

In the research regarding the global optimization EMS, rep-
resentative methods include the DP-based EMS and the
PMP-based EMS. In addition, intelligent algorithms such

as the GA, GT, and CO are also applied to the global op-
timization EMS. A comparison of these different methods
is shown in Table 4, which illustrates the pros and cons of
each method. The global optimization EMS is usually opti-
mized for a fixed cycle of driving conditions, which has a cer-
tain theoretical guiding significance and is suitable for HEVs
with relatively fixed working conditions. However, under un-
known driving conditions, the global optimization solution is
not the optimal result in practical sense. Therefore, it is suit-
able to be used as a reference for the control effect of other
EMSs.

4.1.1 The DP-based energy management strategy

DP is a mathematical method to solve the optimization of
the multistage decision process and was applied to the HEV
energy management issue around 2000. The entire interval
of the energy management issue is discretized into multiple
intersections by DP. Appropriate control variables are then
selected according to each intersection. The solution of the
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Table 4. The comparison of different methods applied to the global optimization EMS.

Approaches Pros Cons

DP – Global optimization results

– The reference of other EMSs

– Prior knowledge of driving cycle

– Poor adaptability

– Low calculation efficiency

PMP – Near-optimal control

– High calculation efficiency

– Relies on accurate predictive models

– Less adaptability

– Needs the Hamiltonian function and co-state estimation

GA – Strong adaptability and self-learning

– Comprehensive search of the global optimization
solution

– Accuracy cannot be quantified

– Prone to premature convergence

– High calculation complexity

GT – Strong robustness

– Multi-input optimization

– Independent of driving cycle

– Less adaptability

– High calculation complexity

– Assumption of complete rationality

CO – Consistent value of the local optimal and global
optimization

– High calculation efficiency

– Small range of application

– Relies on a convex model

first intersection is used as a reference for the solution of the
next intersection, and the solutions that could reach the opti-
mal value are retained until the last intersection. DP is often
used to optimize conventional fixed driving routes, such as
hybrid electric buses. In DP-based EMSs, the input parame-
ters are the driving cycle information and the constraints. The
energy management issue is discretized and can be converted
into the problem that calculates all paths from beginning to
end. The global optimization result is the sum of the results
of each step. The principle of a DP-based EMS is shown in
Fig. 4.

However, it is impossible to predict the whole driving pro-
cess under actual driving conditions, and the calculation is
heavy and time-consuming, so it cannot be applied to real-
time control (Bertsekas, 1995). Therefore, the adaptive DP
and the heuristic DP have been proposed. Combined with
historical information, they can improve the real-time per-
formance of the traditional DP method. In recent years, the
stochastic DP (SDP) was proposed based on DP, which dis-
cretized the driving conditions through power demand and
speed, and established probability transfer matrices of the
current and next moment based on a Markov chain in order to
estimate the power demand and other parameters at the next
moment (Birge and Louveaux, 1997). This method is based
on historical driving data and does not require a complete
driving cycle. It can obtain the optimal control rate and real-
ize real-time control to a certain extent. However, there is still
a certain deviation between the predicted demand and the ac-
tual demand by the Markov chain. The adaptability of SDP
to multiple working conditions still needs to be improved.

Due to its excellent performance with respect to solving
the multistage decision optimization problem, DP has been
introduced to EMSs. In H. Li et al. (2019), a DP-based EMS
was proposed that considered the SOC as the state variable,
the transmission ratio of continuously variable transmission
(CVT), and the electric torque distribution between power
sources as the output to solve the minimum value of total fuel
consumption. Due to the large computation burden and long
computation time of the DP-based EMS, a respective local
linear approximation and a quadratic spline approximation
were used in Larsson et al. (2015) to shorten the calcula-
tion time and reduce the storage pressure. In Delkhosh et al.
(2020), DP was adopted to find the best operating mode at
each point in the HEV operating region. The EMS is estab-
lished according to the optimal operating region to realize the
conversion of the operating modes. In Pam et al. (2019), the
influence of ramp resistance on fuel economy was accurately
quantified using DP. An EMS considering ramp resistance
was proposed to reduce the fuel consumption calculation er-
ror caused by ignoring the ramp. With the aim of applying
a DP-based EMS to plug-in HEVs, Wang et al. (2015) over-
came the numerical problems between the optimization accu-
racy and calculation burden and further exploited the energy-
saving potential of DP-based EMSs.

However, DP-based EMSs have some limitations under
unknown driving conditions. Therefore, scholars have pro-
posed adaptive DP and heuristic DP based on traditional
DP. In Kalia and Fabien (2020), an EMS based on distance-
constrained adaptive real-time DP for extended-range elec-
tric vehicles was proposed. This strategy monitored the SOC
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Figure 4. The principle of a DP-based EMS.

deviation from the calculated optimal state. It recalculated
the optimal parameters accordingly to approach the real-time
control and improve the adaptability and fault tolerance. In
Zheng and Mi (2009), an adaptive DP-based EMS that com-
bined DP with fuzzy logic was proposed. Firstly, the opti-
mization results were obtained by DP, and the efficiency of
each power point of the ICE was analyzed to reduce the de-
grees of freedom of the EMS. The MF was then established
according to the ratio of the ICE power to system power,
speed, acceleration, and SOC. In Liu et al. (2019), a heuris-
tic DP-based EMS was proposed for the online optimization
of HEVs. A back-propagation NN (BPNN) was adopted to
build a vehicle model that reflected the actual dynamic pro-
cess of HEVs. According to the dynamic model, an online
algorithm was used to optimize the energy management pro-
cess of heuristic DP. In Li and Görges (2019a), a heuristic
DP-based EMS was proposed that was combined with the
adaptive cruise control in order to ensure the distance from
the vehicle in front. Moreover, an action-dependent heuris-
tic DP was used to realize active distance control. This EMS
can adjust internal vehicle parameters online to deal with sys-
tem disturbances and achieve the economy and drivability re-
quirements. In Li and Görges (2019b), the NN-based shift
control was combined with the action-dependent heuristic
DP-based power distribution control, and a real-time adap-
tive EMS was proposed that supported the online learning of
the controller and could significantly reduce the calculation
load of DP and improve the calculation speed.

In addition, SDP has also been applied to EMS to improve
real-time performance and adaptability. In Opila et al. (2012,
2013), an EMS based on the shortest-path SDP was pro-
posed in which the driving cycle was modeled as a finite-state
Markov chain. The cost function consisted of a weighted
sum of fuel consumption and drivability losses from shift
and ICE-switching events. By changing the weight of each

component, both drivability and fuel economy could be im-
proved. In Qin et al. (2017), an SDP-based EMS for a pre-
transmission single-shaft torque-coupling parallel HEV was
proposed. The driver’s demand torque was modeled as a
Markov process to represent the uncertainty of future driv-
ing conditions. In Elbert et al. (2015), an SDP-based EMS
was proposed in which the state update function consisted of
a random model of driver behavior represented by a Markov
chain and a deterministic vehicle model. This strategy con-
sidered multiple objectives such as fuel economy and driv-
ability while reducing the calculation burden. In Du et al.
(2016), an EMS based on SDP and the ECMS was proposed.
In the off-line part, SDP was used to divide the historical
fixed path driving information into multiple sections. The
driving condition model of each section was then established
using a Markov chain to solve the minimum fuel consump-
tion.

The characteristics of different DP-based EMSs are illus-
trated in Table 5. Although the DP method can solve the
global optimization solution, it is based on a known travel pe-
riod. For unknown working conditions, DP obviously cannot
meet the actual driving demands of vehicles. The efficiency
of energy management is uncertain, so it cannot be directly
applied to EMSs and often needs to be combined with other
methods.

In addition, the calculation burden of the DP method in-
creases sharply with increases in the system dimension. Us-
ing the proposed adaptive DP, heuristic DP, and SDP meth-
ods, the traditional DP method combined with various op-
timization methods can expand the application scope and
achieve near-real-time optimization. In addition, according
to the characteristics of DP, a variety of acceleration algo-
rithms are also applied to improve the calculation efficiency.
At present, the DP-based EMS is mainly used in HEVs with
fixed driving conditions, including hybrid electric buses and
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Table 5. Summary of exemplary works on DP-based EMSs.

Reference Approaches Application scenarios Verification Performance

Du et al.
(2016)

Stochastic DP
ECMS

Plug-in hybrid
electric bus

Simulation
HIL

– Divided historical driving information into multi-
ple sections

– A stochastic driving condition model based on a
Markov chain

– Fuel economy was improved by 7.8 %

Qin et al.
(2017)

Stochastic DP Parallel HEV Simulation – Demand torque was modeled as a one-state
Markov process to represent the uncertainty

– Improved the efficiency of the driving system

H. Li et al.
(2019)

DP HEV equipped with
CVT

Simulation – Considered the CVT speed ratio

– Fuel consumption was 10 % (NEDC), 13.1 %
(HWFET), 8.6 % (UDDS), and 13.7 % (WLTC)
lower than the ECMS

Pam et al.
(2019)

DP
Slope resistance

Parallel HEV Simulation – Considered the influence of ramp to improve the
accuracy of the EMS

– The error was 0.4 % with the road slope but 9 %
without the road slope

Liu et al.
(2019)

Heuristic DP
BPNN

Plug-in HEV Simulation
Experiment

– A practical route in the Beijing road network

– Online vehicle model was built using BPNN to ac-
curately reflect the real dynamic process

– Fuel consumption was 4 % lower than off-line

Li and Görges
(2019b)

Action-dependent
heuristic DP
NN

Parallel HEV Simulation – NN-based gearshift control

– Independent of the system model

– Allowed learning and improved efficiency

– Fuel economy was near DP optimal results

Delkhosh et al.
(2020)

DP
Electric assist control
strategy

Parallel HEV with
CVT

Simulation – Found optimal operating regions

– Reduced the sensitivity of the electric assistant
control strategy to the driving behavior

Kalia and Fabien
(2020)

Adaptive real-time
DP

Extended-range
electric vehicles

Simulation – Considered the distance constraints

– Monitored the SOC deviation online and adjusted
the optimal control parameters

WLTC refers to the Worldwide harmonized Light vehicles Test Cycles.

hybrid electric mine cars. It is often used as a reference to
verify the performance of other EMSs.

4.1.2 The PMP-based energy management strategy

Pontryagin’s minimum principle is also called Pontryagin’s
maximum principle. When the state or input is restricted, the
optimal control signal from one state to the next state is ob-
tained. The PMP-based EMS mainly achieves global opti-
mization control of HEVs by solving the minimum value of
the Hamiltonian. The Hamiltonian function is obtained by
combining parameters such as the SOC, fuel consumption,
and demanded power with a mathematical model of the HEV,
and the optima global solution can be obtained according to

the driving conditions (Wu, 2018). A flow chart of the PMP-
based EMS is shown in Fig. 5.

In PMP-based EMS, the cost function can be defined as
follows:

J (u)=K(tb)+

tb∫
ta

L(x(t),u(t), t)dt, (7)

where ta and tb denote the respective initial moment and
the end moment, u denotes the control variable, K(tb) de-
notes the terminal constraint,L( ) denotes the objective func-
tion, and x( ) denotes the boundary condition.
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Figure 5. The flow chart of the PMP-based EMS.

The Hamiltonian function H can be defined as follows:

H (x(t),u(t),λ(t), t)= λ0L(x(t),u(t), t)

+ λT h(x(t)u(t)t), (8)

where λ(t) denotes the co-state variable, and h( ) denotes
the state function.

