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Active audio noise cancellation technology using piezoelements is fairly new and emerging technol-
ogy on the market in recent years and is still gaining in popularity. The ability to use piezoelectric devices to
gather information about vibration spectrum and to create interfering waves, to cancel out the noise, allows for
the reduction in passive vibration methods and gives more flexibility in terms of space and application. The idea
of using this technique on larger scales such as industrial equipment is the focus of ongoing research conducted
by the authors of this article. This work is intended as the first part of a larger project and focuses solely on
theoretical approach to the problem of modelling mechatronic systems capable of creating complex vibration
spectrums and using piezoelectric components. The authors have focused on creating a mix of classical and non-
classical methods to synthesize model systems based on input resonance frequencies. A classical calculation
through matrix equations was also done to validate the accuracy of obtained results through the structural num-
ber method. The resulting model is still awaiting the empirical verification through extensive testing on real-life
models, and that part of the research is still being developed. When validated and checked, this technology could
bring new solutions in the vibration damping of industrial equipment, potentially increasing its flexibility and

effectiveness.

Machine vibrations are a normal and typically unavoidable
result of imperfections in moving and rotating parts and their
interactions with different environments and mediums. Cou-
pling imperfections, misalignments, mass imbalance and as-
sembly tolerances can all become a source of unwanted vi-
brations (Lyon, 1987; Tavner, 2008; Salokyova et al., 2016).
Additionally, in case of equipment that interact with differ-
ent media like air or fluids with different viscosities, an addi-
tional set of disturbance caused by turbulence can introduce
vibrations to the system (Mohanta et al., 2017). Over time,
those vibrations can increase in amplitude and strength due
to parts wearing down and imperfections accumulating in the
system. Deteriorating stability can eventually lead to struc-
tural damage and generate costly repairs. Unwanted vibra-
tions can negatively impact any devices or humans that op-

erate in their proximity and propagate through the structure
of buildings (Shrestha, 2018; Bergamo et al., 2020; Du et al.,
2020). Devices such as controllers and optical or mechanical
sensors can be very sensitive to background noise in form of
mechanical vibrations and usually require some form of fil-
tration or damping. In case of humans, vibrations can also
be very harmful with long and frequent exposure (Hagood
and Flotow, 2003). To prevent unwanted vibrations, various
types of passive and active damping methods were developed
(Kowal et al., 1995; Rivin, 2001; Benjeddou and Ranger,
2006; Brownjohn and Pavic, 2006; Kozek et al., 2011).

Passive vibration damping methods focus on dissipation or
reduction of vibrations through various technological means
and can be further divided into the following subgroups:

— elimination of vibration sources,

— elimination of vibrations during propagation, and



— dissipation of vibration energy.

Vibrations can be reduced through the elimination of vibra-
tion sources. The first stage of the elimination process con-
sists of proper part selection and precise fitting during the
machine design and construction process. The second stage
can be implemented in finished products by proper selec-
tion of operating parameters and an active reduction of clear-
ances during inspections. This method of vibration reduction
is, however, limited to technological design limitations and
material properties. Another method of reducing vibrations
involves coating the machine or sensor exteriors with insula-
tion surfaces that absorb any incoming or outgoing vibrations
with their material structure. This method is effective at re-
ducing high-frequency vibrations but does not do particularly
well with low-frequency ones. Last, vibrations of a specific
machine can be dampened by cushioning pads or other el-
ements, placed in mounting points, that either dissipate vi-
brations or isolate vibrating surfaces from exterior (Hagood
and Flotow, 2003; Benjeddou and Ranger, 2006). The above-
mentioned methods are characterized by only absorbing the
energy of a system.

