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Abstract. In high-speed and high-precision machinery, trajectories with high-frequency harmonic content are
one of the main sources of reduction of operational precision. Trajectories with high-frequency harmonic content
generally demand even higher-harmonic actuating forces/torques due to the nonlinear dynamics of such systems,
which may excite natural modes of vibration of the system and/or be beyond the dynamic response limitation of
the actuation devices. In this paper, a global interpolation algorithm that uses the trajectory pattern method (TPM)
for synthesizing low-harmonic trajectories is presented. The trajectory synthesis with the TPM is performed
with a prescribed fundamental frequency and continuous jounce boundary condition, which would minimize the
number of high-harmonic components in the required actuation forces/torques and avoid excitation of the system
modes of vibration. The minimal curvature variation energy method, Lagrange multiplier method, and contour
error control are used to obtain smooth kinematic profiles and satisfy the trajectory accuracy requirements. As
an example, trajectory patterns that consist of a fundamental frequency sinusoidal time function and its first
three harmonics are used to synthesize the desired trajectories for a selected dynamic system. The synthesized
trajectories are shown to cause minimal system vibration during its operation. A comparison with a commonly
used trajectory synthesis method clearly shows the superiority of the developed TPM-based approach in reducing
vibration and demand on the actuator dynamic response, thereby allowing the system to operate at higher speeds
and precision.

1 Introduction

For the trajectory synthesis (Chu et al., 2020; Dai et al.,
2020; Van Loock et al., 2015) of high-speed machinery,
such as CNC (computerized numerical control) machinery,
robot manipulators and other computer-controlled machines,
polynomial-based curves (Analooee et al., 2020; Liang and
Su, 2019; Shen et al., 2020) are still the most widely used
trajectories. It has the following advantages: (1) numerically
stable algorithms; (2) it is more natural for designing and rep-
resenting shape in a computer. The coefficients of functions
possess considerable geometric significance. This translates

into intuitive design methods. However, it is important to
note that when expressed in Fourier series, all synthesized
trajectories – such as those based on polynomial (Analooee et
al., 2020; Shen et al., 2020), Akima (Bica, 2014; Wang et al.,
2014), or B spline (Du et al., 2018; Simba et al., 2016) curves
– contain significant high-harmonic content. In addition, the
nonlinearity of the machine system dynamics would require
actuating forces/torques with even higher-harmonic content
to follow the prescribed trajectories. The lack of control over
the harmonic content of the required actuating forces/torques
and their frequencies in currently available and published
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methods for trajectory synthesis leads to excitation of natural
modes of vibration of high-speed machinery.

In order to avoid exciting the natural modes of the mechan-
ical structure or servo control system, many researchers have
focused on flexible feed-rate planning methods for high-
speed and high-precision machinery. Erkorkmaz and Altin-
tas (2001) provided a continuous feed motion by construct-
ing trapezoidal acceleration profiles along the quintic spline
trajectory. Lee and Choi (2015) obtained smoother kinematic
profiles with a discretized sinusoidal jerk function. To im-
prove the flexibility, Wang (2015) proposed a trigonometric
velocity scheduling algorithm, which could generate smooth
velocity, acceleration, and jerk curves of parametric interpo-
lation. Huang and Zhu (2016) represent jerk profiles by the
sine series for feed-rate planning of parametric interpolator.
The coefficients of the sine series are determined by select-
ing the geometric sequence. To reduce the time spent by the
smoothing and planning process, Li et al. (2019) developed
a real-time and look-ahead interpolation algorithm with ax-
ial jerk-smooth profiles. In one step, the algorithm finishes
the trajectory synthesis and velocity planning by using the
trigonometric velocity planning method. From these meth-
ods mentioned above, it can be seen that the vibration reduc-
tion effect is not obvious any more along with the increase
of flexibility further, since the frequency distribution of syn-
thesized kinematic profiles is not considered. The sine series
method constructed jerk profiles with sinusoidal functions
with an appropriate fundamental frequency and all harmon-
ics, which contained considerable high-harmonic content.
Although other methods did motion planning by using one
sinusoidal function with a specified fundamental frequency,
their velocity or/and displacement functions exist as polyno-
mial items, which also results in significant high-harmonic
components. Biagiotti and Melchiorri (2012) and Tajima et
al. (2018) utilized finite impulse response filters to remove
high-harmonic content of synthesized trajectories. However,
filtering introduces unavoidable delay and induces large con-
touring errors in multi-axis motion that must be compensated
since the filtered components are needed to achieve the pre-
scribed motion.

