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Abstract. Origami that can form various shapes by setting simple creases on the paper and folding along these
creases has a lot of applications from the fields of art to engineering. The inverse problem of origami that
determines the distribution of creases based on the desired shape is very complicated. In this paper, we use
theoretical kinematics to systematically analyse an inverse folding problem of a toy about how to fold a piece
of paper into a disc through a smaller hole without breaking it. The results show that some four-crease and
six-crease patterns can achieve the expected function, and they can be easily folded with 1 degree of freedom
(DOF). It not only opens up a new way to solve the inverse folding problem but also helps students to understand
mechanisms and machine theory.

1 Introduction

Origami, a kind of traditional art of paper folding originating
in East Asia, has attracted much attention in the fields of sci-
ence and engineering due to the property that it can generate
a large number of 3D structures by setting creases on a piece
of paper. In mechanism, Zhang and Chen utilized origami
to find some mobile assemblies of overconstrained linkages
(Zhang and Chen, 2018). In biology, origami was applied in
DNA nanotechnology (Marras et al., 2019; Masayuki and Hi-
roshi, 2018). In engineering, a variable-diameter wheel was
designed for a wheel-driven robot using an origami structure
(Lee et al., 2017, 2021), Meanwhile, Pesenti et al. (2015)
used an origami pattern to reduce energy consumption for
indoor climate control as well as artificial lighting and of-
fered visual comfort for users (Pesenti et al., 2015). Because
there are always lots of creases in an origami pattern and the
topology is quite complex, some numerical approaches (Yu

et al., 2019; Deng et al., 2020) were proposed to study the
folding behaviour of origami patterns. To further satisfy the
need of practical applications, some scholars paid attention
to the folding of thick-panel origami patterns and proposed
some solutions (Chen et al., 2015; Zhang and Chen, 2019;
Hull and Tachi, 2017).

On some particular occasions, some holes have to be cut
in the paper before folding, and this variation of origami is
called kirigami. The interference among the sides of holes
can be utilized to block the folding, which benefits the load-
bearing capacity of self-locking mechanical metamaterials
(Fang et al., 2018) and self-locking structures (Wang et al.,
2020). Comparing with normal origami patterns, the gaps
make kirigami patterns easier to deform, facilitating the ap-
plications of kirigami in some engineering areas. For exam-
ple, Rafsanjani et al. (2018) and Yang et al. (2021) designed
some crawlers with kirigami patterns. Some graded conven-
tional/auxetic honeycomb cores were designed by Hou et
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Figure 1. A paper folding toy: how to get a round disc through a
smaller square hole in a piece of paper.

al. (2014). Lin et al. (2016) got a synthetic Buckliball, and
Zhang et al. (2015) drove an assembly of 3D mesostructures
of diverse materials from 2D micromembranes or nanomem-
branes.

Recently, an interesting toy of the paper-folding problem
on how to get a round disc through a smaller square hole
in a piece of paper (see Fig. 1) has attracted the attention
of the authors. The problem was proposed by Tadashi Tok-
ieda, who is a mathematician from Stanford University. As
Tadashi Tokieda explained, the 2D paper is transferred into a
3D structure when being folded up off the table by twisting
the paper, and the disc can then pass the smaller hole (Haran,
2021). However, the mechanism behind the problem such as
creating creases by twisting the paper and the folding process
has not been explained explicitly yet.

Therefore, the target of this paper is to systematically find
proper kirigami patterns that can realize the function of al-
lowing a round disc to pass through a smaller square hole
in a piece of paper, namely to determine the distribution of
creases. Meanwhile, the folding process will be explained by
kinematic analysis. The remaining parts are structured as fol-
lows. Section 2 is to describe the problem from the mechan-
ical engineering perspective. The construction process of the
kirigami patterns is given by kinematic analysis in Sect. 3.
Conclusions are drawn in Sect. 4 to end the paper.

2 Origami and linkage

Ignoring the deformation of paper panels and only allowing
the folding around creases, an origami pattern is equivalent to
a linkage by viewing creases as revolute joints (R joints) and
paper panels as links. In origami, a four-crease pattern (see
Fig. 2a) is the most classical origami with the least number
of creases; hence, we choose it as an example to show the
equivalent property (see Fig. 2b).