When tb is fixed, for the state quantity of the domain, the
state at the initial time and the end time are determined, and
the state equation and co-state variables satisfy the following
conditions:
ẋ∗(t)=∇λH|∗ = h(x∗(t),u∗(t), t)

x∗(ta)= tax∗(tb)= tb
λ̇∗(t)=−∇xH|∗ =−λ∗0∇xL(x∗(t),u∗(t), t)

−
[
δh
δx

(x∗(t),u∗(t), t)
]T
λ∗(t).

(9)

For all of the control variables in the domain, the value of
H at the optimal control variable is the smallest.

H (x∗(t)u∗(t)λ∗(t)λ∗0t)≤H (x∗(t)u(t)λ∗(t)λ∗0t) (10)

Compared with DP, the PMP-based EMS achieves global
optimization with less calculation, which is equivalent to the
optimization effect of DP, and is more suitable for real-time
control. However, without establishing an accurate real-time
predictive model, instantaneous optimization still cannot be
achieved.

In Sanchez and Delpra (2018), a PMP-based EMS was
proposed to optimize calculation. A Q-trick method was
proposed to transform the energy management issue into a
boundary value problem and accelerate the operation pro-
cess. Based on the assumption that the battery’s internal
resistance and open-circuit voltage are independent of the
SOC, instantaneous optimal control with appropriate bat-
tery usage equivalent parameters can result in the global
optimization solution. According to these findings, a PMP-
based EMS was proposed in Kim et al. (2011), who con-
fined the optimal operating line of an ICE under a specific
output torque and speed and also determined the appropriate
equivalent battery usage parameters. In Yuan et al. (2013), a
mathematical expression relating gear shifting to speed was
established. A PMP-based EMS was proposed to transform
the energy management issue into an optimal control prob-
lem based on the cost function. In Li et al. (2015), the fuel
consumption, SOC, and battery loss were comprehensively
considered for a harsh environment, and the SOC was re-
stricted to a certain range. In addition, a battery operating
severity factor was adopted to describe the loss status of the
battery, and a PMP-based EMS was then proposed to re-
duce this factor. In Zhao and Antonio (2016), a PMP-based
EMS was proposed and optimized using selective Hamilto-
nian minimization: a parameter analysis model was used to
establish selective Hamiltonian minimization, and the selec-
tive Hamiltonian minimization was adopted to select the pos-
sible optimal control mode. In Hadj-Said et al. (2017, 2018),
considering the discrete variables and continuous variables
for PMP-based EMSs, the energy management problem was
solved using an analytical method. The power distribution of
the ICE and EM, the transmission ratio, and the start–stop
process of the ICE were taken as the optimization variables.

Improving the real-time adaptability of PMP-based EMSs
has become a hot research issue. In Lee et al. (2019), an
adaptive PMP-based EMS established on real-time co-state
adjustment according to the current driving conditions was
proposed. Among the control process, the key control pa-
rameters were updated and balanced adaptively according
to the SOC. In X. Li et al. (2019), an adaptive PMP-based
EMS established on driving cycle prediction was proposed
for fuel cell HEVs. The particle swarm optimization (PSO)
algorithm was adopted to classify driving modes, and the
Markov model was adopted to predict the speed and driv-
ing behavior in different driving modes. In Onori and Tribi-
oli (2015), an adaptive supervisory PMP-based EMS was
proposed to achieve online energy management of plug-in
HEVs. Its co-state can be adjusted with changes in driving
conditions. SOC feedback was used to eliminate the uncer-
tainty in the average speed and total driving distance, and de-
viation between the actual SOC and the reference linear SOC
distribution was prevented by resetting the co-state. The third
necessary condition of PMP was only adopted in Nguyen
et al. (2018) to derive a closed-form solution containing state
variables in order to avoid EMSs relying on additional adap-
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tive mechanisms in real-time control. In Xie et al. (2019),
PMP and MPC were combined to realize short-term speed
prediction using a Markov chain based on the actual driving
cycle, and the EF did not need real-time adjustment; this was
done with the aim of improving the calculation efficiency and
real-time prediction performance.

The characteristics of different PMP-based EMSs are il-
lustrated in Table 6. The PMP-based EMS improves calcula-
tion efficiency, but this method still cannot achieve real-time
control. Under the premise of the certain constraint function
and EF, the approximate global optimization solution can be
obtained according to the vehicle model. The PMP-based
EMS needs to work under a known driving cycle and cannot
realize online control. Methods based on a predictive model
and condition recognition are applied to this EMS. The PMP
is used to solve the minimum energy consumption in the pre-
diction domain in order to realize the near-real-time energy
management of HEVs.

4.1.3 The GA-based energy management strategy

The GA was initially designed and proposed according to
the law of biological evolution in nature. It obtained the opti-
mal solution by simulating the natural selection in Darwin’s
evolution theory and the biological evolution process in the
genetic mechanism. The GA uses mathematical methods and
computer simulation to transform the optimization problem
into a biology-like evolutionary process. In the GA, the fit-
ness function is adopted to evaluate the merits and short-
comings of individuals. When the fitness of the optimization
target reaches a set value, its fitness stops increasing, or the
number of iterations reaches a set number, the GA optimiza-
tion process stops, and the final optimization result is output
(Lü et al., 2020). A flow chart of the GA is shown in Fig. 6.

The GA has been widely used in combinatorial optimiza-
tion and adaptive control because of its simple form, good
global optimization performance, and high calculation effi-
ciency. The introduction of the GA provides a new method
for solving energy management issues. In the energy man-
agement of HEVs, the fuel consumption, emissions, and ve-
hicle performance are generally taken as fitness functions to
achieve single- or multi-objective optimization.

minG= β1a1(1,x2, . . .xn)+β2a2(x1,x2, . . .xn)+ . . .
+βkak(x1,x2, . . .xn)

s.t. bi t(x)≤ 0 i = 1,2, . . .,p,
(11)

where G denotes the fitness; x1,x2, . . .xn represent
the optimized parameters; a1,a2, . . .an represent the fit-
ness functions; bi(x) denotes the limiting conditions; and
β1,β2, . . .βn represent the weight of each fitness function.

In Panday and Bansal (2016), different battery models
and SOC evaluation methods were adopted to analyze the
vehicle performance, and a GA-based EMS was proposed,
which can realize the optimization of the start–stop thresh-
old of the ICE and SOC estimation algorithm. In Zhang et al.

(2014), a GA-based EMS was proposed to transform the
energy management issue into a multi-objective optimiza-
tion problem including vehicle energy consumption, selected
emission species, and the SOC. In addition, the variable do-
main method was adopted to transform the multi-objective
problem into a nonlinear programming problem, which was
solved using the GA. In Chen et al. (2014), an EMS com-
bining the GA and quadratic programming (QP) was pro-
posed, which simulated the relationship between the battery
current and the fuel efficiency. The GA was adopted to search
and optimize the start–stop threshold of the ICE, and QP
was adopted to obtain the optimal battery current when the
ICE was working. In T. Liu et al. (2018a), a GA-based EMS
combined with condition recognition was proposed. The rep-
resentative operating conditions of the four driving modes
were obtained by classifying the historical driving data. The
GA was adopted to solve and save the optimal control under
different driving modes. The driving mode can be identified
online, and the corresponding optimal control can be acti-
vated. In Zhan et al. (2016), an EMS based on the GA and
the k-means clustering algorithm was proposed. First, four
conventional driving modes were selected to obtain the rela-
tionship between the equivalent fuel coefficient and fuel con-
sumption. The GA and k-means clustering algorithms were
used to identify the driving modes, and the power distribution
of the ICE and EM was adjusted in real time.

The characteristics of different GA-based EMSs are illus-
trated in Table 7. The GA provides a new idea for EMSs,
allowing researchers to use the perspective of the vehicle it-
self. In addition, the GA also has strong adaptability and self-
learning habit, which can produce a group of candidate solu-
tions, deal with multiple individuals in the population, and
search for various solutions in the space for comprehensive
evaluation. However, for a GA-based EMS, there is no defi-
nite evaluation method with respect to its accuracy. In the cal-
culation process, the GA is prone to premature convergence,
which may affect the final result of the global optimization.

4.1.4 The GT-based energy management strategy

GT mainly studies the interaction between the formulaic in-
centive structures and is a mathematical theory and method
to study competitive phenomena. GT considers the predicted
behavior and actual behavior of individuals and studies their
optimization strategies. At first, GT was used in economic ac-
tivities. With the continuous progress of technology, GT has
been gradually applied to military science, computer science,
and other disciplines. The elements of GT are generally play-
ers, strategies, and gains and losses. We assume that the sub-
ject of the decision is entirely rational and aims to maximize
their interests (Yin and Tian, 2010). GT can be described as
an array, (Z,miJi : i ∈ Z) including the player Z, the strate-
gies mi , and the cost function Ji . The aim is to identify a
range of strategies to satisfy the following:
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Table 6. Summary of exemplary works on PMP-based EMSs.

Reference Approaches Application scenarios Verification Performance

Zhao and Antonio
(2016)

PMP selective
Hamiltonian
minimization

HEV Simulation – Used the NEDC

– The possible optimal control mode was selected
using selective Hamiltonian minimization

Hadj-Said et al.
(2017, 2018)

PMP
Analytical method

Parallel HEV Simulation – Considered the discrete and continuous variables
to realize the EMS using an analytical method

– Optimization results were similar to the numerical
method.

– Improved the calculation efficiency

Wu (2018) PMP
Q-trick method

Series HEV Simulation – Used the NEDC

– Transformed the EMS into a boundary value prob-
lem using Q-trick to simplify the calculation

– Fuel consumption was 8.25 L per 100 km

Lee et al.
(2019)

Adaptive real-time
PMP

Extended-range
electric vehicles

Simulation – The control parameters were updated and bal-
anced adaptively according to the SOC

– Real-time co-state adjustment

– Reduced driving costs by up to 13.5 %

Xie et al.
(2019)

PMP
MPC

Plug-in hybrid
electric bus

Simulation – Predicted speed using real driving cycles

– Calculation speed was 6 times higher than DP

– Comparable total cost to DP and PMP

Figure 6. A flow chart of the GA.

Ji
(
m1, . . .mi−1,m

∗

i ,mi+1, . . .mn
)

≥ Ji
(
m∗1, . . .,m

∗

i , . . .,m
∗
n

)
,

∀mj 6=m
∗

j ,j 6= i, i = 1,2, . . .n. (12)

For HEVs, the players are the ICE, EM, and other power
sources, and the common goal is to achieve the best fuel
economy and power distribution. In addition, different power
sources also have their own revenue goals. The propose of
the ICE is to work in the high-efficiency range while reduc-
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Table 7. Summary of exemplary works on GA-based EMSs.

Reference Approaches Application
scenarios

Verification Performance

Zhang et al.
(2014)

GA
Variable domain
optimal

Parallel
HEV

Simulation – Multi-objective problem was transformed into a
nonlinear problem using the variable domain op-
timal strategy

– Balanced the energy economy, emission reduc-
tion, and the SOC stability

Chen et al.
(2014)

GA
Quadratic
programming

Power-split
plug-in
HEV

Simulation – The QP method was applied to calculate the opti-
mal battery current when the engine was on

– Also applicable when battery was degraded

– Fuel consumption was reduced by 10.78 %

Panday and
Bansal (2016)

GA
SOC estimation
algorithm

Plug-in
HEV

Simulation – The SOC estimation algorithm was applied to an-
alyze the vehicle performance

– Fuel economy was improved over classical meth-
ods

T. Liu et al.
(2018a)

GA
Driving condition
recognition

Plug-in
HEV

HIL – Four driving modes were obtained by classifying
the historical driving data

– Applied in real time

– Cost price was 46.6 % lower than the CD or CS
modes

Table 8. Summary of exemplary works on GT-based EMSs.