Rastegar and Fardanesh (1990) introduced the concept of
trajectory patterns that are constructed with sinusoidal func-
tions with an appropriate fundamental frequency. Rastegar
and Feng (2011) applied it to synthesis of trajectories with
low-harmonic content such that the harmonic content of the
required actuation forces/torques is controlled and does not
contain significant high-harmonic content. The synthesized
trajectory is a unique combination of a fundamental fre-
quency harmonic and its second harmonic, which results in
the minimum number of harmonics in the required actua-
tion forces/torques and minimizes excitation of the system
modes of vibrations. But this method is only used for point-
to-point motions with zero end point velocity, acceleration,
and jerk. To improve motion efficiency and precision, this pa-
per, therefore, extends the trajectory pattern method (TPM)

to construct trajectories with continuous velocity, accelera-
tion, jerk, and jounce at mid-points. The fundamental fre-
quency of the synthesized trajectories can be selected such
that together with all its harmonics that appear in the tra-
jectory and the required actuating forces/torques would not
excite the natural modes of vibration of the system. The ac-
tuating forces/torques can then be readily optimized and used
in a model-based control scheme to achieve high-speed and
high-precision operation of the system.

In this paper, a path planning algorithm is presented that
uses harmonic-based trajectory patterns for high-speed ma-
chinery. In Sect. 2, a global interpolation method using the
TPM with a specified fundamental frequency, motion peri-
ods, and chord error is introduced. Minimal curvature varia-
tion energy and Lagrange multiplier method are used to syn-
thesize the trajectories. The synthesized trajectories and axis
kinematic profiles are smooth and only contain the funda-
mental frequency and its first three harmonics, which are de-
signed to minimize vibration of the high-speed machinery. In
Sect. 3, the effectiveness of the proposed algorithm is illus-
trated through computer simulations studies. Conclusions of
the present study are presented in Sect. 4.

2 Low-harmonic trajectory patterns

In this section, a trajectory pattern method (TPM)-based
global interpolation algorithm, which achieves smooth axis
motion profiles with chord error constraint, is presented. In
these profiles, trajectory patterns that are synthesized with a
fundamental frequency and its first three harmonics are used
to achieve minimum trajectory harmonic content (Rastegar
and Feng, 2011).

2.1 Trajectory pattern

The class of trajectory patterns used in the present study is
harmonic based and is formed by a fundamental sinusoidal
function and (n− 1) number of its harmonics:

g(t)=
n∑
i=0

[
ai cos(2πif t)+ bi sin(2πif t)

]
, n ∈N, (1)

where ai and bi are trajectory parameters; t is the time,
t ∈ [0,T ], and T is the motion period; f is the selected fun-
damental frequency of the trajectory pattern.

In the present study, the selected trajectory pattern used for
trajectory synthesis consists of a fundamental frequency si-
nusoidal function and its first three harmonics. The displace-
ment function is then expressed as

s(t)= a0+ a1 cos(2πf t)+ a2 cos(4πf t)

+ a3 cos(6πf t)+ a4 cos(8πf t)+ b1 sin(2πf t)
+ b2 sin(4πf t)+ b3 sin(6πf t)+ b4 sin(8πf t). (2)
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From Eq. (2), the velocity, acceleration, jerk, and jounce
functions are then derived as

v(t)=−2πf a1 sin(2πf t)− 4πf a2 sin(4πf t)