Since we are interested in the folding performance of the
origami pattern, the relative motion among links in the link-
age ought to be concerned. Therefore, local coordinate sys-
tems at creases are established according to D–H notation

(Denavit and Hartenberg, 1955), where the z axis directs
from the vertex P to the outside along each crease; the direc-
tion of the x axis is determined by the right-hand rule, namely
xi = zi−1×zi , and the y axis is determined by the right-hand
rule (see Fig. 2b). Therefore, the relationships among kine-
matic variables in spherical 4R linkage (Chiang, 1988) are

U sinθi+1+V cosθi+1+W = 0, (1)

where

U =−sinα(i+1)(i+2) sinα(i+3)(i+4) sinθi,

V = cosαi(i+1) sinα(i+1)(i+2) sinα(i+3)(i+4) cosθi
+ sinαi(i+1) sinα(i+1)(i+2) cosα(i+3)(i+4),

W = sinαi(i+1) cosα(i+1)(i+2) sinα(i+3)(i+4) cosθi
− cosαi(i+1) cosα(i+1)(i+2) cosα(i+3)(i+4)

+ cosα(i+2)(i+3),

where α is the twist angle, and θ is the revolute angle
(variable). To describe the folding more intuitively, upper-
dihedral angles, ϕ, are adopted (see Fig. 2a). In this paper, all
of the upper-dihedral angles are the angles between two ad-
jacent panels and are measured from upwards, namely ϕ < π
means that the corresponding creases are valley ones repre-
sented by dashed lines, and situations of ϕ > π are for moun-
tain creases represented by solid lines. Here,

ϕi = π − θi . (2)

Therefore, the kinematic relationships can be expressed by
the upper-dihedral angles

Uf sinϕi+1+Vf cosϕi+1+Wf = 0, (3)

where

Uf =−sinα(i+1)(i+2) sinα(i+3)(i+4) sinϕi,

Vf = cosαi(i+1) sinα(i+1)(i+2) sinα(i+3)(i+4) cosϕi
− sinαi(i+1) sinα(i+1)(i+2) cosα(i+3)(i+4),

Wf =−sinαi(i+1) cosα(i+1)(i+2) sinα(i+3)(i+4) cosϕi
− cosαi(i+1) cosα(i+1)(i+2) cosα(i+3)(i+4)

+ cosα(i+2)(i+3).

In the view of mechanical engineering, the target is to assign
creases to generate a kirigami pattern. To facilitate the fold-
ing, these equivalent linkages are expected to be of 1 degree
of freedom (DOF), and the distribution of creases is preferred
to be symmetric to simplify the folding process. According
to the classical G–K (Grübler–Kutzbach) criterion (Huang,
2004), single-loop spatial linkages must be with multi-DOFs
when the number of links is larger than seven. On the other
hand, the least number of movable spatial linkages is four.
Therefore, the number of creases of possible kirigami pat-
terns must belong to {4,5,6,7}. To make the obtained pat-
tern easy to fold, the creases are hoped to be symmetrically
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Figure 2. (a) The origami with four creases. (b) The local coordinate systems on the equivalent 4R linkage. (c) The movable five-crease
pattern becomes a 2-DOF spherical 5R linkage. (d) Two possible seven-crease patterns are not flat-foldable.

distributed. For five-bar spatial linkages, only the Myard 5R
linkage (Liu and Chen, 2009) is plane-symmetric, which will
become a 2-DOF spherical 5R linkage when all link lengths
are taken zero in zero-thickness origami (see Fig. 2c). Fig-
ure 2d shows the two possible situations for the seven-crease
pattern with plane symmetry, where planes 3 and 4 are the
symmetric planes, and all panels are expected to be folded
to the corresponding planes with 1 DOF. However, the yel-
low panels can never be folded into these symmetric planes,
namely seven-crease patterns are not flat-foldable. There-
fore, there are two possible assignments, four-crease and six-
crease patterns, to be studied. Meanwhile, in order to allow
the disc to pass through the smaller square hole, one of the

distances between a pair of alternating vertices of the square
hole should be as large as possible and not smaller than the
diameter of the disc. Therefore, the following section will
evaluate the distances of the two possibilities during the fold-
ing.