Reference Approaches Application scenarios Verification Performance

Dextreit and
Kolmanovsky
(2014)

GT Parallel HEV Simulation – Off-line calculation was simpler than SDP

– Improved fuel economy and reduced emissions

Yin et al.
(2016, 2018)

GT
Adjustment
program

Engine generator/
Battery/
Ultracapacitor HEV

Simulation
Experiment

– Considered the life of each component

– Adaptively adjusted the utility functions to im-
prove the adaptability and the real-time perfor-
mance

Xu et al.
(2021)

GT
Long short-term
memory (LSTM)
network

Hybrid energy
storage system

Simulation – LSTM network-based speed prediction

– Feature extraction and time series analysis

– Improved economy and prolonged battery life

ing emissions, and the propose of the EM is to keep the SOC
within an appropriate range.

In Yin et al. (2016), a GT-based EMS was proposed for
the hybrid power system composed of an ICE generator, a
battery, and an ultracapacitor. Each respective part was taken
as the player of GT, and energy management was realized
while considering fuel consumption, battery protection, and
charge–discharge capacity. Based on Yin et al. (2016), an ad-
justment program was added in Yin et al. (2018) that could
adaptively adjust the weight of each part of the utility func-
tions according to the output of each power source in or-
der to improve the adaptability and real-time performance.

In Dextreit and Kolmanovsky (2014), a GT-based EMS was
proposed, taking the driver’s demand and the power system
as two players, where cost penalizing referred to fuel con-
sumption, NOx emissions, SOC deviation, and vehicle run-
ning state deviation. The weight of the above parameters can
also be adjusted appropriately. In Chen et al. (2015), an adap-
tive GT-based EMS was proposed to adapt to actual driving
behavior. In this strategy, driving modes were predefined ac-
cording to historical driving data. Each predefined driving
mode had its corresponding probability distribution function.
Different driving modes adopted different GT strategies to
improve adaptability. In J. Xu et al. (2019), a GT-based EMS
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was proposed containing speed prediction trained using a re-
current NN (RNN) long short-term memory (LSTM) system
based on 18 driving cycles. The speed prediction problem
was selected to be treated as a multi-series problem to im-
prove the accuracy. In Xu et al. (2021), a GT-based EMS es-
tablished on prediction was proposed. Speed prediction was
realized using a LSTM network. The feature extraction and
time series analysis were adopted to improve accuracy. The
prediction information was applied to a GT-based EMS to
optimize the utility function of different power sources.

The characteristics of different GT-based EMSs are il-
lustrated in Table 8. GT-based EMSs can guarantee good
global optimization performance and better consider the per-
formance requirements of each power source. Under the
premise of no dependence on driving cycles or driving con-
ditions, it can realize energy management and has strong ro-
bustness. In addition, the prediction module and real-time
control module can also be added into GT-based EMSs to
improve adaptability.

4.1.5 The CO-based energy management strategy

CO is a branch of the field of mathematical optimization, and
the objective function is a convex function. Because the lo-
cal optimization value and the global optimization value of
CO are consistent, CO is simpler than the general mathemat-
ical optimization process in some aspects (Boyd and Vanden-
berghe, 2006).

The CO problem can be written as follows:
p0(x)

pi(x)≤ 0, i = 1,2, . . .,m
qj (x)≤ 0, j = 1,2, . . .,p
x ∈ γ,

(13)

where γ denotes the convex set, pi(x) denotes the convex
function, qj (x) denotes the affine functions, and p0(x) de-
notes the objective function.

CO can transform the energy management problem of
HEVs (such as the gear shifting, the start–stop process of the
ICE, the charge–discharge of the battery, the power distribu-
tion, and other problems) into a semi-convex definite prob-
lem for solving, which significantly simplifies the calculation
process while ensuring global optimization performance.

In Song et al. (2017), a CO-based EMS was proposed for
a hybrid storage system. A linear approximate model of the
composite hybrid storage system was established. The op-
timal parameters of each power source and corresponding
EMS were solved using the CO method with the battery life
and the cost of the hybrid storage system as the objectives. In
Hadj-Said et al. (2016), a CO-based EMS combining the ICE
on/off strategy was proposed. PMP was adopted to optimize
the ICE on/off strategy to eliminate its non-convexity, and the
corresponding analytical solution was obtained. The analytic

solution was integrated into the EMS, and the torque distri-
bution of the ICE and EM was solved using CO. In X. Hu
et al. (2013), a CO-based EMS combining the CD and CS
strategies was proposed for a plug-in hybrid electric bus. The
torque of the EM, the SOC, the output power of the battery,
and the ICE generator were set as the optimization objec-
tives. In X. Hu et al. (2016), a CO-based EMS was proposed
to optimize the emission characteristics of plug-in HEVs.
This strategy can balance the battery output, the charging
process, and ICE interactions. The goal of this EMS was to
minimize the total amount of CO2 emissions each day and to
forecast and update the control process for the next day. In
Nüesch et al. (2014b), a DP-optimized CO-based EMS was
proposed that considered the influence of frequent ICE start-
ing and stopping as well as frequent gear shifting. Accord-
ing to the driving cycle data, the optimal ICE on/off strategy
and the gear-shifting strategy were solved by DP, which were
transformed into a convex model. The energy management
was then realized using CO. A novel heuristic method was
proposed for optimal control, and an EMS was established
based on CO and PMP in Murgovski et al. (2013). Only the
start–stop process of the ICE was defined as an integer vari-
able, and CO was used to solve the global optimization con-
trol. In Freudiger et al. (2020), a CO-based EMS was pro-
posed for a hybrid storage system; this EMS took the power
distribution as a decision variable, and CO was applied to re-
duce the total power loss. In Xiao et al. (2018), a CO-based
EMS optimized using a simulated annealing algorithm was
proposed. According to the speed and power demand, a con-
vex function based on the fuel consumption of the ICE and
battery power was established, and the battery power was
controlled by CO.

The characteristics of different CO-based EMSs are illus-
trated in Table 9. The application of the CO method dramati-
cally improves the calculation efficiency of EMSs. However,
for CO-based EMSs, it is necessary to transform the opti-
mization goal of the energy management issue into an appro-
priate convex model, and the constraint conditions must also
be a convex model. For non-convex models, this method can-
not solve the problem. Therefore, there are certain limitations
in the application of CO, and it cannot meet the requirements
of all energy management issues.

4.2 The instantaneous optimization energy
management strategy

In research regarding instantaneous optimization EMSs, the
ECMS-based EMS and the MPC-based EMS have been
widely used. In addition, EMSs based on intelligent algo-
rithms such as RL and NN have been gradually applied to
HEVs. A comparison of these different methods is shown in
Table 10, which illustrates the pros and cons of each method.
This type of EMS was developed along with research into on-
line control. The purpose of this strategy is to minimize the
energy or power consumption at the current instantaneously,
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Table 9. Summary of exemplary works on CO-based EMSs.

Reference Approaches Application scenarios Verification Performance

X. Hu et al.
(2013)

CO
CD/CS strategy

Plug-in hybrid electric
bus

Simulation – Improved the energy recovery efficiency

– Considered the battery capacity

– Explored the influence of battery capacity on en-
ergy consumption and efficiency

– Diesel energy consumption was 8.87 MJkm−1

Nüesch et al.
(2014b)

CO
DP

Pre-transmission
parallel HEV

Simulation – Considered engine start and gearshift costs

– Fuel consumption was 0.1 %–0.2 % lower than DP

– Calculation cost was 75 %–98 % less than DP

Xiao et al.
(2018)

CO
Simulated
annealing

Parallel plug-in HEV Simulation – The fuel economy was 9.19 %–10.06 % lower
than the CD/CS strategy

– The calculation efficiency was drastically im-
proved compared with DP

Freudiger et al.
(2020)

CO Extended-range HEV Simulation – DP was used as a benchmark

– The total power loss of the whole system was re-
duced to a minimum

Table 10. A comparison of different methods applied to the instantaneous optimization EMS.

Approaches Pros Cons

ECMS – Easy to implement

– Online optimal control

– Real-time implementation

– Relies on the selection of the EF

– Less adaptability without an EF change

– No global optimization control

MPC – Strong robustness and stability

– Feedback correction

– Rolling optimization

– Relies on engineering experience

– Less adaptability

– Low calculation efficiency

RL – High calculation efficiency

– High adaptability

– Independent of vehicle model

– Unknown influence of parameter selection

– Ignores the optimization process

– Low optimization performance

NN – Independent of vehicle model

– Real-time learning and updating

– Back-propagation and feedback

– High adaptability

– Relies on a large amount of historical data

– Difficult to explain the process

– High calculation cost

so that all parts of the HEV are in the optimal working state.
This EMS is not restricted by the environment or driving cy-
cle, and it has strong adaptability to unknown driving condi-
tions, a fast response, and a low computational burden. How-
ever, this method cannot guarantee minimum energy con-
sumption or emission during the whole driving cycle and
cannot achieve global optimization.

4.2.1 The ECMS-based energy management strategy

The ECMS is an instantaneous optimization EMS with ex-
cellent performance in practical engineering applications. Its
primary content mainly includes two parts: the first part is
equivalent fuel consumption, which refers to the cost func-
tion established by converting the energy consumed or gen-
erated by the EM into the fuel consumption of the ICE us-
ing the EF, and the second part is instantaneous optimiza-
tion, which takes the cost function as the optimization objec-
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tive and solves the minimum value by adjusting the work-
ing state at each instantaneous moment. Therefore, the main
problem of the ECMS is to establish a cost function (Jing,
2020). Parameters including battery health and the emission
characteristics of the vehicle are also used as weighted terms
in the cost function. This EMS can minimize the instanta-
neous energy consumption and adjust and optimize the work-
ing state and emission characteristics. Moreover, this EMS
can be combined with various optimization methods to ob-
tain multiple optimization effects. However, the selection of
EFs often needs to be based on experience. The quality of
EFs directly affects the adaptation of different working con-
ditions.

In Jing et al. (2019), the SOC, the demand torque, and the
EM speed were taken as input, and an ECMS-based EMS
was proposed. In addition, the PSO algorithm was adapted
to adjust EFs in real time to solve the optimal working point
of the ICE and EM in order to realize the optimal energy
distribution. In Khodabakhshian et al. (2013), an ECMS-
based EMS was proposed in which the cost function included
fuel consumption and the compensative electrical power con-
sumption. A double variable function was established based
on the SOC and its derivative to calculate the EF in the cost
function. In Kommuri et al. (2020), an ECMS-based EMS
was proposed for the best behavior assessment of HEVs.
The battery aging, the start–stop process of the ICE, charg-
ing sustainability, and fuel economy were considered. The
cost function was established, and instantaneous optimiza-
tion was performed according to the working constraints of
each component. In Nüesch et al. (2014a), an ECMS-based
EMS established on the problem of excessive NOx emissions
from heavy-duty HEVs was proposed. This strategy intro-
duced NOx emissions into a cost function and tracked a given
SOC reference trajectory in real time. In Qiao et al. (2019),
an ECMS-based EMS was proposed for NOx and particulate
emissions that considered both fuel economy and emission
characteristics. The cost function based on fuel economy and
different pollutant emissions was established, and EFs of dif-
ferent pollutant emissions’ influence on the cost function and
optimization process were discussed.