Active vibration-damping methods bring an additional
source of energy to specifically counteract vibrations of a
system. The active effect can be achieved either through ad-
justing the damping factor by strengthening magnetic or elec-
tric fields (e.g. electro- and magnetorheological dampeners;
Dassisti et al., 2021) or by creating an interfering vibration
patterns that cancel each other out (e.g. piezoelectric-based
vibration dampeners; Kozek et al., 2011). The advantage of
active damping systems over passive systems is their capabil-
ity to damp vibrations with a broader spectrum of frequen-
cies. Another advantage is an ability to dynamically adjust
the spectrum to better reduce dynamically changing vibra-
tion frequencies.

Piezoelectric materials are a large group of intelligent
materials capable of direct energy transfer between electrical
and mechanical systems thanks to simple and inverse piezo-
electric effects (Soluch et al., 1980; Adriaens et al., 2000).
Common use cases for piezoelectric materials include using
them in the role of transceivers, converters, sensors and
active parts in technologies focusing on audio equipment.
The simple piezoelectric effect allows for the transfer of
mechanical energy of the crystal deformation into an electric
potential, while the inverse effect allows for conversion of
an electric potential back into mechanical strain exerted by
the material. The ability to convert mechanical and electrical
energy comes from a specific asymmetrical crystal structure
that creates an uneven distribution of positive and negative
charges throughout the piezoelectric element. This project
in general focuses on active damping methods that use
the inverse piezoelectric effect to create interfering waves
that cancel out incoming vibrations. The inverse piezoelec-
tric effect allows for rapid changes in the dimensions of
piezoelectric elements by applying alternating current of

high frequency. The resulting displacement on a surface of
piezoelectric plates or foils can be utilized to counteract
incoming vibrations. An example of this method can be seen
in active noise cancellation systems installed in headphones
(Vijay et al., 1995). The rapid displacement of piezoelectric
surface is propagated through a medium of air, resulting in
wave interference between incoming noise and vibrations
generated by piezoelectric foil. Significant noise reduction
can be achieved by applying such a solution which has been
proven in recent headphone models that provide this feature
(https://www.techradar.com/news/audio/portable-audio/
best-noise-cancelling-headphones-1280490, last access:
7 October 2021). However, one of the disadvantages of
piezoelectric materials is their small displacement, generated
only by the slight change in crystal lattice, making them
ineffective against vibrations of higher amplitudes. This
downside can be partly mitigated by introducing uniform
crystal piezoelectrics or piezo bimorph and stack systems.
While piezoelectric crystals obtain bigger displacements
due to uniform crystal structure, they are more expensive
to produce. An alternative solution involves using multi-
ple plates connected on the axis of elongation to form a
piezoelectric stack that achieves greater displacements at
the cost of thickness. Such a bimorph or a stack is typically
constructed from several piezoelectric plates with very
similar or identical shapes and material properties.

The main concept of this whole project is to find ways
of enhancing the capability of piezo stacks by incorporating
piezoelectric plates of different sizes and material properties
and using separate control circuits for each plate to form a
complex pattern of vibrations. This concept could enhance
the capabilities of piezo stacks by adding an option to gener-
ate a broader spectrum of vibrations with more distinct res-
onant frequencies while still retaining part of the benefits of
a normal bimorph or a stack. To make this method viable, a
proper mathematical model must be created to give the abil-
ity of determining the properties and sizes of piezoelectric
plates included in the piezo stack. This article in particular
has been devoted to the theoretical part of finding possible
ways of synthesizing a mathematical model to reflect the real
work of a piezoelectric stack. To achieve this, several classi-
cal and non-classical methods of developing a model have
been studied (Wojnarowski, 1977; Soluch et al., 1980; Woj-
narowski, 1981; Goldfarb and Celanovic, 1997; Buchacz et
al., 1997, 1999; Bellert and Wozniacki, 2000; Buchacz and
Zurek, 2005; Biatas et al., 2009; Buchacz and Wrébel, 2010;
Wang and Tsai, 2011; Biatas, 2012; Biatas and Buchacz,
2014; Wrébel, 2018). The choice was made to use a combi-
nation of classical methods such as polynomial chain frac-
tioning and graphs/structural number algebra to determine
the parameters of a working model. A piezo stack can be
considered as a cascade system, where each plate is a sep-
arate element with its own set of properties represented by
basic physical objects like masses, springs and dampers. The
resulting outcome of entire system is a sum of dependencies
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Example of a 2 degrees of freedom mechanical cascade
model. Masses are denoted by m;, springs by k;, dampers by b; and
external forces by Fj.