3 Construction of the pattern

For convenience, the side length of the square hole is denoted
as l, the size length of the paper is la by lb, and the diameter
of the disc is d , which is larger than

√
2l and smaller than

2l. The two possible situations, four-crease and six-crease
patterns, are studied as follows.
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3.1 Four-crease pattern

Figure 3 shows the situation of setting four creases on the pa-
per, where the angles between each pair of adjacent creases,
namely the twist angles, are α and β. Due to the symmet-
ric property, β = π −α. Crease AA′ is chosen as a valley
one for convenience. According to Hull (1994), creases BB′,
CC′, and DD′ are valley, mountain, and valley creases, re-
spectively, and the pattern is flat-foldable; then ϕ1, ϕ2, ϕ4 ∈

[0,π ], and ϕ3 ∈ [π,2π ].
It is easy to find that the distance between B and D rapidly

becomes smaller during the folding; the disc thus could not
pass the hole along this gap. For the gap along AC, some aux-
iliary lines are added to evaluate the distance. For example,
perpendicular lines of BB′ crossing A and C, respectively,
AM and CN, are drawn, where M and N are vertical feet (see
Fig. 3a and b). Line segment MQ is determined to be parallel
to and equal to NC. Then, CQ, AQ, and AC are connected in-
dependently (see Fig. 3b). According to the geometric prop-
erties of the pattern, the following conditions are satisfied
(see Fig. 3a):

BO=

√
2

2
l, (4a)

PO=
BO

tanα
=

√
2

2
l cotα, (4b)

PA= PO−AO=

√
2

2
l (cotα− 1) , (4c)

PM= PAcosα =

√
2

2
l cosα (cotα− 1) , (4d)

AM= PAsinα =

√
2

2
l (cosα− sinα) , (4e)

PC= PO+OC=

√
2

2
l (cotα+ 1) , (4f)

PN= PCcosα =

√
2

2
l cosα (cotα+ 1) , (4g)

CN= QM= PCsinα =

√
2

2
l (cosα+ sinα) , (4h)

MN= QC= PN−PM=
√

2l cosα. (4i)

In 1AQM, 6 AMQ= ϕ2 (see Fig. 3b); then

AQ2
= AM2

+QM2
− 2AM ·QMcos(π −ϕ2). (4j)

Due to AQ⊥ CQ,

lAC =

√
AQ2
+QC2

=

√
2cos2α+

(
2cos2α− 1

)
cosϕ2+ 1 · l. (5)

Since ϕ2 varies from π to 0 when the pattern is folded
from the deployed configuration to the folded one, lAC is
monotonically increasing and will become the largest value,
lAC,max = 2l cosα, at the fully folded configuration. There-
fore, if d ≤ 2l cosα, the disc can pass through this hole by
folding the four-crease pattern; otherwise, the disc could not.

3.2 Six-crease pattern

Based on the four-crease pattern, two additional creases, BB′′

and DD′′, are introduced (see Fig. 4). Similarly, AA′ is also
chosen as a valley crease for reference. The corresponding
mechanism is a plane-symmetric Bricard linkage with the
following parameters:

a12 = a23 = a34 = a45 = a56 = a61 = 0; (6)

α12 = 2π −α61 = γ, α23 = 2π −α56 = β,

α34 = 2π −α45 = α; (7)
R1 = R4 = 0, R6 =−R2, R5 =−R3; (8)

where 0< α, β, γ < π , α = π−γ−β,R2 =
√

2l
2sinγ , andR3 =

−

√
2l

2sinα . The relationship among kinematic variables (Feng,
2015) is

tan
θ3

2
=

I

2A
; (9)

tan
θ1

2
=
HI + J

KI +L
; (10)

tan
θ4

2
=
MI +N

OI +P
; (11)

θ5 = θ3, θ6 = θ2; (12)

where

A=−
√

2l tan
θ2

2

[
sinγ − sin(γ + 2β)

]
, (13a)

H =−2
√

2l tan
θ2

2

[
sin(γ +β) sinγ

− sin(γ +β) sin(γ + 2β)

− tan2 θ2

2
sin(γ +β) sinα

+ tan2 θ2

2
sin(γ −β) sin(γ + 2β)

]
, (13b)

I =−2
√

2ltan2 θ2

2
sinβ

(
cosγ ±

√
cos2γ

)
, (13c)

J = 8l2tan3 θ2

2
sinγ

[
sinγ − sin(γ + 2β)

]2
, (13d)

K =

[
2sin2βtan4 θ2

2
sin(γ +β)

− 2tan2 θ2

2
sin(2γ + 2β) sin(γ +β)

]
·

[√
2

2
l−

√
2l sin(γ −β)

2sin(γ +β)

]

− 8tan2 θ2

2
sin(γ +β)cosγ sinγ

·

[√
2

2
l−

√
2l sin(γ + 2β)

2sinγ

]
, (13e)

L= 4l2 sin2γ tan4 θ2

2

[
sinγ − sin(γ + 2β)

]2
, (13f)
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Figure 3. The four-crease pattern (a) at the deployed configuration, and (b) at the folding configuration.