With deepening research, a problem with the adaptabil-
ity of the EF has been exposed. The fixed EFs cannot fully
exploit the energy-saving advantages of HEVs. In order to
adjust the EFs, an adaptive ECMS-based (A-ECMS) method
has been proposed that can adjust control parameters accord-
ing to current and future situation requirements. Its basic
principle is to adjust the EF in real time according to the
predictive model (Onori and Serrao, 2011). The commonly
used methods to improve EMS adaptability include the SOC
feedback, driving condition prediction, and speed prediction.
Flow charts of these methods are shown in Figs. 7–9.

In Musardo et al. (2005), an A-ECMS-based EMS was
proposed that combined the current and predicted speed and
GPS data to establish the current driving condition. The EF
was updated to realize the adaptive EMS. In addition, the ef-

Figure 7. Flow chart of the SOC feedback control model.

fect of the updating frequency of the EF on the adaptability
was also considered. In H. Liu et al. (2018b), an A-ECMS-
based EMS was proposed based on target driving cycle gen-
eration for HEVs under fixed driving conditions. The co-state
equation based on PMP was established, and the optimal so-
lution under different initial SOC conditions was obtained.
The adaptive cost function, composed of the fixed term and
the dynamic term, was designed. The initial value of the fixed
term was solved by the interpolation mapping of the ini-
tial SOC data and driving data, and the dynamic term was
solved by PI (proportional integral) control according to the
piecewise SOC reference curve. In Zhou et al. (2021), an A-
ECMS-based EMS that integrated ramp information and the
mass prediction was proposed. Combined with GPS data, the
road slope was estimated, and the vehicle mass was estimated
using the recursive least squares method. In addition, the ref-
erence trajectories of the SOC under different load conditions
were established, and the traditional A-ECMS algorithm was
used to track the reference SOC trajectories. In Li and Jiao
(2019), an A-ECMS-based EMS established on traffic infor-
mation recognition was proposed. The k-means clustering al-
gorithm was adopted to divide the historical traffic data into
four conditions. According to the current traffic conditions
and the SOC, the EF corresponding to each typical traffic
condition was solved. In Lei et al. (2020), an A-ECMS-based
EMS considering traffic information was proposed. The GA
solved the initial EF under different initial SOC conditions,
and DP solved the optimal SOC trajectory. Fuzzy logic was
used to adjust the EF in real time in order to track the opti-
mal SOC trajectory. An ECMS was used to realize the op-
timal control. In P. Zhang et al. (2020), an A-ECMS-based
EMS established on driving condition recognition was pro-
posed. The driving conditions of heavy-duty HEVs were di-
vided into six categories, and a driving condition recognition
method based on NNs was proposed. The EF, the scale fac-
tor of a penalty function, and the start speed of the ICE were
optimized using the PSO algorithm under each driving con-
dition.

In addition, the combination of an ECMS-based EMSs and
rule-based EMSs is very close. EMS control parameters are
often optimized by rules, and the EF of the ECMS is ad-
justed within a certain range. In Vafaeipour et al. (2019), an
EMS based on rules and the ECMS was proposed. The driv-
ing modes of HEVs were divided into five types using the
“if else then” rule. The instantaneous power distribution was
defined as a function of the SOC by the ECMS. In addition,
the calculation results of the ECMS could also be used as the
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Figure 8. Flow chart of the driving condition predictive model.

Figure 9. Flow chart of the speed predictive model.

basis for the division of driving modes. In Li et al. (2017), the
rule-based method was used to divide the driving modes, and
an ECMS-based EMS was adopted to optimize the energy
management issue under hybrid driving conditions. In addi-
tion, PSO was used to solve the EF in real time in order to
optimize the ECMS-based EMS. In Guercioni et al. (2020),
an ECMS-based EMS combining a rule-based gear-shifting
strategy was proposed. The optimal gear-shifting rule was
obtained using DP, and the gear shifting was carried out ac-
cording to the rule in the EMS. The torque distribution co-
efficient of the ICE and EM was optimized in real time. In
S. Wang et al. (2019b), fuzzy control was combined with an
ECMS-based EMS, and driver intention recognition was in-
troduced into the EMS. Fuzzy control was used to adjust the
EF according to the difference between the reference SOC
and the actual SOC in order to obtain the optimal charge–
discharge trajectory and ensure the continuity of the SOC.
In Li et al. (2021), an online SOC estimation method based
on a fuzzy inference system (FIS) and an adaptive updated

traffic recognition method were integrated into an ECMS-
based EMS. FIS was built by an adaptive neuro-FIS (ANFIS)
trained by historical traffic data. The adaptively updated traf-
fic recognition method and the estimated SOC value were ap-
plied to adaptively adjust the EF. In Liu and Zhang (2017), an
ECMS-based EMS established on fuzzy logic driver behav-
ior recognition was proposed. The fuzzy logic was used to
identify different driver behaviors, and the EF was adjusted
in real time according to the road information. The flow chart
of this EMS is shown in Fig. 10. In F. Zhang et al. (2016), the
difference between the reference SOC and its actual value as
well as the derivative were the input, and fuzzy PI control was
adopted to adjust the EF, which was applied to an ECMS-
based EMS to improve the robustness, the SOC maintainable
performance, and the fuel economy.

With the continuous development of computer science,
many intelligent algorithms have been proposed and applied
to ECMS-based EMSs; these algorithms are used to achieve
adaptive adjustment of EFs and optimize the performance of
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Figure 10. Flowchart of an ECMS-based EMS combined with fuzzy logic.

EMSs. In Wang et al. (2017b), an ECMS-based EMS estab-
lished on PSO was proposed. The starting speed limit of the
ICE was introduced, and the PSO algorithm was used to op-
timize the EF and the start speed threshold of the ICE under
specific driving conditions. In Du et al. (2021), an ECMS-
based EMS optimized using the PSO algorithm was pro-
posed; this EMS added a penalty function and modified cost
function according to the current SOC. In addition, the PSO
algorithm was used to optimize the EF and penalty func-
tion of the battery charge–discharge. In Jing et al. (2019),
an ECMS-based EMS established on the ant colony algo-
rithm was proposed. The ant colony algorithm optimized the
charge–discharge EF in ECMS to obtain the optimal charge–
discharge EF off-line. In Li et al. (2018), the driving cycle
identification of the k-means clustering algorithm was inte-
grated into an ECMS-based EMS optimized using the GA.
Characteristic parameters were extracted based on historical
driving data, and driving conditions were divided into four
categories. The relationship between different equivalent fuel
coefficients and fuel consumption under four typical driving
conditions was obtained using an ECMS to obtain the corre-
sponding optimal power distribution. Based on KGA-means,
the current driving condition was recognized. In Han et al.
(2018), an ECMS strategy based on energy prediction was
proposed. Energy prediction was estimated by the prediction
velocity calculated by the chain NNs in different time layers.
A novel adaptive rule has been developed by eliminating the
need to reset the initial EF based on the energy prediction
in order to adjust the EF in real time. In Tian et al. (2020),
an ANFIS-optimized ECMS-based EMS was proposed con-
sidering the regularity and fixity of HEV driving conditions.
The optimal control trajectory was obtained using DP, and a
set of optimal EFs was obtained using the rolling optimiza-
tion method, which was used to train an ANFIS. By using a
trained ANFIS in the ECMS, the EF of the application was
derived, and the online optimal power distribution was then
realized.

The characteristics of different ECMS-based EMSs are
illustrated in Table 11. Research regarding ECMS-based

EMSs has experienced a transition from fixed EFs to vari-
able EFs. The selection of the EF directly affects the op-
timal control performance of the EMS. The fixed EF was
obtained according to experience or engineering data, repre-
senting all driving conditions. With the development of tech-
nology, more and more scholars have began paying attention
to the adaptability of the EF and have began using different
methods to describe the relationship between the EF and dif-
ferent driving conditions. Various intelligent algorithms and
predictive models have also been introduced into EMSs to
improve adaptability.

4.2.2 The MPC-based energy management strategy

MPC was a new control method. The basic principle of MPC
is as follows: at each sampling moment, a finite domain opti-
mization problem is solved according to the current informa-
tion, and the obtained control sequence is applied to the con-
trolled object. This process is repeated at each sampling mo-
ment, and the solution process of the optimization problem is
constantly updated with new measured values (Huang et al.,
2017). The four characteristics of MPC are as follows: the
predictive model, the reference trajectory, rolling optimiza-
tion, and feedback correction (F. Zhang et al., 2019). The
principle and characteristics of MPC are shown in Fig. 11.

The MPC-based EMS transforms the optimization prob-
lem of the global condition into a local optimization problem
in each predicted time domain. The rolling optimization con-
tinuously updates the driving state in the next predicted time
domain. Because MPC has strong robustness and high stabil-
ity as well as integrating rolling optimization and feedback
correction, it is applicable to solve the HEV energy manage-
ment problem with nonlinear multiple degrees of freedom
(Morari and Baric, 2006).

In B. Zhang et al. (2019), an MPC-based EMS was pro-
posed to achieve optimal power distribution and fuel con-
sumption minimization. The driving modes of HEVs were
selected using rules, and the optimization problem was
solved using the sequential QP (SQP) method. In Chen et al.
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Table 11. Summary of exemplary works on ECMS-based EMSs

Reference Approaches Application scenarios Verification Performance

Li et al.
(2018)

ECMS
KGA-means

HEV with CVT Simulation – Driving conditions identified by KGA-means

– Overall fuel consumption reduced by 6.84 %

Qiao et al.
(2019)

ECMS P3 HEV Simulation – Considered energy consumption and emissions

– Considered the influence of EFs of different pollu-
tant emissions on the cost function and optimiza-
tion results

Kommuri et al.
(2020)

Modified
ECMS

Parallel plug-in HEV Simulation – Considered the ICE start frequency and battery
aging

– Fuel benefit was 21.18 % (IDC) and 11.36 %
(WMTC)

Lei et al.
(2020)

A-ECMS Plug-in HEV Simulation
HIL

– Adaptive correction of the EF using the fuzzy con-
troller

– Fuel consumption reduced by 6.01 % compared
with the ECMS

P. Zhang et al.
(2020)

A-ECMS Hybrid heavy-duty
truck

Simulation – NN-based driving condition recognition

– PSO-based EMS parameter optimization

– Fuel economy improved by 14.81 % compared
with the ECMS

Tian et al.
(2020)

ECMS
ANFIS

Parallel hybrid
electric bus

Simulation
HIL

– Optimal EF was produced by ANFIS online

– Fuel economy improved by 18.42 % (CCBC) and
19.55 % (WVCITY) compared with rule-based
EMS

Zhou et al.
(2021)

Predictive
ECMS

Hybrid mining truck Simulation – Road slope prediction based on GPS

– Vehicle mass estimation

– Fuel economy improved by 7.21 % compared with
the traditional ECMS.

Li et al.
(2018)

A-ECMS
Fuzzy system

Plug-in HEV Simulation – Adjust EF online using traffic information and
SOC estimation

– Fuel consumption decreased by 22.98 % com-
pared with rule-based EMS

Du et al.
(2021)

ECMS
PSO

Power-split HEV Simulation – EF and penalty function were optimized by PSO

– Fuel consumption was 6.88 L per 100 km (WLTC)
and 5.88 L per 100 km (NEDC)

IDC refers to the Indian Driving Cycle. WMTC refers to the World Motorcycle Test Cycle. CCBC refers to the Chinese typical City Bus drive Cycle. WVCITY refers to the West
Virginia City Driving Schedule.