between all such elements. There are classical methods of
calculating outputs of such model through matrix equations
that combine all inputs and are used to devise equations for
calculating the desired set of outputs. The calculations can
become very complicated with an increasing number of in-
teracting elements inside the system and are typically hard
to implement into machine calculation. This article will in-
vestigate the accuracy and complexity of such calculations
through the non-classical method of using graphs and struc-
tural numbers in context of a cascade system being developed
to simulate the work of a piezoelectric stack. An example of
a 2 degrees of freedom system is used to illustrate the pro-
cess of synthesizing the model through the use of polyno-
mial chain fractioning. After the process of model synthe-
sis, a short description of the graph and structural number
method is made to show the complexity of this method. A
comparison of results obtained through matrix equations is
made to show the accuracy of the obtained results.

A cascade model is a type of mechanical or electrical model
in which all the moving elements (or current loops) are con-
nected in series with each other. The effect of such a connec-
tion causes the displacements (or voltages in the voltage anal-
ogy of electrical systems) to be affected only by the neigh-
bouring elements (which, in turn, are also affected by their
neighbours). Such a chain of interactions can be portrayed as
a cascade of effects, hence the name of the model. A graph-
ical representation of a simple, 2 degrees of freedom, me-
chanical cascade model can be seen in Fig. 1. Another repre-
sentation of a different, simple electrical model can be seen
in Fig. 2.

A decision was made to use the chain fractioning method
(Buchacz and Zurek, 2005; Biatas et al., 2009; Buchacz and
Wrébel, 2010) in attempt to create the first cascade model
because of its simplicity in the derivation of parameters
from the input dynamic characteristic. There are four dif-
ferent possible types of cascade systems that can be deter-
mined, depending on the type of system excitation (dynamic
or kinematic) and the type of restraint (restrained or non-
restrained system; Buchacz et al., 1999; Bialas, 2012; Biatas
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Example of a 2 degrees of freedom electrical cascade
model created in the voltage analogy to mechanical model. Masses
are represented by coils L;, springs are the capacitors C; and
dampers are the resistors R;. The external forces are represented
by voltages U;.
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A mechanical cascade model assumed for the purposes
of this article consists of two masses (m1; mo) and two springs (k;
ko). The model is constrained to a rigid surface with a spring k> and
is being excited by an external force Fj.

and Buchacz, 2014). To better illustrate the process of model
synthesis through chain fractioning, an example of a model
with 2 degrees of freedom was taken. To further define the
system, an external dynamic force was applied to one ele-
ment of the model, and the model itself was restrained at
the other end. As a form of input data for the model, two
resonance frequencies (w1; w3) and two anti-resonance fre-
quencies (wg; wy) were taken. wo represents a state in which
the body is not oscillating at all. The resulting dynamic char-
acteristic of a given model forms a polynomial equation as
follows:

(s2 + a)%)(s2 + w%)
s(s2 4+ w3)

UG)=H 1

A mechanical cascade model resulting from the initial as-
sumptions took the form presented in Fig. 3. The afore-
mentioned resonance frequencies were assumed as follows:
wo = 0rad/s, wy = Srad/s, wr» = 12rad/s, and w3 = 17 rad/s.

To calculate the weight of both masses and the stiffness of
springs in the assumed model, it is necessary to insert input
resonance frequencies into the dynamic characteristic of the
model (1).

After substituting the variables with the given resonance
frequencies and calculating equations in parentheses, the re-
sulting polynomial equation takes the following form:

s*+ 31452 + 7225

Us)=H
(s) 53 1 144s
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Electrical cascade model of the case under consideration
created with the use of voltage analogy to mechanical systems.