− 6πf a3 sin(6πf t)− 8πf a4 sin(8πf t)
+ 2πf b1 cos(2πf t)+ 4πf b2 cos(4πf t)
+ 6πf b3 cos(6πf t)+ 8πf b4 cos(8πf t) (3)

a(t)=−(2πf )2a1 cos(2πf t)− (4πf )2a2 cos(4πf t)

− (6πf )2a3 cos(6πf t)− (8πf )2a4 cos(8πf t)

− (2πf )2b1 sin(2πf t)− (4πf )2b2 sin(4πf t)

− (6πf )2b3 sin(6πf t)− (8πf )2b4 sin(8πf t) (4)

j (t)= (2πf )3a1 sin(2πf t)+ (4πf )3a2 sin(4πf t)

+ (6πf )3a3 sin(6πf t)+ (8πf )3a4 sin(8πf t)

− (2πf )3b1 cos(2πf t)− (4πf )3b2 cos(4πf t)

− (6πf )3b3 cos(6πf t)− (8πf )3b4 cos(8πf t) (5)

jo(t)= (2πf )4a1 cos(2πf t)+ (4πf )4a2 cos(4πf t)

+ (6πf )4a3 cos(6πf t)+ (8πf )4a4 cos(8πf t)

+ (2πf )4b1 sin(2πf t)+ (4πf )4b2 sin(4πf t)

+ (6πf )4b3 sin(6πf t)+ (8πf )4b4 sin(8πf t). (6)

In the following sections, the present low-harmonic trajec-
tory synthesis is presented by its application to a point-to-
point trajectory synthesis. The method is however general
and may be applied to other motion scenarios, for example
for motions starting from rest and ending to start a constant
velocity motion or from a constant velocity motion to a stop,
a scenario that is very often encountered in high-speed and
high-precision machine operations.

2.2 Low-harmonic trajectory synthesis for point-to-point
motions

Figure 1 shows the flow diagram of the developed global in-
terpolation algorithm. The trajectory synthesis includes five
modules: an initialization module; a boundary conditions
definition module; a jerk energy function definition module;
a trajectory parameters calculation module; and a contour er-
ror control module. A Lagrange multiplier method is used to
calculate the trajectory parameters with the indicated objec-
tive function and equality constraints. The above modules are
described in more detail in the following sections.

2.2.1 Initialization module

Figure 2 presents point-to-point motion from the point P1 to
the point Pn, which is divided into n− 1 segments. In this
example, the path segments are considered to line segments.
The path of the point-to-point motion is therefore given by
n number of data points, P1, P2 . . .Pn−1, Pn, and (n− 1)
number of segment trajectories s1(t1), s2(t2) . . . sn−2(tn−2),

sn−1(tn−1) are to be synthesized. Here, n is a positive inte-
ger and n≥ 2, and t1, t2 . . . tn−2, tn−1 are trajectory segment
times.

The user is to provide the required contour error ε, the
motion period for each trajectory segment, T1, T2 . . .Tn−2,
Tn−1, with 0≤ ti ≤ Ti , i = 1, . . . , n−1, and the fundamental
frequency f of the trajectory pattern for motion from P1 to
Pn, which must be selected such that together with its first
three harmonics, the natural modes of vibration of the system
are not excited.

To simplify the construction process and obtain contin-
uous smooth axis motion profiles, the cycle time T is set
equal to a quarter of the fundamental frequency period, i.e.,
T = 1/(4f ).

For the trajectory segments, motion periods and corre-
sponding fundamental frequencies f1, f2 . . .fn−2, fn−1 are
adjusted to reduce the high-frequency harmonic content of
the trajectory. In addition, for each trajectory segment, such
as the segment PiPi+1, if Ti > T , we let fi = 1/(4Ti); other-
wise let Ti = T and fi = f .

In Fig. 2, the trajectory segment curves are drawn in red
and are shown to pass through the path segment ends P1, P2
. . .Pn−1, Pn with smooth kinematic profiles.