(2021), the demand power of HEVs was divided into high
and low frequency, and an MPC-based EMS in the low-
frequency band was proposed. The low-frequency power de-
mand was taken as input, and the fuel economy, the SOC,
and the busbar voltage were used as optimization targets. In
Borhan et al. (2012), the energy management problem was
first transformed into a problem considering the linear time-
varying cost function. A quadratic cost function considering
fuel consumption was then introduced into it, and an MPC-
based EMS was subsequently proposed. The second cost

function divided the fuel consumption into a stage cost and
an approximation of “cost to go” as a function of the SOC.
In Zhang and Shen (2016), the power distribution decision
was regarded as a sublinear rolling optimization problem,
and an MPC-based EMS was proposed. In addition, an on-
line iterative algorithm based on a continuation/generalized
minimum residual algorithm was adopted to solve the opti-
mization problem. In C. Xiang et al. (2017a), two MPC meth-
ods were adopted to build an EMS according to the length
of the sampling time. For a long sampling time, nonlinear
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Figure 11. The principle and characteristics of MPC.

MPC was adopted to ensure the ideal SOC state and pre-
vent significant ICE fluctuation. For a short sampling time,
linear MPC was adopted to solve the optimization problem
composed of the driving demands. In addition, the adaptive
Markov chain was adopted to predict the load demand. In
Cheng and Chen (2019), an MPC-based EMS was proposed
to improve battery aging while also ensuring fuel economy.
The fuel consumption, the SOC, and the battery aging index
were predicted, and the cost optimization problem related
to the above parameters was solved. In Luo et al. (2015),
a multi-objective optimization control system was proposed
for a new type of intelligent HEV, which used MPC to im-
prove vehicle safety, fuel economy, and comfort; multistep
DP was also used to solve the MPC off-line. In Zhou et al.
(2017), a kind of MPC-based EMS was proposed for a hybrid
storage system composed of a lithium battery and superca-
pacitor; this EMS could ensure that the system ran within the
specified range and reduced the Ah throughput of the lithium
battery. In this EMS, the predictive model was updated on-
line, the model status was monitored in real time, and the
QP method was used to obtain the optimal control in each
solution interval. In Guo et al. (2017), an MPC-based EMS
was proposed to divide the energy management problem into
the optimal velocity trajectory and the torque distribution so-
lution. The Krylov subspace method was used to solve the
maximum velocity trajectory and improve the calculation ef-
ficiency. PMP and the numerical method were used to solve
the optimal torque distribution and the gear-shifting rule.

Although MPC has a certain degree of robustness in solv-
ing uncertain problems, the method has certain limitations
due to the fixed function. Scholars have proposed the stochas-
tic MPC (SMPC) to solve these limitations, which included
the probability of uncertainty in the optimization problem
(Mesbah, 2016). In Qian et al. (2018), an SMPC-based EMS
for four-wheel drive (4WD) HEVs was proposed. A Markov
predictive model was applied to predict the acceleration and
solve the demand torque. The rolling solution was carried out
using DP to achieve the optimal control of fuel economy. In
Xie et al. (2017), an SMPC-based EMS with a variable pre-

dictive time step was proposed to prevent the practical appli-
cation interruption caused by driving state defects. A Markov
predictive model was used to predict the velocity series, and
average filtering and quadratic fitting were adopted to reduce
the fluctuation in the predicted results. Online estimation and
a variable threshold were adopted to predict the time varia-
tion in the time step, and SMPC was then used to solve the
instantaneous optimal. In Cairano et al. (2014), an SMPC-
based EMS was proposed combined with driver behavior
learning based on the Markov model and a scenario-based
approach for stochastic optimization and QP. According to
the constraints of the SOC and battery charge and discharge
power, SMPC was used to solve the optimal power distribu-
tion between the battery and the engine. In Li et al. (2016), an
SMPC-based EMS based on “drive behavior aware” was pro-
posed. The k-means algorithm was used to classify driver be-
haviors, and Markov models under different behaviors were
established. When driver behaviors were regarded as random
disturbances, an SMPC-based EMS optimized by the ECMS
was used to eliminate some worsened fuel economy work
points.

Scholars have added an intelligent algorithm-based speed
prediction model, a road information prediction model, a
driving condition prediction model, and q driver behavior
prediction model to the traditional MPC-based EMSs to op-
timize their performance. In C. Xiang et al. (2017b), an
EMS based on a nonlinear MPC (NMPC) was proposed that
adopted a slow sampling time to maintain the SOC. In ad-
dition, a radial basis function NN was used to predict the
short-term speed, and the optimal problem was solved us-
ing DP. In C. Sun et al. (2015a), the prediction accuracy,
calculation cost, and fuel economy of an MPC-based EMS
established on exponential variation was proposed. A ran-
dom Markov chain as well as speed prediction based on NNs
were evaluated to optimize the EMS. In Guo et al. (2019a),
an adaptive MPC-based EMS was proposed. The SOC refer-
ence constraint of each MPC calculation step was obtained
by solving the dynamic traffic information of the target driv-
ing task. In addition, the speed prediction model based on NN
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was used for short-term speed prediction, and the optimal
energy allocation in the prediction domain was solved us-
ing DP within the framework of MPC. In Yang et al. (2020),
an MPC-based EMS considering road ramp was proposed.
The optimal speed was calculated based on the prediction of
ramp information, and the power distribution and gear shift-
ing based on MPC were then optimized based on the calcu-
lated speed. In Guo et al. (2019b), an MPC-based EMS estab-
lished on ramp and speed prediction was proposed. A data-
driven autoregressive integrated moving average model was
applied to predict the future speed and road ramp of HEVs
in real time in order to provide a reference for the speed and
road ramp for the EMS, and this was used as input to solve
the driving demands. In C. Sun et al. (2015b), an MPC-based
EMS established on real-time traffic data prediction was pro-
posed. The traffic prediction information could be used to
establish the average speed of the current section and solve
the SOC reference trajectory, which could be applied as the
constraint condition of the SOC. In Park and Ahn (2019), an
MPC-based EMS established on future driving cycle predic-
tion was proposed. The radar signal and vehicle operation
signal were used as input, the future driving cycle was pre-
dicted by deep NN, and the predicted near-future driving cy-
cle was used as input to solve the optimal energy distribution.

The characteristics of different MPC-based EMSs are il-
lustrated in Table 12. MPC-based EMSs can efficiently solve
the optimization problems with multivariable constraints and
can also overcome the uncertainty of the system to a certain
extent, due to strong robustness and stability. The introduc-
tion of SMPC can avoid the influence of random constraints
to a large extent and further improve the adaptability of the
control system. In addition, a variety of prediction-based
methods have been introduced into EMSs and can improve
their adaptability to unknown driving conditions. However,
multiple optimization goals often need to be considered. The
mutual restriction and influence of various performance indi-
cators will inevitably introduce more constraints. It is still a
difficult point for intelligent algorithms to optimize the cal-
culation process and ensure real-time performance. In addi-
tion, in the complex road environment, the randomness of
human–vehicle–road interaction will also affect the control
performance of MPC.

4.2.3 The RL-based energy management strategy

RL is a method used to describe and solve an agent’s in-
teraction process with the environment in order to achieve
the maximum return or a specific goal. It has been devel-
oped from animal learning and parameter disturbance adap-
tive control theory and is currently applied in automatic con-
trol. RL uses a framework to define the interaction between
the agent and the environment in terms of state, action, and
reward (Sutton and Barto, 1998).

RL has obvious advantages in dealing with uncertainty
problems and can realize the optimization process through

training. In HEV energy management problems, action is
generally defined as control variables in EMSs, such as the
speed, the torque of the ICE and EM, and other parameters.
The state is the real-time working state of all parts of the
HEV in operation, such as the speed, the SOC, and the cur-
rent driving conditions. The reward function is the final con-
trol goal that needs to be achieved, including the fuel econ-
omy, the SOC stability, the battery health, and the emission
characteristics (X. Hu et al., 2019). A schematic diagram of
an RL-based EMS is shown in Fig. 12.

In Zou et al. (2016), an RL-based EMS for a hybrid
tracked vehicle was proposed, and a control-oriented hy-
brid tracked vehicle model and a power demand model were
established. A recursive learning algorithm for power de-
mand transfer probability matrices (TPMs) established on
the Markov chain was proposed based on historical data.
The Kullback–Leibler divergence rate was applied to mea-
sure the difference in power demand TPMs. When the dif-
ference was significant, the RL-based EMS was updated in
real time. In Xiong et al. (2018), aiming at the optimal power
distribution problem between the battery and supercapacitor
in a hybrid storage system, an RL-based EMS that judged
and updated according to the Kullback–Leibler divergence
rate was proposed. The power TPM was solved using long-
driving-period data. A control strategy based on a reverse
learning algorithm was established, and the TPM was up-
dated according to the applied driving cycle. In Sun et al.
(2020), according to the ECMS principle, a data-driven RL-
based EMS was proposed. An optimization problem with the
SOC retention and fuel consumption as objectives was es-
tablished. The EMS was simplified by an adaptive fuzzy fil-
ter. In Liu et al. (2020), a double-layer adaptive RL-based
EMS was proposed. The upper layer calculated the corre-
sponding TPMs according to the drive cycle change, and the
induced matrix norm was adopted as the standard to identify
the transformation. The lower layer was based on the model-
free RL and used the transformed TPMs to solve the optimal
power distribution. In Hu et al. (2018), an EMS based on
deep RL (DRL) was proposed for adaptability to different
driving conditions. The reward function was directly related
to fuel consumption. The EMS adopted the QNN (Quantized
Neural Networks) online learning method to obtain the ac-
tion from the state and to realize the identification and con-
version of driving conditions. In order to solve the problem
of the large control variable space in the EMS, the battery
performance and the optimal brake specific fuel consump-
tion curve of the HEV were introduced into the DRL-based
EMS in Lian et al. (2020). The state parameters and op-
timization parameters based on the HEV itself can ensure
training accuracy. In B. Xu et al. (2019), an RL-based EMS
established on Q-learning was proposed. The EMS took the
speed and demand torque as the state of Q-learning, chose
the demand torque of the EM as the action, and the reward
function included the fuel consumption of the ICE and the
equivalent battery fuel consumption. During the actual driv-
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Table 12. Summary of the exemplary works on MPC-based EMS.