M =−2
√

2l tan
θ2

2

[
sin(γ +β) sinγ

− sin(γ +β) sin(γ + 2β)

− tan2 θ2

2
sin(γ +β) sinγ

+ tan2 θ2

2
sin(γ −β) sin(γ + 2β)

]
, (13g)

N = 8l2tan3 θ2

2
sinγ

[
sinγ − sin(γ + 2β)

]2
, (13h)

O =

[
2sin2βtan4 θ2

2
sin(γ +β)

+ 2tan2 θ2

2
sin(2γ + 2β) sin(γ +β)

]
·

[√
2

2
l−

√
2l sin(γ −β)

2sin(γ +β)

]

+ 8tan2 θ2

2
sin(γ +β) sin2γ

·

[√
2

2
l−

√
2l sin(γ + 2β)

2sinγ

]
, (13i)

P =−4l2 sin2γ tan4 θ2

2

[
sinγ − sin(γ + 2β)

]2
. (13j)

Here, variable I has two solutions, which represent two mov-
ing paths. I remains zero in one of the solutions, which
means there is no folding along creases BB′ and DD′, and
it degenerates to a spherical 4R mode. The situation, I = 0,
is thus not considered in the following analysis, then

I =−4
√

2ltan2 θ2

2
cosγ sinβ. (14)

Because γ will determine the positions of the added creases
(i.e. BB′′ and DD′′) and the range of γ (i.e. γ ∈ (0,π/2),
γ = π/2, γ ∈ (π/2,π )) will also influence the distribution of
mountain or valley creases, we will study the three ranges as
three schemes I, II, and III, respectively. It should be noticed
that when γ 6= π/2, Eqs. (9)–(11) become, by considering

Eq. (14),

θ3 = 2arctan

[
2tan θ2

2 cosγ sinβ
sinγ − sin(γ + 2β)

]
; (15)

θ1 = 2arctan

(
1

tan θ2
2 cosγ

)
; (16)

θ4 = θ1, θ5 = θ3, θ6 = θ2. (17)

3.2.1 Scheme I for γ ∈
(
0,π/2

)
When γ ∈ (0,π/2) (see Fig. 4), the relationship between
upper-dihedral angles and revolute variables is

ϕ2 = π + θ2; (18)

ϕ1 =


θ1 = 2arctan

(
1

tan θ2
2 cosγ

)
θ2 ∈ [−π,0) ,

2π + θ1 = 2π + 2arctan
(

1
tan θ2

2 cosγ

)
θ2 ∈ [0,π ] ;

(19)

ϕ3 = π + θ3 = π + 2arctan

[
2tan θ2

2 cosγ sinβ
sinγ − sin(γ + 2β)

]
; (20)

ϕ4 = ϕ1, ϕ5 = ϕ3, ϕ6 = ϕ2. (21)

Substituting Eqs. (18)–(20) into Eqs. (15) and (16),

ϕ1 =


−2arctan

(
tan ϕ2

2
cosγ

)
ϕ2 ∈ [0,π ] ,

2π−2arctan
(

tan ϕ2
2

cosγ

)
ϕ2 ∈ (π,2π ] ;

(22)

ϕ3=π−2arctan
[

2cot ϕ2
2 cosγ sinβ

sinγ − sin(γ + 2β)

]
. (23)

According to Eqs. (21)–(23), when ϕ2 = π and ϕ1 = ϕ4 =

ϕ3 = ϕ5 ≡ π , the pattern locates at the fully deployable con-
figuration. While ϕ2 = 0, ϕ1 = ϕ4 ≡ 0, and ϕ3 = ϕ5 ≡ 2π ,
the pattern is always flat-foldable. To show the folding per-
formance in detail, Fig. 5 shows the curves among upper-
dihedral angles for γ = 3π/4, 2π/3, 5π/12 when α = π/6.

https://doi.org/10.5194/ms-12-933-2021 Mech. Sci., 12, 933–943, 2021
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Figure 4. The six-crease pattern for scheme I with parameters α = 5π/36, β = π/4, γ = 11π/18 (a) at the deployed configuration, (b) at
the folding configuration, and (c) at the fully folded configuration, demonstrated with (d) the folding sequence of a physical model.