2.2.2 Boundary conditions

To achieve continuous smooth axis motion profiles, bound-
ary conditions are necessary. In addition, since the motion is
point to point, the velocities, accelerations, jerks, and jounces
at the start point P1 and end point Pn−1 are set to zero. Then
using Eqs. (2)–(6), the initial conditions of the first curve seg-
ment s1(t1) at t1 = 0 are obtained as

s1(0)= a1,0+ a1,1+ a1,2+ a1,3+ a1,4 = P1 (7)
v1(0)= b1,1+ 2b1,2+ 3b1,3+ 4b1,4 = 0 (8)
a1(0)= a1,1+ 4a1,2+ 9a1,3+ 16a1,4 = 0 (9)
j1(0)= b1,1+ 8b1,2+ 27b1,3+ 64b1,4 = 0 (10)
jo1(0)= a1,1+ 16a1,2+ 81a1,3+ 256a1,4 = 0. (11)

Similarly, the terminal conditions of the last curve segment
sn−1(tn−1) at tn−1 = Tn−1 are expressed as

sn−1(Tn−1)= an−1,0− an−1,2+ an−1,4

+ bn−1,1− bn−1,3 = Pn (12)

vn−1(Tn−1)=−an−1,1+ 3an−1,3

− 2bn−1,2+ 4bn−1,4 = 0 (13)

an−1(Tn−1)= 4an−1,2− 16an−1,4

− bn−1,1+ 9an−1,3 = 0 (14)

jn−1(Tn−1)= an−1,1− 27an−1,3

+ 8bn−1,2− 64bn−1,4 = 0 (15)

jon−1(Tn−1)=−16an−1,2+ 256an−1,4

+ bn−1,1− 81bn−1,3 = 0. (16)
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Figure 1. Flowchart of the low-harmonic trajectory synthesis.

Figure 2. Path and synthesized trajectories.

Mech. Sci., 12, 913–922, 2021 https://doi.org/10.5194/ms-12-913-2021



H. Li et al.: Low-harmonic trajectory synthesis using TPM for high-speed and high-precision machinery 917

In Fig. 2, for mid-points, P2 . . .Pn−1, adjacent curve seg-
ments must have the same velocity, acceleration, jerk, and
jounce at the nodes, that is

si(Ti)= Pi+1
vi(Ti)= vi+1(0)
ai(Ti)= ai+1(0)
ji(Ti)= ji+1(0)
joi(Ti)= joi+1(0)
si+1(0)= Pi+1
i = 1, . . .,n− 2

. (17)

Then substituting Eqs. (2)–(6) into Eq. (17), we can get

ai,0− ai,2+ ai,4+ bi,1− bi,3 = Pi+1 (18)

2πfi(ai,1− 3ai,3+ 2bi,2− 4bi,4)+ 2πfi+1(bi+1,1

+ 2bi+1,2+ 3bi+1,3+ 4bi+1,4)= 0 (19)

(2πfi)2(4ai,2− 16ai,4− bi,1+ 9bi,3)+ (2πfi)2

(ai+1,1+ 4ai+1,2+ 9ai+1,3+ 16ai+1,4)= 0 (20)

(2πfi)3(ai,1− 27ai,3+ 8bi,2− 64bi,4)+ (2πfi)3

(bi+1,1+ 8bi+1,2+ 27bi+1,3+ 64bi+1,4)= 0 (21)

(2πfi)4(16ai,2− 256ai,4− bi,1+ 81bi,3)

+ (2πfi)4(ai+1,1+ 16ai+1,2+ 81ai+1,3

+ 256ai+1,4)= 0 (22)
ai+1,0+ ai+1,1+ ai+1,2+ ai+1,3+ ai+1,4 = Pi+1, (23)

where i = 1, . . . , n− 2.