Now the resulting polynomial Eq. (2) can be split into a chain

fraction as follows (Biatas et al., 2009; Buchacz and Zurek,

2005; Buchacz et al., 1999):

1 1
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170 " 16755+ 7055

Each of the following coefficients of Eq. (3) corresponds to
the parameter associated with the next element of the syn-
thesized model multiplied by a constant H. So, the result-
ing parameters of the assumed mechanical model, given that
parameter H = 1, are as follows: m| = 1kg, k; = 170 N/m,
my = 1675kg, and kp =71 182 N/m. Parameter H and the
excitation force F' determine the amplitude of vibrations at
the peaks of resonance frequencies. After the calculation of
mechanical model parameters, an analogous electrical model
was created using the voltage analogy. The calculated val-
ues of individual system components in voltage analogy
are as follows: L1 =1H, C; =5882mF, L, =1675H, and
C> =14048 mF. A corresponding cascade electrical model
made with the use of voltage analogy is presented in Fig. 4.

To complete the process of synthesizing both cascade
models, equations of motion (4) and (5) were prepared, based
on the obtained models.

miX+ki(x1 —x2)=F @)
maXo — ki (x1 —x2) +koxp =0

Liiy+ gp (1 —i)=U )
Laiy — g (i1 —i2) + aipia =0,

Equation (4) shows a system of equations of motion de-
rived from mechanical model. Equation (5) shows a system
of equations of motion derived from electrical model. Equa-
tions (4) and (5) are needed when calculating the amplitudes
of vibrations for resonant frequencies using a classical matrix
method.

Graph models are graphical representations of interactions
between elements in a system. Every relation between an ob-
ject, its inertia and its relations with other elements can be
presented in form of edges. Displacements of moving ele-
ments in a mechanical system or currents/voltages in an elec-
trical system can be presented as vertices of the graph. All

interactions that affect individual elements are presented as
edges connecting each of the vertices. Solving the problem
of synthesis with the help of graphs and structural numbers
can greatly simplify the process of obtaining the required in-
formation from models (Bellert and WoZniacki, 1968; Wo-
jnarowski et al., 1986; Kowal et al., 1995; Buchacz et al.,
1999; Biatas et al., 2009). It is especially valuable for ob-
taining the information needed for verification of synthesized
systems, as the graph method, coupled with structural num-
bers, can provide easy form of calculating system outputs
using standardized algorithms (Bellert and WoZniacki, 1968;
Wojnarowski et al., 1986). To implement structural numbers
into calculations, a standard model can be transformed into
a graph model. Each edge of the graph represents one in-
dividual interaction between elements of the system. Due
to a clear representation of relations, thanks to graphs, and
a relatively simple set of instructions to calculate structural
numbers, this method can significantly reduce the complex-
ity of calculations and allow for the implementation of com-
puter programming into the calculation process. The method
has been developed for calculating complex electrical sys-
tems as one of its main purposes. There have been numerous
attempts at adapting graphs and structural numbers to also
solve mechanical models (Wojnarowski, 1977; Wojnarowski
et al., 1986). Since the 1970s, this problem has also been
researched at the Silesian University of Technology (Bellert
and Wozniacki, 1968; Wojnarowski et al., 1986; Kowal et
al., 1995; Buchacz et al., 1999; Biatas et al., 2009). The
structural number method is still considered as being a non-
classical method of calculating complex system outputs.

To transform our model to a graph model, it is necessary
to specify each relation between elements of a considered
model. In case of the system considered in this article, dis-
placement vertices will be presented as points 1x; and x»,
which represent the displacement of each of the two masses
that exist in the mechanical model. The | xg vertex is consid-
ered as a base vertex. It represents a connection to the exte-
rior of the system. The graph representation of displacement
vertices and a base vertex can be seen in Fig. 5.

In the next step, it is necessary to model the inertia in the
system. The inertia is represented in the form of edges that
connect each vertex associated with moving masses in the
system with the base vertex, representing the exterior of the
system (Fig. 6).