All curves pass through the point (π , π ), which represents
the deployed configuration in a plane, and pass the point (0,
0), which represents the fully folded configuration in a plane.
The types of creases 1, 2, 4, and 6 are the same and are dif-
ferent from those of creases 3 and 5 according to the range of
upper-dihedral angles, and the pattern could be folded along
two sides due to ϕ2 = ϕ6 ∈ (0,2π ). The distance between A
and C can be obtained by the transformation of coordinate
systems. In system 1,

1A=
[

0 0
√

2
2 l (cotγ + 1) 1

]T
, (24)

and in system 4,

4C =
[

0 0
√

2
2 l (cotα+ 1) 1

]T
. (25)

It can be transformed into system 1,
1C = T21T32T43

4C, (26)

in which Tij represents the transformation matrix from sys-
tem i to system j (Dai, 2014):

T43 =


cosθ3 −cosα sinθ3 sinα sinθ3 0
sinθ3 cosα sinθ3 −sinα cosθ3 0
0 sinα cosα −

√
2l

2sinα
0 0 0 1

 , (27)

T32 =


cosθ2 −cosβ sinθ2 sinβ sinθ2 0
sinθ2 cosβ sinθ2 −sinβ cosθ2 0
0 sinβ cosβ

√
2l

2sinγ
0 0 0 1

 , (28)

T21 =


cosθ1 −cosγ sinθ1 sinγ sinθ1 0
sinθ1 cosγ sinθ1 −sinγ cosθ1 0
0 sinγ cosγ 0
0 0 0 1

 , (29)

Then, the distance between A and C is

lAC =

∣∣∣1A−1C

∣∣∣ . (30)

To make the disc through the hole, the largest value of lAC
should be larger than d, lAC,max > d . According to the above-
mentioned analysis, the pattern is flat-foldable. Figure 4c
shows the fully folded configuration, in which lAC, f is related
to η,

η = η1+ η2−β =
(
γ +

π

4

)
+

(
α+

π

4

)
−β =

3π
2
− 2β, (31)

Then,

lAC,f = 2l sin
(

2π −
η

2

)
= 2l sin

(π
4
+β

)
. (32)
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Figure 5. The kinematic curves for scheme I among upper-dihedral
angles ϕ1, ϕ3, ϕ4, ϕ5 vs. ϕ2(ϕ6).

Therefore, when β = π/4, lAC, f will reach the largest value,
lAC, f,max = 2l, and the disc can definitely pass through the
hole. Figure 4d shows the folding sequence with three states
of a model, α = 5π/36, β = π/4, γ = 11π/18, the fully de-
ployed configuration, a middle state, and the fully folded
configuration, where dashed lines represent valley creases
and solid lines show the mountain creases.

3.2.2 Scheme II for γ = π/2

When γ = π/2 (see Fig. 6), the degenerated condition is
from a plane-symmetric Bricard linkage to a movable 4R
linkage, Eq. (20) in Feng (2015) is satisfied. The plane-
symmetric Bricard linkage works as a spherical 4R mode
along creases AA′, BB′, CC′, and DD′ after panels BB′B′′

and DD′D′′ overlap panels AA′B′′B and AA′D′′D, respec-
tively, and ϕ2 = ϕ6 = 0 (see Fig. 6b). Obviously, the twist
angles of the 4R linkage are

αS12 = αS23 = αS34 = αS41 = α. (33)

Then, the kinematic relationship, expressed with upper-
dihedral angles, can be obtained from Eq. (3),

ϕ3 = π + 2arctan
(

1
cosα tan ϕ1

2

)
; (34)

ϕ4 = ϕ1, ϕ5 = ϕ3. (35)

The curves among upper-dihedral angles for β = π/10, π/5,
3π/10, 2π/5, are given in Fig. 7, which show that all of
them can be fully folded too. It shows that creases 1 and 4
move as valleys while creases 3 and 5 move synchronously
as mountains due to physical interference. Similarly, by ob-
serving Eqs. (34) and (35), the pattern could also be flat-
foldable. Figure 6c shows the pattern at the fully folded con-
figuration, in which lAC, f can be calculated with Eq. (31) too.

Therefore, when β = π/4, lAC, f will reach the largest value,
lAC, f,max = 2l, and the pattern can also realize the desired
function, which is demonstrated with a model, α = π/4,
β = π/4, γ = π/2 (see Fig. 6d). It should be noticed that the
solution of Tadashi Tokieda is just one particular situation of
this scheme.