2.2.3 Jerk energy function

The internal energy of curve segments can affect its shape
and smoothness. The well-known examples of internal en-
ergy functions (Zhang et al., 2001) are the stretch energy,
strain energy, and jerk energy. The stretch energy measures
the length of a curve. The strain energy measures how much
a curve is bent. And the jerk energy (Meier and Nowacki,
1987) measures the curvature variation of a curve. In this pa-
per, we use the jerk energy to obtain continuous smooth axis
kinematic profiles with low-harmonic content. The jerk en-
ergy is defined as

Ej =

T∫
0

‖j (t)‖2dt. (24)

2.2.4 Trajectory parameter calculation

As can be seen in Fig. 2, we have the following (9n− 9)
number of trajectory parameters: a1,0, a1,1, a1,2, a1,3, a1,4,
b1,1, b1,2, b1,3, b1,4 . . .an−1,0, an−1,1, an−1,2, an−1,3, an−1,4,
bn−1,1, bn−1,2, bn−1,3, and bn−1,4. In addition, Eqs. (7)–(17)
define (6n− 2) number of boundary conditions. To calculate
the trajectory parameters, the Lagrange multiplier method is

used in the present study. In this formulation, the jerk energy
(Eq. 24) is used as the objective function to be minimized.
The optimization problem is thereby defined as

minG= Ej +
5∑
i=1

λi Eq. (6+ i)+
5∑
i=1

ξi Eq. (11+ i)

+

n−2∑
i=1

[
ϕ6(i−1)+1 Eq. (18) +ϕ6(i−1)+2 Eq. (19)

+ϕ6(i−1)+3 Eq. (20) +ϕ6(i−1)+4 Eq. (21)

+ϕ6(i−1)+5 Eq. (22) +ϕ6(i−1)+6 Eq. (23)
]
, (25)

where λi , ξi , ϕ6(i−1)+1, ϕ6(i−1)+2, ϕ6(i−1)+3, ϕ6(i−1)+4,
ϕ6(i−1)+5, and ϕ6(i−1)+6 are Lagrange multipliers. Now let

X = (a1,0,a1,1,a1,2,a1,3,a1,4,b1,1,b1,2,b1,3,b1,4. . .

an−1,0,an−1,1,an−1,2,an−1,3,an−1,4,bn−1,1,bn−1,2,

bn−1,3,bn−1,4,λ1,λ2,λ3,λ4,λ5,ξ1,ξ2,ξ3,ξ4,ξ5,

ϕ1. . .ϕ6(n−2)).

Then, the gradient as the first-order partial derivative of
Eq. (25) with respect to X is set to zero, i.e.,

∂G

∂X
= 0. (26)

The trajectory parameters, a1,0, a1,1, a1,2, a1,3, a1,4, b1,1,
b1,2, b1,3, b1,4 . . .an−1,0, an−1,1, an−1,2, an−1,3, an−1,4,
bn−1,1, bn−1,2, bn−1,3, bn−1,4, can then be obtained by solv-
ing Eq. (26). By substituting the calculated trajectory param-
eters into Eqs. (2)–(6), a continuous smooth trajectory with
low-harmonic content is then obtained.

2.2.5 Contour error control

After segment trajectories are synthesized using the above
steps, the following process is used in this study for bound-
ing the contour error. In the present example, the path seg-
ments are presented as lines as shown in Fig. 2, and since
the segment trajectories are synthesized with a fundamental
frequency time function and its three harmonics, by checking
contour error at a limited number of intervals in each segment
the maximum contour error is accurately estimated. In addi-
tion, since the harmonic structure of each segment trajectory
and the harmonic amplitudes and phases are known, a more
exact analytic formulation is possible and will be presented
in future publications.

In general, the path segments may not be lines and the
maximum contour error must then be determined, for exam-
ple, numerically by calculating the error at appropriate time
or distance intervals or by various search or approximation
methods. In the present example, the contour error is calcu-
lated at three equal intervals in each segment of the path and
used for maximum contour error determination. Then if the
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Figure 3. Contour error of the ith segment.

contour error is larger than the prescribed threshold ε, the
period of the fundamental frequency of the trajectory of that
segment is then reduced as described in the following steps.

– Step 1. For the ith trajectory segment PiPi+1, as shown
in Fig. 3, let ti,0 = 0, ti,4 = Ti and the maximum contour
error εi,m = 0.