Loads of springs or damping factors of any dampers con-
nected to masses are marked as the next set of edges, con-
necting the vertices of displacement (Fig. 7).

Last, all additional external forces acting on the system
are marked. In this case, there is only one external force, F,
acting on the mass, m. A full graph representation of the
modelled system can be seen in Fig. 8.

Explaining the graph markings again in bulk, the displace-
ment of mass m is represented as vertex 1xi, and the dis-
placement of the mass my is represented as the vertex jx;.
The inertia of mass m (mpa), or in the case of oscillating
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A graph representation of displacements and the base
vertex.
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Graph edges representing inertia.

motion (—mw?), is marked as edge 1. The same goes for
the inertial force of mass mj being marked as edge 2. The
load of the spring kj that is tying the motion of two masses
together is marked as edge 3. The load of the spring k> tying
the mass m to a rigid support surface is marked as edge 4.
Last, the external force F| acting on the mass m; is marked
as edge 5. It is important to note that this model and graph is
only representing the motion in one dimension.
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Additional graph edges representing spring loads.
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A full graph representation of the cascade model.

Converting the studied model into a graph model allows for
easy calculation of its structural number. The structural num-
ber for a characteristic equation of a model is a numerical
multiplication of the edges that are connected to n — 1 ver-
tices of the model (excluding edges that represent external
forces; Biatas et al., 2009; Buchacz and Zurek, 2005; Wo-
jnarowski, 1977; Wojnarowski et al., 1986; Wrébel, 2018;
Soluch et al., 1980). The structural number of the studied
graph model takes the following form:

133
424] ©

Calculating the structural number D(w) lets us calculate
the amplitudes of the model’s resonant frequencies (among
other characteristics) through the structural number equa-
tions. The general equation form for calculating each subse-
quent displacement amplitude (Biatas et al., 2009; Buchacz

1
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and Zurek, 2005) is shown in Eq. (7).
im [ 0D(w). dD(w im ( 0D(w). 0D(w
(e (s ) n) (2 (s ) )
0D (w) 0D (w)

Si dD(w)
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3D (w) ’

Ay =
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where A, is a subsequent amplitude value, D(w) is a struc-
tural number calculated for the graph model (7), 65{2‘;) is
the derivative of the structural number relative to edge n,

Sim (D), D(@) ) g the simultaneity function of a struc-
= \ o1 o))

tural number which geometric counter image contains edges
i and j, and F; is the forces acting on the system.

In case of the model under consideration, there are only
two vertices that have any displacement. After substituting
the equation variables with the data related to each calculated
vertex and after converting the formulas, we are left with two
equations for the displacement of each vertex as follows:

2 (%) 151

Ar(@) = 9D () ®)
Sim ( 0D(w). 0D(w)
Sim ((0Dlw), 2D(w) ) 15

A2(@) = ( dg]D(wa)m ) ®

For the purposes of this article, an excitation force F was as-
sumed to be 1N. Displacement amplitudes calculated from
Eqgs. (8) and (9) were plotted on the graphs in relation to the
frequency spectrum. To verify the calculation done through
the non-classical method of structural number algebra, an
additional calculation of the displacements was also done
through the classical method of matrix algebra. Calculations
and graph plotting were done using the MATLAB R2019b
calculation and programming software. Plotted graphs of the
displacement of masses m| and m, are shown in Figs. 9 and
10.