3.2.3 Scheme III for γ ∈
(
π/2,π

)
When γ ∈ (π/2,π ), the relationship between upper-dihedral
angle, ϕ1, and revolute variable, θ1, is changed because the
distribution of creases is changed (see Fig. 8):

ϕ1 =


2π + θ1 = 2π + 2arctan

(
1

tan θ2
2 cosγ

)
θ2 ∈ [−π,0) ,

θ1 = 2arctan
(

1
tan θ2

2 cosγ

)
θ2 ∈ [0,π ] .

(36)

Then, the relationship between ϕ1 and ϕ2 becomes

ϕ1 =


2π − 2arctan

(
tan ϕ2

2
cosγ

)
ϕ2 ∈ [0,π ] ,

−2arctan
(

tan ϕ2
2

cosγ

)
ϕ2 ∈ (π,2π ] .

(37)

Kinematic curves among upper-dihedral angles are given in
Fig. 9 for γ = π/3, π/4, π/6 when α = 5π/12, which show
that all of them can be fully folded theoretically. It shows that
creases 2, 3, 5, and 6 are the same type, while creases of 1
and 4 are the other type.

In this situation, panels BCC′B′ and BAA′B′′ are folded in
the same direction regarding panel BB′B′′ since creases BB′

and BB′′ are both mountain creases (see Fig. 8b). If β is not
large enough, panel BCC′B′ will intersect with BAA′B′′, a
physical model with parameters α = 5π/18, β = π/3, γ =
7π/18 was fabricated with card paper as shown in Fig. 8e.
The interference area gradually increases with the folding
process and becomes the largest value at the fully folded
configuration. To show the condition of avoiding the inter-
ference, Fig. 8c gives the fully folded configuration theoreti-
cally without considering interference. If

η1+ η2 = (γ +π/4)+ (α+π/4)= γ +α+
π

2
= π −β +π/2= 3π/2−β < β, (38)

then there is no common area between panels BCC′B′ and
BAA′B′′, and there will be no interference during the folding
(see Fig. 8d). Namely, the condition of avoiding interference
for this scheme is

β > 3π/4. (39)

The distance between A and C (see Fig. 8d) is

lAC,f = 2l sin
(
−
η

2

)
= 2l sin

(
β − η1− η2

2

)
= 2l sin

(
β −

3π
4

)
. (40)
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Figure 6. The six-crease pattern for scheme II with parameters α = π/4, β = π/4, γ = π/2, which is the solution from Tadashi Tokieda
(a) at the deployed configuration, (b) at the folding configuration, and (c) at the fully folded configuration, demonstrated with (d) the folding
sequence of a physical model.

Figure 7. The kinematic curves for scheme II among upper-
dihedral angles ϕ3(ϕ5) vs. ϕ1(ϕ4).

Due to β < π ,

lAC,f < 2l sin
(π

4

)
=
√

2l < d. (41)

Therefore, the scheme could not realize the desired function
even if the interference is avoided. The result is verified with
a physical model, α = π/18, β = 29π/36, γ = 5π/36, with
no interference, as shown in Fig. 8f, in which the top panel
was removed to show AC in sub-figure (iv).

4 Conclusions

The paper proposed symmetric kirigami patterns to real-
ize the function that allows a round disc to pass through a
smaller hole in a piece of paper by the systematic analy-
sis of kinematics and folding behaviours. The condition for
the four-crease pattern to enable the disc to pass through
the smaller hole was given. For six-crease patterns, situa-
tions for γ ≤ π/2 are possible to realize the desired func-
tion, while the pattern with γ > π/2 could not due to inter-
ference. By analysing the folded configuration, we found that
β = π/4 will always make the gap achieve the largest value,
and the solution from Tadashi Tokieda belongs to scheme II

Mech. Sci., 12, 933–943, 2021 https://doi.org/10.5194/ms-12-933-2021
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Figure 8. The six-crease pattern for scheme III (a) at the deployed configuration, (b) at the folding configuration, (c) at the fully folded
configuration with interference and (d) with no interference, demonstrated with physical models (e) with interference, α = 5π/18, β = π/3,
γ = 7π/18, and (f) with no interference, α = π /18, β = 29π/36, γ = 5π/36.
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Figure 9. The kinematic curves for scheme III among upper-
dihedral angles ϕ1, ϕ3, ϕ4, ϕ5 vs. ϕ2(ϕ6).

of the six-crease pattern, γ = π/2, and β = π/4. The pat-
terns provide an effective way to enable bigger objects to
pass through smaller holes. The process of finding the dis-
tribution of creases can be used as a reference for similar
inverse folding problems and helps deepen understanding of
the mechanisms and machine theory.
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