– Step 2. Set the times ti,1 = (ti,4− ti,0)/4, ti,2 = 2(ti,4−
ti,0)/4, and ti,3 = 3(ti,4− ti,0)/4. Calculate the corre-
sponding position points si(ti,1), si(ti,2), and si(ti,3) for
each indicated time from Eq. (2) with the calculated tra-
jectory parameters. Then compute the distances d1, d2,
and d3 to the line segment PiPi+1 (Fig. 3).

– Step 3. Set εi,m =max(d1, d2, d3). If εi,m > ε, the max-
imum contour error of the ith segment curve si(ti) ex-
ceeds the prescribed threshold and the motion period Ti
is reduced in proportion to the amount that the contour
error threshold has been exceeded as

Ti = Ti −
|εm− ε|

εm

Ti

2
. (27)

And let fi = 1/(4Ti); otherwise, contour error threshold
has been met in the ith segment of the trajectory.

– Step 4. For all synthesized trajectory segments, go
through the above steps to control their contour errors.
If contour error threshold has been exceeded in any seg-
ment, go to the Sect. 2.2.4 and recalculate trajectory
parameters with the updated segment trajectory periods
and fundamental frequencies.

3 Simulation validations

In this section, simulations demonstrating the effectiveness
and performance of the proposed low-harmonic trajectory
synthesis algorithm are presented. The results are also com-
pared with those obtained with one of the commonly used
polynomial algorithms for synthesizing robot trajectories.
Visual Studio 2013 was used to implement both algorithms,
and results are plotted in MATLAB 2015.

To evaluate the proposed algorithm, a quintic polynomial
algorithm (Perumalsamy et al., 2019), which interpolates
data points using quintic polynomials with continuous dis-
placement, velocity, acceleration, and jerk values, is used as
the comparison algorithm.

Figure 4. Letter Z-shaped path and synthesized trajectories.

As shown in Fig. 4, a letter Z-shaped pattern is selected as
the path, which contains five data points, P1(0,3), P2(3,3),
P3(1.5,1.5), P4(0,0), P5(3,0), and consists of four seg-
ments, P1P2, P2P3, P3P4, P4P5. The following variables
were initialized: a fundamental frequency of f = 20 Hz, the
motion periods of segments, T1 = 0.68 s, T2 = 0.32 s, T3 =

0.32 s, T4 = 0.68 s, and a contour error limit of ε = 0.25 mm.
The synthesized trajectories synthesized by applying the two
algorithms are shown in Fig. 4, and we can see that they are
all smooth.

Figure 5 shows that both algorithms can obtain smooth
axis displacement, velocity, and acceleration profiles, and the
jerk of the proposed algorithm is also smooth because of sat-
isfying continuous jounce conditions, while that of the com-
parison algorithm is not smooth.

To evaluate the proposed algorithm further, frequency
spectrum distribution of the synthesized kinematic profiles
is studied using Fourier integration. In the plots of Fig. 6,
the axial displacements, velocities, accelerations, and jerks
of the trajectory synthesized using the quintic polynomial al-
gorithm are shown to contain a considerable number of high-
harmonic components. As a result, the related actuators are
required to produce high-frequency components, which for
high-speed motions would in general be beyond their dy-
namic response and could excite natural modes of vibration
of the system. As expected, the velocity, acceleration, and
jerk profiles of the synthesized trajectory with the proposed
algorithm are seen in Fig. 6 to only contain a finite number
of low-harmonic components.

To explain how trajectories with high-harmonic compo-
nents affect vibration of machinery, an undamped, 1-degree-
of-freedom linear spring–mass system of Fig. 7 is used to
model the vibration behavior of a machine. Let the spring
have a spring rate and free length of k and l, respectively, and
the mass of the system be m. The displacements of the mass

Mech. Sci., 12, 913–922, 2021 https://doi.org/10.5194/ms-12-913-2021



H. Li et al.: Low-harmonic trajectory synthesis using TPM for high-speed and high-precision machinery 919

Figure 5. Comparison of kinematic profiles: (a) x-axis displacement profiles, (b) y-axis displacement profiles, (c) x-axis velocity profiles,
(d) y-axis velocity profiles, (e) x-axis acceleration profiles, (f) y-axis acceleration profiles, (g) x-axis jerk profiles, and (h) y-axis jerk profiles.