Reference Approaches Application scenarios Verification Performance

Li et al.
(2016)

SMPC
k-means

Plug-in hybrid
electric bus

Simulation – Driver behavior classification and prediction

– ECMS used to modify the SMPC

– Fuel consumption reduced by 26.61 % compared
with the CD–CS modes and by 5.58 % compared
with single SMPC

Qian et al.
(2018)

SMPC 4WD HEV Simulation
HIL

– A Markov chain was built to describe changing
acceleration

– Fuel economy improved by 5.51 % (NEDC),
6.87 % (UDDS), and 15.02 % (CUDS) compared
with frozen-time MPC

Cheng and
Chen (2019)

NMPC Power-split HEV Simulation – Considered the battery aging

– The state of health over a single driving cycle im-
proved by 0.09 %, 0.25 %, and 0.44 % under dif-
ferent EFs

– Similar fuel economy to a single NMPC

Guo et al.
(2019a)

MPC
DNN

Plug-in HEV Simulation
HIL

– DNN-based speed prediction

– Integrated economy driving pro system

– Fuel economy improved by 6.48 % compared with
an EMS without EDPS

Guo et al.
(2019b)

MPC
ARIMA

Power-split HEV Simulation – ARIMA-based road gradient and velocity predic-
tion in the short term

– The ARIMA model was established based on real
driving cycle and road gradient data

– Fuel economy increased by 5 %–7 %

Park and Ahn
(2019)

MPC
DNN

Parallel HEV Simulation – Radar signals from the ego vehicle were used as
the input for the DNN

– DNN-based duty cycle prediction

Yang et al.
(2020)

Hierarchical MPC Parallel HEV Simulation – Obtained the optimal velocity using the road slope
ahead

– Optimized the power split and gear ratio using
MPC

– Fuel economy was 25.6 % higher compared with
the EMS not considering road slope

CUDS refers to the China Urban Driving Schedule. EDPS refers to the Economy Driving Pro System.

ing process, the Q-value table would be updated adaptively
every time. In T. Liu et al. (2018b), an RL-based EMS estab-
lished on speedy Q-learning was proposed, which adopted
the real-time learning model to calculate the TPMs of power
demand under different driving conditions and also distin-
guished the TPMs using the induction matrix norm. In addi-
tion, the speedy Q-learning algorithm was adopted to accel-
erate the calculation convergence speed of the Markov chain.
In Han et al. (2019), a double deep Q-learning-based EMS
was proposed to optimize the energy management problem
while maintaining the stability of the SOC. In addition, dou-
ble deep Q-learning was used to correct the error caused by

the overestimation of the cost function. In Xu et al. (2020),
it was proposed that the effectiveness of an RL-based EMS
largely depended on the selection of optimization parame-
ters. Thus, this paper explored the aspect of EMSs caused
by the number and selection of states, the discretization of
states and actions, and the selection of the learning experi-
ence. The results showed that increasing the discretization of
states will decrease the fuel economy, whereas increasing the
discretization of actions will increase the fuel economy.

The characteristics of different RL-based EMSs are illus-
trated in Table 13. As a model-free control method, RL-based
EMSs have been widely used in HEV energy management in
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Figure 12. A schematic diagram of an RL-based EMS.

Table 13. Summary of exemplary works on RL-based EMSs.

Reference Approaches Application scenarios Verification Performance

Zou et al.
(2016)

RL
Recursive learning
algorithm

Hybrid tracked
vehicle

Simulation – Used a user-defined cycle

– A recursive learning algorithm for power demand
TPMs established on a Markov chain was pro-
posed based on historical data

– Improved fuel economy by 1.53 %

Xiong et al.
(2018)

RL Plug-in HEV Simulation – Updated the EMS according to the Kullback–
Leibler divergence

– The relative decrease in total energy loss could
reach 16.8 %

Hu et al.
(2018)

DRL
Deep NN

Plug-in HEV Simulation – Obtained action directly from the states by QNN
online learning

– Fuel consumption of the DRL-based EMS trained
under NEDC online was 3.478 Lkm−1

T. Liu et al.
(2018b)

RL
Speedy
Q-learning

Hybrid tracked
vehicle

Simulation – Used two user-defined cycles

– Fuel consumption was 2821.3 g per driving cycle
and 5.57 % lower than SDP.

– High calculation efficiency

Han et al.
(2019)

Double deep
Q-learning

Hybrid tracked
vehicle

Simulation – Used a user-defined cycle

– Fuel consumption was 23.5 Lkm−1

– Fuel economy was 7.1 % better than DQL

Lian et al.
(2020)

Rule-interposing
QRL

Toyota Prius Simulation – Fuel consumption was reduced by up to 4 %

– The simplified action space improved the conver-
gence efficiency by 70.6 %

QRL denotes Q-reinforcement learning. DQL denotes deep Q-learning.

recent years due to their good adaptability to different driving
conditions and high calculation efficiency. However, there
are still major problems with selecting parameters for this
type of EMS, and the effect of different parameters on the
RL framework is still unknown. In addition, RL needs to be

trained according to a large amount of data and constantly
updated in the application. Although RL can achieve instan-
taneous optimization, its optimization performance is not as
excellent as other EMSs. Therefore, it is necessary to add
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constraints based on vehicle information into the RL frame-
work to carry out optimization.

4.2.4 The NN-based energy management strategy

An NN is an adaptive information processing system based
on the interconnection of many processing nodes. Models
of the human brain are built from information processing,
and networks are formed according to certain connections.
The NN is composed of many connected nodes, and each
node represents an activation function. An NN has strong
self-adaptability and self-learning functions that can learn
and update in real time according to changes in the system
(Dougherty, 1995). NNs are generally divided into an input
layer, a hidden layer, and an output layer. The topology and
weights determine the performance of an NN. The topologi-
cal structure ensures strong nonlinearity. The weights need
to be trained by NNs based on large amounts of data. In
addition, the NN also has the function of back-propagation,
which can reduce the final output error by comparing the out-
put value with the target value to solve the error and reverse
input (Baumann et al., 1998).

In NN-based EMSs, parameters such as the current vehicle
speed, the SOC, output information from the EM and ICE,
and demand torque are generally taken as the input layer. In
contrast, the output layer is generally the optimization target,
including the optimal power distribution, fuel consumption,
equivalent fuel consumption, and emissions of the HEV. In
addition, this type of EMS is trained based on a large number
of historical data collected under various driving conditions.
The network is constantly updated and optimized for practi-
cal use. The control structure diagram of an NN-based EMS
is shown in Fig. 13.

In Tian (2018), an NN-based EMS was proposed for a hy-
brid electric bus under fixed driving conditions that took the
demand torque, speed, SOC, and mileage ratio as input and
obtained the optimal power output of the ICE. Due to the
continuous accumulation of determined conditions, the ob-
tained optimal data set for NN training was also increased.
In Majed et al. (2016), an NN-based EMS was proposed for
a fuel cell HEV. In this strategy, the driving demands of the
HEV were firstly predicted, and the predicted results, the
SOC, and the fuel cell power were taken as the inputs for
the NN. In addition, the optimal results obtained by DP were
used for off-line training of the NN. In Q. Xu et al. (2018b),
an NN-based EMS was proposed based on the principle of
minimum power loss. This strategy took the demand torque,
speed, and SOC as the input layer, and the output power of
the ICE and the speed were obtained after calculating the
hidden layers. Considering the efficiency of the transmis-
sion system of a dual-mode HEV, an NN-based EMS was
proposed in Qi et al. (2015). The GA was applied to train
the weights of the NN. Based on the transmission efficiency
model, the optimal control strategy of the ICE speed was es-
tablished and integrated into the EMS. In Ates et al. (2010),

an NN-based EMS combined with a wavelet transform was
proposed for a fuel cell/ultracapacitor hybrid storage system.
Wavelet transform was used to reduce the power fluctuations
in fuel cells and keep them in a steady state, while NNs were
used to control the charge depletion of the ultracapacitor. In
Wang and Qin (2020), the ECMS strategy was integrated into
the BPNN-based EMS. The EF was used as the intermedi-
ate variable to solve the global optimization sequence, and
BPNN was then used to extract the optimal sequence and
form an online EMS. In Han et al. (2020), an RNN-based
EMS was proposed. This strategy could adjust the ratio of
energy consumption and battery loss in the EMS in real time.
The SOC trajectory was calculated using DP for training. It
could also control the deviation between the training value
and the actual value in a practical application. In Kong et al.
(2019), an EMS based on deep RNN (DRNN) was proposed.
Multiple parameters related to the current driving condition
of the HEV were selected as inputs, and the optimal output
torque of the ICE was obtained through the hidden layers.
In addition, the weights in the hidden layers were updated in
real time. In Chen et al. (2020), an EMS based on convolu-
tional NN (CNN) was proposed for condition identification.
This strategy divided the conventional driving conditions into
six types using the K-shape clustering method, and the CNN
was trained based on the initial driving cycle and forecasted
the driving conditions. In Zhang and Fu (2020), an EMS
based on fuzzy logic and an NN was proposed to improve
the adaptability of EMSs to different driving conditions. The
EMS realized the identification of driving cycles through the
sample learning and feature extraction of the NN and used it
as the input for the fuzzy logic controller to optimize the MF.
In Wu et al. (2020), an EMS based on multi-NNs was pro-
posed. The global optimization results were obtained using
DP, the condition recognition NN was trained by the calcu-
lation results, and the online co-state estimation was realized
using RNN, which was used as the initial value of battery
power optimization.

The characteristics of different NN-based EMSs are illus-
trated in Table 14. The NN-based EMS is a model-free con-
trol strategy with a strong learning ability that can deal with
the nonlinear optimal energy management problem in real
time. It can optimize and update the control process to real-
ize the self-adaptation of the algorithm itself. However, it is
difficult to explain the reasoning process of an NN, and the
calculation cost is high. In addition, in the case of insuffi-
cient data, the NN-based EMS finds it difficult to achieve the
optimization effect. Therefore, an NN is often used in combi-
nation with other algorithms to form a multi-method control
system, which integrates the self-learning performance of an
NN into the adaptive EMS to obtain better adaptability.
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Figure 13. The control structure diagram of an NN-based EMS.

Table 14. Summary of exemplary works on the NN-based EMS

Reference Approaches Application scenarios Verification Performance

Majed et al.
(2016)

ANN Fuel cell HEV Simulation – The ANN was trained using UDDS

– The effect of HWFET was better than NEDC

– The system cost was 1.2 % lower than DP

Kong et al.
(2019)

DRNN Parallel HEV Simulation – Hidden layers were updated in real time

– Equivalent fuel consumption was 7.52 L per
100 km (CYC_1015) and 5.6 L per 100 km
(NDEC UDDS)

Wang and Qin
(2020)

BPNN
A-ECMS

Plug-in HEV Simulation – Optimal EF recognition

– The fuel economy was improved by 2.46 %

Han et al.
(2020)

RNN
A-ECMS

Plug-in HEV Simulation – Adjusted the ratio of energy consumption and bat-
tery loss in real time

– Considered the battery life

Zhang and Fu
(2020)

NN
Fuzzy logic

Parallel HEV Simulation – Fuel consumption was 5.576 Lkm−1 (NEDC) and
6.096 Lkm−1 (FTP-75)

– Optimization ratio was 21.39 % (NEDC) and
31.85 % (FTP-75) compared with the fuzzy EMS

Wu et al.
(2020)

Multi-NN Hybrid electric
mining truck

Simulation – Radial basis function NN-based speed prediction

– The cost savings were 12.2 %–34.68 %

– The computation time decreased by 23.40 %

CYC_1015 represents the Japanese 10–15 mode driving cycle. NDEC represents the New European Driving Cycle.

5 The EMS based on intelligent transportation
systems

The ITS refers to the transportation environment in which
vehicles, infrastructure, and portable devices are intercon-
nected. It effectively applies information technology and sen-
sor technology in transportation to strengthen the connection
between vehicles, roads, and people, thereby forming a real-
time, efficient, and accurate transportation system. However,
the main problems faced by the ITS with respect to its de-
velopment include comprehensive access to the traffic status,
an accurate understanding of vehicle running conditions and

the behavior of other traffic participants, and the provision of
more effective traffic information according to vehicle traffic
conditions and the related states of mutual interaction (Peng,
2019). The architecture of the ITS is shown in Fig. 14.

The introduction of “Internet of Vehicles” (IoV) technol-
ogy can solve these problems to a large extent. IoV refers
to the system network of data exchange between vehicles,
roads, and people based on the internal network, inter-vehicle
network, and onboard mobile network through radio fre-
quency identification (RFID) technology, which can real-
ize the integrated control of traffic management and vehi-
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Figure 14. The architecture of the intelligent transportation system (ITS).