Graphs in Figs. 9 and 10 show displacements of masses
in the considered model in form of a fast Fourier transform
(FFT) of oscillations for each mass. As we go along the
x axis of oscillations, we can clearly notice two distinct peaks
in the amplitude for the resonance frequencies. Those fre-
quencies closely relate to resonant frequencies @ and w3 that
were assumed right at the start, which validates the proper
representation of the model. Calculated through the classical
method, using equations of motion (4) and derived matrix
calculations based on those equations, are the resulting plots
marked by the continuous green plot line. The dotted blue
line represents the effect of calculations done using structural
numbers. As can be seen, both methods produce almost iden-
tical results both in terms of the frequency and the peak vibra-
tion for the resonance frequencies. This shows that structural
number method, while being better suited to more complex
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Displacement graph of mass 1 in relation to the vibration

frequency spectrum (blue plot — structural number calculus; green
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Displacement graph of mass 2 in relation to vibration
frequency spectrum (blue plot — structural number calculus; green
plot — classical calculus).

models because of its simplicity, can still produce solid re-
sults when compared to classical methods.

This section is devoted to possible adaptations of both clas-
sical and non-classical methods to the problem of complex
piezoelectric model synthesis. Piezoelectric composites are
materials that exchange energy between electrical and me-
chanical systems which require the inclusion of elements
from both mechanical and electrical systems in the same
model (Adriaens et al., 2000). In the current state of research,
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Piezoelectric stack model that consists of two piezoelec-
tric plates powered by separate electrical circuits.

the authors have two conceptions on how to solve this prob-
lem. One conception involves creating an analogous cascade
system, based on piezoelectric plates, with the help of graphs
and structural numbers. The system would be capable of gen-
erating the same vibration pattern as the synthesized one.
Another conception relies on the modification of the syn-
thesized model to better accommodate relations existing in
piezoelectric plates. The end goal involves creating a mecha-
tronic model through either of those ways. Vibrations gener-
ated by the resulting system would be phase shifted to cancel
out the vibrations incoming from target sources.

To illustrate the process of creating a piezoelectric model,
a stack consisting of two piezoelectric plates with unknown
material properties and sizes was takes as an example. One
end of the piezoelectric stack was fixed to a rigid surface,
whereas the other end was vibrating without any constrain.
Each piezoelectric plate was also connected to their individ-
ual electric circuits that excite their vibrations. Both plates
are connected with each other’s to create a system mechan-
ically similar to the cascade system presented before. The
model is presented in Fig. 11. Apart from existing mechani-
cal forces and displacements, the system also has its own set
of voltages and currents flowing through the plates, which
adds another set of variables to the complexity of the system.

The approach solely relying on the graph method and
structural numbers would require a description of relations
between mechanical elements of the system which consist
of piezoelectric plates and their weights and stiffness. Addi-
tionally, an adequate link between the mechanical and elec-
trical properties must be prepared to represent the electro—
mechanical coupling inside the structure of every piezoelec-
tric plate. Such a mathematical description was worked on
in Soluch et al. (1980) and Buchacz and Wrébel (2010) and
was represented in a form of graph with 3 degrees of free-
dom (two mechanical and one electrical) and three excitation
forces (two mechanical forces and one voltage).

The mathematical model in the form of a matrix, repre-
senting all the inner dependencies between mechanical and

1X1 1X2

1Xo0 1Xo

Graph and a hypergraph of relations in a single non-
constrained piezoelectric plate (Buchacz and Wrébel, 2010).

electrical elements in a single, free-standing piezoelectric
plate, is shown in Eq. (10).

Z_h —_Z_
Fy ki o Snkd X1
U = ® w_Co “w l . (10)
) Z_h __Z_ X2

sinkd tgkd

Graphs, apart from the possibility of representing mechani-
cal models, can also be used to represent dependencies in a
matrix. In this case, the vertices ; X ; represent displacements
(x1 and x; by vertices 1 X1 and 1 X»7) and currents flowing
inside a single piezoelectric plate (i is represented as vertex
1X3). The edges connecting each vertex correspond to the
elements in the matrix and represent relations between the
inputs and outputs of the matrix equation. A graph represen-
tation of relations between elements in a single piezoelectric
plate (Buchacz and Wrébel, 2010; Wrébel, 2018) is shown
in Fig. 12.