Figure 15. The architecture of IoV.

cles (Yang et al., 2014). The architecture of IoV is shown in
Fig. 15.

With the continuous development of the ITS and IoV tech-
nology, the application of intelligent traffic data information
to the optimization control of HEV energy management has
become a hot topic for scholars (Gu et al., 2019). Generally
speaking, ITS-based EMSs use two methods: the first method
is based on using static data (e.g., navigation information and
historical traffic data) to predict driving conditions in the pre-
dicted time domain to realize energy management, whereas
the second method is to monitor and predict the behavior
of nearby vehicles, traffic signals, and traffic participants ac-
cording to the dynamic real-time traffic information provided
by IoV in order to find the optimal speed to achieve energy
management.

5.1 ITS-based EMSs established using static data

ITS-based EMSs established using static traffic data usually
classify different driving condition data based on vehicle his-

torical driving data, navigation information and GIS informa-
tion, and they use an adaptive algorithm to predict the future
driving state in the time domain, thereby realizing energy
management in the prediction domain. This method mainly
adopts the idea of hierarchical control. The upper layer is the
classification and prediction layer, which classifies the driv-
ing conditions of vehicles according to the historical data and
also predicts the driving parameters and driving conditions of
the current vehicles. The lower layer adopts the correspond-
ing EMS according to the prediction results to realize the
optimal energy allocation of vehicles

In Wei et al. (2016), driving pattern recognition (DPR) was
introduced into the ITS-based EMS. The fuzzy rule was de-
signed based on the DPR algorithm that determines the cur-
rent driving mode based on the historical vehicle data in the
upper layer, and fuzzy logic was applied to solve the energy
management problem. While driving conditions changed fre-
quently, the MF was adjusted according to DPR results. In
R. Zhang et al. (2019), multilayer perceptual NNs were used
to extract the features of historical driving conditions to real-
ize the DPR, which was introduced into the ITS-based EMS.
Under different driving conditions, the optimal power distri-
bution was realized by fuzzy control. In addition, the GA was
used to optimize the critical parameters in the MF, which can
reduce the current fluctuation under various driving condi-
tions. In Zhang and Xiong (2015), an ITS-based EMS estab-
lished on DPR was proposed that used fuzzy logic to divide
and identify current driving modes according to the historical
information from the last 100 s. An optimal EMS was then
developed using DP in order to realize real-time adaptive en-
ergy management. In Kim et al. (2019), an ITS-based EMS
with DPR was proposed for HEVs with repeated driving con-
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ditions, as it can update control parameters in real time by an-
alyzing the past driving modes. The trip information was also
updated every day to optimize the DPR. The effective aver-
age power and the effective SOC drop rate were selected to
determine the driving mode. In the lower layer, PMP was ap-
plied to obtain the optimal control results. In C. Wang (2020),
an ITS-based EMS was proposed in which the current driving
condition was predicted according to the historical driving
condition data. According to the predicted driving condition,
the GA was applied to solve the energy management issue
with the gear-shifting model. The vehicle fuel consumption
was taken as the fitness function to avoid the influence of
multiple EFs. In Rios-Torres et al. (2018), the diving condi-
tions of HEVs were divided into volatile, normal, and calm
according to historical driving data, and an ITS-based EMS
was then proposed. In addition, the driving conditions were
estimated using real-time vehicle operating parameters. The
current driving condition was determined, and ECMS was
applied to reduce fuel consumption. Under calm conditions,
fuel consumption was reduced by 13 %. In Sun et al. (2016),
an ITS-based EMS established on speed prediction was pro-
posed. The prediction of the future short-term driving condi-
tion was realized using NNs speed prediction and historical
data. A-ECMS was applied to realize the adaptation of EFs
by the prediction results, and the driving behavior was then
adjusted. In Haußmann et al. (2019), an ITS-based EMS es-
tablished on driving behavior recognition was proposed. The
learning method was used to classify the historical driving
data, and the driving conditions were divided into four cate-
gories. LSTM-RNN was used to identify driving behaviors
online and select the corresponding optimal driving mode
based on driving parameters such as speed, acceleration, and
braking distance. The optimal power distribution was ob-
tained using the ECMS. In Lian et al. (2017), an ITS-based
EMS combining speed prediction based on identifying driv-
ing intention and historical driving speed was proposed. A
nonlinear autoregressive NN was used to predict the speed,
and the demand torque was then predicted. Following this, a
mixed logical dynamical model was established to obtain the
optimal power distribution within the predicted speed range.
In Wang et al. (2020), an ITS-based EMS driven by a large
amount of historical driving data was proposed, and the DRL
framework was applied to realize the optimal power distribu-
tion trained by the large-scale HEV driving conditions. The
reward function was established to minimize fuel consump-
tion and power consumption while maintaining power stabil-
ity. In H. Liu et al. (2018a), an ITS-based EMS established
on radial basis function NN speed prediction was proposed.
The ramp information from GIS was applied to plan the SOC
trajectory in real time. The predicted speed and SOC trajec-
tory were used as the input for the EMS. In the framework
of MPC, the energy management problem was solved, fuel
economy was improved, and the SOC was maintained in real
time. According to the influence of ramp on EMS, an ITS-
based EMS established on slope prediction was proposed in

Zeng and Wang (2015). According to the driving condition
and terrain information, the predictive model of road ramp
based on the Markov chain was established. In the optimal
layer, the SMPC and SDP were applied to realize the energy
management according to the SOC and the ramp prediction
model. In Wu et al. (2008), an ITS-based EMS was proposed
combined with the BPNN. The energy management rules ob-
tained by a road condition information off-line simulation
were introduced into the EMS. The fuzzy c-means cluster
was applied to classify the rules. The rules were used to train
the NN in order to obtain the optimal ICE output.

The characteristics of different ITS-based EMSs estab-
lished using static data are illustrated in Table 15. This type
of EMS can realize efficient energy management of vehicles
in the prediction domain. It can integrate the characteristics
of various driving conditions and combine the advantages of
a large number of historical data to train the EMS optimiza-
tion process with the formation of an approximately optimal
control process. In addition, the integration of geographic in-
formation and navigation information can improve the pre-
diction performance of the driving path to a certain extent
and adjust the EMS according to the actual road condition
information to improve the control effect.

However, this EMS is highly dependent on the prediction
accuracy, and the prediction effect of different prediction al-
gorithms is also different. When the prediction effect is not
close to the actual driving process, the vehicle energy man-
agement effect may not be optimal. Therefore, the key to this
EMS is to select a suitable prediction method to improve the
prediction accuracy.

5.2 The ITS-based EMSs established using real-time
data

ITS-based EMSs established using real-time traffic data in-
volve the optimal power distribution of the vehicle driving
system and include the autonomous planning of the vehi-
cle running state by the target vehicle according to the spe-
cific driving environment. This method also mostly adopts
the idea of hierarchical control. In the upper layer, the speed
optimization method is put forward according to the signal
phase and timing (SPAT) and the vehicle running status in-
formation. This is to avoid the vehicle being in the frequent
deceleration and stop position and to ensure that the vehicle
is in the high-efficiency running speed range (Wang, 2020).
In addition, according to the speed optimization results in the
lower layer, the corresponding optimization method is used
to realize the optimal power allocation, and the fuel economy
of the HEV can be improved.

In Qian et al. (2017), an ITS-based EMS was proposed ac-
cording to the signal light information under the ITS frame-
work; this strategy improved fuel economy by avoiding the
HEV having to stop at a red light. SPAT was used to cal-
culate the velocity range of the target, and F-MPC was then
used to calculate the optimal velocity sequence at a given
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Table 15. Summary of exemplary works on ITS-based EMSs established using static data.

Reference Approaches Application scenarios Verification Performance

Wei et al.
(2016)

Historical data
Fuzzy logic
DPR

HEV Simulation – Used the UDDS driving cycles

– Driving condition recognition and division

– Fuel consumption reduced by 3.85 %

H. Liu et al.
(2018a)

GIS NN
MPC

Parallel HEV Simulation – NN-based speed prediction

– Planned the SOC trajectory using GIS ramp data

– Updated the predicted speed and SOC trajectory
in real time

R. Zhang et al.
(2019)

Historical data
Fuzzy logic
GA NN

Fuel cell/
Supercapacitor
HEV

Simulation – NN-based DPR

– Critical factors of the MF were optimized using
the GA

– Ensured that the SOC of the supercapacitors is
within the desired limit

Kim et al.
(2019)

Past driving modes
PMP

Plug-in HEV Simulation – Updated the control parameters in real time by an-
alyzing past driving modes

– Used the effective mean power and SOC drop rate
to determine the driving patterns

Rios-Torres
et al.
(2018)

GPS-based
driving record ECMS

HEV Simulation – Combined driving cycles with driver decision

– Driving condition recognition and division

– Fuel consumption reduced by 13 % under calm
conditions

time. According to the optimal speed sequence, energy man-
agement is realized using the ECMS based on the Willan line
method. In Qian et al. (2016), an ITS-based EMS established
on vehicle-to-vehicle (V2V) communication and vehicle-to-
infrastructure (V2I) communication was proposed. The opti-
mal target velocity was obtained by SPAT, multi-island GA,
and NMPC. An A-ECMS was used to determine the opti-
mal energy distribution and obtain the optimal output power
of the ICE and EM, which could improve fuel economy
while avoiding the shutdown of the HEV due to red lights.
In X. Qi et al. (2017), an ITS-based EMS was proposed that
divided the optimal speed curve of HEVs passing the sig-
nal light into four working conditions according to the SPAT.
The appropriate working condition curve was selected ac-
cording to the actual running state of the vehicle, and the
demand power of the vehicle in the running process was pre-
dicted by MPC. The CD–CS strategy was used to solve the
energy management problem. In F. Zhang et al. (2017), an
ITS-based EMS established on future vehicle speed predic-
tion was proposed. According to the real-time traffic infor-
mation provided by V2V and V2I, a CNN was used to pre-
dict the speed in different time ranges, and the ECMS was
used to achieve energy management. In addition, the effects
of predicted speed on the EF and fuel economy were con-
sidered, and the EF was adjusted adaptively. In Gong et al.
(2008), historical traffic information and a real-time traffic