The hypergraph is a representation of only the outer edges
and vertices of a graph with the internal connections and de-
pendencies being treated as a form of a black box. To reflect
the model with more than one piezoelectric plate, a single
hypergraph can be duplicated and connected with the pre-
vious graph to create a complex hypergraph. The bottom of
the first plate was constrained, which is represented by con-
necting the vertices 1 Xo and | X3. The new plate, represented
by another hypergraph, was connected with the first one by
one of their bases, which was represented by connecting the
1 X1 vertex of the first hypergraph with a 1 X vertex of the
second one. The modified version (after adding constraints
and external forces) can be seen in Fig. 13. This model is
an attempt at creating a piezo stack solely using graphs and
structural numbers.

To solve this hypergraph, it would be necessary to con-
duct a reduction of the vertices by structural number opera-
tions (Bellert and WoZniacki, 1968; Wroébel, 2018) and then
derive the equations from each edge of the resulting graph,
effectively turning this complex graph back into a simpler
form with reduced number of vertices and edges. It is then
possible to convert the graph back into a matrix equation in
the same fashion as the matrix was converted into a graph,
to extract the equations necessary for solving the model. An-
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Modified hypergraph of a piezo stack constrained on
one side and excited by the force F on the other.

other solution, which is still a working thesis, is that, by com-
paring displacements of vertices in the mechanical/electrical
model created through the cascade model synthesis with the
comparable model representing a piezo stack, it is possible
to calculate parameters of piezoelectric plates and their sup-
plying voltages (assuming that, in the event of the system
being indeterminate, it is possible to assume boundary con-
ditions in form of piezoelectric material properties or piezo-
electric plate dimensions). For this model to be viable, it is
also necessary to simplify the four-vertex hypergraph into a
three-vertex graph. It is possible, again, with structural num-
ber algebra (as seen in Bellert and WoZniacki, 1968; Soluch
et al., 1980; Buchacz and Wrébel, 2010).

Ay (0) = Ayp(oy,) an
Az () = Azp(wy,), 12)

where A, is the subsequent amplitude value, A, is the sub-
sequent amplitude value of the piezoelectric stack, and wy,
is the frequency of the voltage fluctuations exciting the piezo
stack.

Another approach to the problem of synthesizing a model
representing a piezoelectric system is through the use of an
equivalent circuit based on a modified Kelvin—Voigt lumped
model. An equivalent circuit would be created by extend-
ing the existing model derived in Sect. 2, with additional
elements representing the electromechanical coupling and
properties of piezoelectric plates (Adriaens et al., 2000; Lin,
1997; Goldfarb and Celanovic, 1997; Wang et al., 2011).
In the case of the synthesized model, it is necessary to ac-
count for piezoelectric physical properties, such as strain,
elasticity and mass, and for its electrical properties, such
as impedance or capacitance. To consider those properties,
an equivalent model was proposed based on Adriaens et

|:> mi |
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C1 C2

Ri Rz

Piezoelectric equivalent model of the considered syn-
thesized model.

al. (2000), Lin (1997), Goldfarb and Celanovic (1997) and
Wang et al. (2011). The model can be seen in Fig. 14.

Masses m; and m, represent masses of the piezoelec-
tric plates. Spring loads k; and k; represent the elasticity of
piezoelectric material. Dampening factors b; and b; repre-
sent mechanical energy dispersion in the piezoelectric plate
medium. Forces Fe;| and Fe, represent the electromechanical
coupling between the electrical system and mechanical sys-
tem. Capacitance Cy and C; represent the capacitive prop-
erties of piezoelectric plates. Resistance R; and R; represent
the impedance of each piezoelectric plate in the system. Last,
voltages V| and V, represent the voltage that is either com-
ing out of piezoelectric plates (when passive) or input volt-
age (when active). This model could then be used to derive
the same set of equations or matrixes that would be used to
determine the variables representing each of the elements in
the system.

Models presented in Sect. 5 were created with the use of non-
classical and classical methods with slight individual modi-
fications to better accommodate them to solving the model.
Structural numbers and graphs shine when it comes to the
relative simplicity in transitioning (or determining) the nec-
essary equations for solving the output of complex models.
There are documented cases of structural numbers being used
to create computer algorithms for calculation (Wojnarowski,
1977, 1981; Wojnarowski et al., 1986; Buchacz et al., 1997),
which also encourages the use of computational methods to
aid in faster and more accurate calculation. The problem of
adapting the model to suit piezoelectric plates through the
pure use of graphs and structural numbers lies in the rapid
increase in difficulty when it comes to reducing the complex
hypergraphs back into a simple form of graphs that can be
translated back into the necessary equations. An attempt to
mitigate that difficulty can be made by taking only some part
of the graphs and deriving partial equations from them, but



this solution is still a theory, and the possibility of applica-
tion still needs to be verified. On the other hand, classical
methods, such as the modified Kelvin—Voigt lumped model,
offer more transparent approach with clearer draft of the el-
ements that compose the model but are tougher to translate
into the equations that have to be derived in order to solve
the model. Both solutions are still in the theoretical stage and
need empirical tests and further study to eliminate dead ends
and verify the soundness of each solution in a practical appli-
cation. Judging from the progress that has been done so far, it
is possible that the best solution would involve using parts of
both presented approaches. The Kelvin—Voigt lumped model
is good in terms of the transparency of the model and allows
for easy identification of the variables that exist in the sys-
tem. On the other hand, graphs and structural numbers are
good for deriving the equations that are necessary to solve
the model. A good solution would combine the transparency
of the classical method with the facilities offered by struc-
tural numbers. An example of a mechanical system with 2
degrees of freedom showcased in this article is just one sys-
tem that can be synthesized this way. There is no theoretical
limitation to the complexity of such cascade system in terms
of its degrees of freedom.

The development of new synthesis methods allowed for a
simplified and more elastic approach to issues of designing
models that must meet the required parameters. This arti-
cle was focused on using methods well explored by vari-
ous researchers (Bellert and WoZniacki, 1968; Wojnarowski,
1981; Wojnarowski et al., 1986; Buchacz et al., 1997, 1999;
Buchacz and Zurek, 2005; Biatas et al., 2009; Buchacz and
Wrébel, 2010; Biatas, 2012; Biatas and Buchacz, 2014) to
create a backbone for new possible applications through the
introduction of piezoelectric materials. Piezo stack models
are harder to synthesize through classical methods because
of their complex internal relations between mechanical and
electrical properties (Wojnarowski, 1981; Wojnarowski et al.,
1986; Buchacz and Wrébel, 2010). With the combination of
known synthesis methods and information gathered on the
topic of piezoelectric materials, the authors made an attempt
to find a solution to the problem of synthesizing a piezoelec-
tric model. The proposed solution is, however, still in its in-
fancy and requires further investigation and research through
verification by using other mathematical methods and with
thorough testing on actual physical models. The next phase
of the project involves a more practical approach in the form
of the empirical testing of piezoelectric bimorphs and stacks
to gather a deeper understanding about the internal relations
in the structure of piezoelectric plates and between their me-
chanical and electrical properties. Knowledge gathered in the
experiments will help verify the usefulness and validity of the
proposed solutions and help to refine the model.

The hopes are that the derived method for solving com-
plex systems with piezoelectric plates allows the making of
complex piezoelectric active dampers with an ability to ad-
just their damping capabilities to the spectrum of vibrations
generated by the machinery. It may also be possible to imple-
ment some form of energy recovery with piezoelectric plates,
but this case needs a lot more studying. The concept of us-
ing piezoelectric materials to actively dampen vibrations is a
novelty that is being researched by various researchers (Vijay
et al., 1995), and this project aims at broadening the flexibil-
ity and applicability of these solutions in various areas of the
industry, such as automotive or manufacturing industries.

Currently, all calculations per-
formed in MATLAB R2019b and the programme itself are stored
locally. All data will be provided on request, however.
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