signal sequence based on the ITS were applied to travel mod-
eling, and an ITS-based EMS was proposed. In addition,
GPS-based driving path information and sensor-based real-
time traffic information were also integrated to model and
predict traffic flow. Following this, in the optimization layer,
the DP method was used to realize the power depletion con-
trol to fully exploit the fuel-saving advantage of the battery
and ensure that the SOC was not lower than the minimum
value. In Yang et al. (2016), an ITS-based EMS was proposed
stemming from the real-time communication connection be-
tween the vehicle and the control center. The driving con-
ditions were classified based on the historical data. Follow-
ing this, the current driving data were analyzed, and the sup-
port vector machine method was used to predict the driving
conditions. In addition, energy management was realized by
combining the real-time information from the control center
and the GIS ramp information. In Yang et al. (2017), an ITS-
based EMS was divided into online and off-line parts, and
a corresponding cloud computing framework was proposed.
In the off-line part, driving conditions were classified, and
drivers’ driving demands were predicted using the real-time
data transmitted to the control center. For the online part, a
well-trained support vector machine was used to recognize
the driving state and select the corresponding driving be-
havior. The stochastic receding horizon control method was
adopted to obtain optimal energy management. In Li (2016),
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an ITS-based EMS was proposed that was established on the
cruising speed of the vehicle in front. The navigation sys-
tem collected the speed in front, and the trajectory of the
collected cruising speed was optimized under the premise of
the safety rules. In the optimization layer, based on the op-
timized cruising speed and the real-time running state of the
HEV, DP and MPC were used to realize energy management,
which ensured cruise safety and improved the fuel economy
of the HEV. In C. Sun et al. (2015b), an ITS-based predictive
EMS established on real-time traffic flow data was proposed.
An additional SOC planning layer was constructed based on
the real-time traffic data, and the optimal SOC trajectory was
solved in real time using DP. The energy management in the
prediction domain was realized. Meanwhile, the update time
of the SOC trajectory was similar to that of traffic flow infor-
mation. In J. Hu et al. (2016), an ITS-based EMS was pro-
posed in order to maximize the fuel economy of a HEV driv-
ing on an unsmooth road. In addition, the current and future
driving information, including the dynamic speed limit and
terrain information from GIS, were taken as the input for the
controller. The optimization results were solved and acceler-
ated by PMP considering the vehicle speed, the power dis-
tribution, and the engine working point. In Liu et al. (2021),
an ITS-based EMS was proposed based on IoV and real-time
traffic information. The speed limit curve was proposed and
transformed into a spatial domain problem. According to the
speed value based on driving distance, the speed planning
and power distribution of HEVs were realized using DP con-
sidering the shift limit and speed fluctuation. A time adjust-
ment factor was added to the cost function to constrain the
final driving time. In He et al. (2021), physical and network
systems were integrated, and an ITS-based EMS established
on a cyber-physical system was proposed. The historical traf-
fic information of a hybrid electric bus and DRL were used
to conduct exploratory training for the EMS. The prior effec-
tive knowledge of the hybrid electric bus was then applied to
a Toyota Prius by deep transfer learning to accelerate the con-
vergence speed of the new EMS. In addition, V2V and V2I
were combined to obtain the status parameters of surround-
ing vehicles and signal lights, and different operation modes
were selected under different traffic conditions to realize the
optimization of energy management problems.

The characteristics of different ITS-based EMSs estab-
lished using real-time data are illustrated in Table 16. This
type of EMS is based on real-time data, which can preset the
operating rules and driving condition classification and pro-
vide the appropriate future operating state according to the
real-time operating state of the vehicle in order to deal with
changes in traffic information. Moreover, the behavior of the
driver and the running state of the vehicle can be guided.
However, this EMS has high requirements for infrastructure
and relies on the real-time information interaction between
the vehicle and the cloud control center. The prediction in-
terval is also often long (e.g., 100 s). Hence, this EMS does
not work well in environments with weak infrastructure or

poor communication. With the continuous development and
progress of technology, this strategy has a broad application
prospect.

6 Conclusion and prospects

In this paper, EMSs of HEVs have been reasonably clas-
sified, and the current research results have been summa-
rized. The rule-based EMS can obtain optimization results
to a certain extent and has been widely used in practice.
However, this EMS cannot achieve optimal fuel economy
and fully exploit the energy-saving potential of HEVs. The
global optimization-based EMS can reduce fuel consump-
tion to the greatest extent across the entire range of driving
conditions. However, it cannot be directly applied to real ve-
hicles and is often used as a benchmark for other EMSs. In
contrast, the instantaneous optimization-based EMS consid-
ers real-time performance and instantaneous fuel consump-
tion minimization and does not require a priori knowledge
of the driving cycle. Hence, it has better fuel economy and
adaptability. However, this EMS is not the global optimiza-
tion solution of the whole driving cycle. In addition, vehi-
cle structural parameters, driving cycles, the determination of
the cost function, and driving cycle prediction methods will
affect the accuracy and effect of EMSs. Therefore, the im-
provement and optimization of EMSs is an effective way to
balance fuel economy and real-time performance. The char-
acteristics of the different EMSs are summarized in Table 17.

According to the current problems and the development
trend of HEVs, four future research directions are proposed
and are outlined in the following subsections.

6.1 EMSs based on the transient response of the HEV
power system

In existing studies, the EMS is usually used as the up-
per controller for power distribution. Its optimization target
is mainly based on the steady-state index, without taking
the transient response of the components of the underlying
power system into consideration. The vehicle-integrated con-
troller needs to solve the demand and also needs to collect the
vehicle running data to realize the monitoring and diagnosis
of the HEV, which has high requirements for the response
speed of the control system. However, during the actual driv-
ing process, transient conditions such as rapid acceleration,
rapid braking, and parking account for about one-third of
the driving conditions experienced. These transient response
processes will be directly reflected in the power train, and
the controller needs to control the bottom actuator according
to the rapidly changing driving conditions. The transient re-
sponse of the bottom actuator has become the key point of
optimization. The transient fuel consumption and frequency
response characteristics of the ICE will affect the fuel econ-
omy. In the calculation, these problems are often reduced
or ignored by simplified vehicle models. Therefore, balanc-
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Table 16. Summary of exemplary works on ITS-based EMSs established using static data.

Reference Approaches Application scenarios Verification Performance

Li
(2016)

Cruise speed
optimization
DP
MPC

Parallel HEV Simulation – Acquired the speed of the vehicle ahead and opti-
mized the cruise speed trajectory

– DP- and MPC-based power distribution

– The fuel economy was improved by 4.31 %

Qian et al.
(2017)

SPAT
F-MPC
WL-ECMS

HEV HIL – The optimal speed sequence was calculated by F-
MPC using SPAT

– Avoided stopping at red lights

– Reduced the calculation time for a single step

F. Zhang et al.
(2017)

V2V
V2I
CNN
ECMS

Single-shaft
parallel HEV

Simulation – CNN-based speed trajectory prediction

– Information from V2V and V2I

– Adjusted the EF based on the predicted speed

Yang et al.
(2017)

Cloud computing
Support vector
machine

Plug-in hybrid electric
bus

Simulation
HIL

– Driving condition clustering in off-line part

– Predicted the possible driver demand

– Energy management was based on the stochastic
receding horizon control method

He et al.
(2021)

CPS DRL
V2V
V2I
Deep transfer
learning

Hybrid electric bus
Toyota Prius

Simulation – A prior effective EMS for a hybrid electric bus
was applied to a Toyota Prius by deep transfer
learning

– The fuel economy improved by 6.94 % and 8.12 %
for DDPG and DQL, respectively.

F-MPC represents fast MPC. WL-ECMS represents the Willan-line-based ECMS. CPS represents the cyber-physical system. DDPG represents the deep deterministic policy gradients.

Table 17. The characteristics of different EMSs.

Approaches Pros Cons

The deterministic rule-based EMS – Easy to implement

– Small calculation cost

– Good stability

– Relies on engineering experience

– Less adaptability to dynamic changes

– No optimal control

The fuzzy logic rule-based EMS – Strong robustness and adaptability

– Independent of model

– High calculation efficiency

– Relies on engineering experience

– No optimal control

The global optimization EMS – Global optimization results

– Can be used as theoretical guidance in
the design of other EMSs

– Prior knowledge of driving cycle

– Less adaptability

– Large calculation cost

The instantaneous optimization EMS – Real-time optimal control

– Unrestricted by driving conditions

– Online implementation

– No global optimization control

– Relies on an accurate model

The ITS-based EMS – Online implementation

– Real-time optimal control

– Broad application prospect

– Relies on infrastructure and V2X

– Difficult to guarantee accuracy

– Immature technology
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ing and optimizing the response characteristics and real-time
performance of the bottom actuator while meeting the re-
quirements of approximate optimal control and calculation
efficiency at the upper level has become a research focus.

6.2 EMS based on multi-objective optimization

Because a HEV has multiple power sources, the influence
of interactions among them on performance cannot be ig-
nored. The initial requirement for EMSs was generally the
improvement of the fuel economy performance. With the
continuous development of technology, scholars have also
added the performance of various components of power sys-
tems into EMSs and have transformed EMSs from single-
objective optimization to multi-objective optimization sce-
narios. At present, EMSs not only take overall fuel economy
into consideration but also consider pollutant emissions, bat-
tery degradation, transient fuel consumption, and SOC reten-
tion. In addition, EMSs also need to consider the interactions
between the power sources and the performance, such as fuel
economy and drivability, the SOC charge–discharge charac-
teristics, and the battery life. However, introducing the above
factors into EMSs and realizing multi-objective optimization
according to their interaction also needs to be paid more at-
tention in future research.

6.3 EMS based on multi-method collaborative
optimization

At present, EMSs based on a single method have their disad-
vantages, such as low calculation efficiency, poor adaptabil-
ity, and poor real-time performance, which leads to different
limitations in the optimization process and makes it difficult
to fully exploit the performance potential of HEVs. For ex-
ample, the fuzzy logic rule-based EMS has good real-time
performance, but the optimization effect is limited. While DP
can solve the global optimization solution, the driving condi-
tions need to be known in advance, and the calculation bur-
den is heavy. Therefore, in the process of EMS development
and design, combining the advantages of various methods to
achieve collaborative optimization control will be a continu-
ous research hot spot.

6.4 EMSs based on driving condition and driver
behavior prediction

Although many EMSs are established based on driving con-
ditions, the driving conditions of HEVs are unknown during
the actual driving process, which makes it impossible to ob-
tain the optimal control results. Therefore, knowing the driv-
ing conditions in the future or for a short time is of great help
with respect to improving the control performance of EMSs.
At present, driving condition prediction methods based on
NNs and RL are applied to EMSs, and the application of lo-
cation information such as GIS and GPS also provides great

help for online driving condition prediction for EMSs. In re-
cent years, with the rapid development of the ITS and IoV
technology, the vehicle can realize the planning of energy
management according to the current position information
and known driving condition data. In addition, regarding the
subject of driving behavior, the driver will change the driv-
ing state according to subjective judgment. Different drivers
may take different action in the same situation, which intro-
duces uncertainty with respect to the driving behavior and
even with respect to driving conditions. Thus, the realization
of driver behavior prediction is also very helpful in predict-
ing driving conditions. However, in the current research, the
accuracy of driving condition prediction and driver behavior
prediction is still difficult to guarantee, which has become a
problem for future development. Therefore, future research
will focus on combining the prediction process with EMSs
efficiently and stably while also ensuring prediction accu-
racy.

Appendix A: Abbreviation

A-ECMS Adaptive equivalent consumption
minimization strategy

ANFIS Adaptive neuro-fuzzy inference system
BPNN Back-propagation neural network
CD Charge depleting
CNN Convolutional neural network
CO Convex optimization
CS Charge sustaining
DP Dynamic programming
DPR Driving pattern recognition
DRL Deep reinforcement learning
DRNN Deep recurrent neural network
ECMS Equivalent consumption minimization

strategy
EF Equivalent factor
EM Electric motor
EMS Energy management strategy
EV Electric vehicle
FIS Fuzzy inference system
GA Genetic algorithm
GIS Geographic information system
GT Game theory
HEV Hybrid electric vehicle
ICE Internal combustion engine
IoV Internet of Vehicles
ITS Intelligent transportation system
LFS Load-following strategy
LSTM Long short-term memory
MF Membership function
MPC Model predictive control
NMPC Nonlinear model predictive control
NN Neural network
NOx Nitrogen oxide
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PFS Power-following strategy
PMP Pontryagin’s minimum principle
PSO Particle swarm optimization
QP Quadratic programming
RL Reinforcement learning
RNN Recurrent neural network
SDP Stochastic dynamic programming
SFS Speed-following strategy
SMPC Stochastic model predictive control
SPAT Signal phase and timing
SQP Sequential quadratic programming
TPM Transfer probability matrices
V2I Vehicle to infrastructure
V2V Vehicle to vehicle
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