and the system from their initial position are u and d , respec-
tively. From the Newton’s second law, the system equation
of motion is seen to be

mü=−k(u− d − l). (28)

Let z= u−d− l, z̈= ü− d̈ , and set the natural frequency of
the spring–mass system to be

fn =
1

2π

√
k

m
= 27 Hz. (29)

Then, Eq. (28) can be rewritten as

z̈=−(2πfn)2z− d̈. (30)

Now, take the x-axis motion profiles calculated using the
aforementioned two algorithms as input to the dynamic sys-
tem described by Eq. (30). The input motion d̈ is the x-axis

acceleration profile, i.e., d̈ = ax(t). Substituting d̈ = ax(t)
into Eq. (30) and solving the resulting second-order ordinary
differential equation, the vibrational motion of the massm of
the spring–mass system of Fig. 7 is determined.

As can be seen in Fig. 8, the displacement z of the pro-
posed algorithm is smoother than that of the quintic polyno-
mial algorithm. In addition, when the x-axis motion ends, the
mass m comes to a stop with the proposed algorithm, while
the mass of the quintic polynomial algorithm continues to
vibrate with its natural mode. It is noted that the trajectories
synthesized using the quintic polynomial algorithm contain
a significant number of high-harmonic content, which would
in general cause excitation of the system modes of vibration
irrespective of their frequencies. The synthesized trajecto-
ries of the proposed algorithm, however, only contain a finite
number of low-frequency harmonics in its velocity, accelera-
tion, and jerk terms and even in their higher-order derivatives,
which would minimize the number of high-harmonic com-
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Figure 6. Comparison of the Fourier analysis: (a) x-axis displacement profiles, (b) y-axis displacement profiles, (c) x-axis velocity profiles,
(d) y-axis velocity profiles, (e) x-axis acceleration profiles, (f) y-axis acceleration profiles, (g) x-axis jerk profiles, and (h) y-axis jerk profiles.

Figure 7. Spring–mass system.

ponents in the required actuation forces/torques. The fun-
damental frequency of the trajectory pattern can also be se-
lected to avoid natural modes of vibration of the system. As
a result, the system should be capable of operating with min-
imal vibration.

Table 1. Comparison of computing and motion times.

Algorithm Computing Motion
time (s) time (s)

Quintic polynomial method 0.7763 1.9954
Proposed method 0.5051 1.9923

Table 1 shows that the motion times of both algorithms
are almost same and that the computing time cost by the pro-
posed algorithm (0.5051 s) is shorter than the quintic poly-
nomial algorithm (0.7763 s). The contour errors with both
algorithms are presented in Fig. 9. As can be seen, the max-
imum contour error of the quintic polynomial algorithm is
also significantly larger than that of the proposed algorithm.
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Figure 8. Vibrations of the mass–spring system of Fig. 6: (a) quin-
tic polynomial algorithm, (b) proposed algorithm.

Figure 9. Contour errors.

4 Conclusions

A trajectory pattern method (TPM)-based method and re-
lated algorithm has been developed for synthesis of low-
harmonic trajectories for high-speed and high-precision ma-
chinery. The trajectory synthesis with the TPM is performed
with a prescribed fundamental frequency and continuous
jounce boundary condition, which would minimize the num-
ber of high-harmonic components in the required actuation
forces/torques and avoid excitation of the system modes of
vibration.

The developed TPM-based algorithm is shown to yield
smooth axial kinematic profiles with low-harmonic content
and thereby reduces demand on the dynamic response of the
drive actuators. As a result, and with the capability of select-
ing the frequency of the fundamental harmonic of the syn-
thesized trajectory and its harmonics present in the actuating

forces/torques, a machine can operate at high speed and high
precision.

In comparison with the previously published algorithms,
the developed algorithm has the following advantages:

i. The trajectories are constructed with a sinusoidal func-
tion with a selected fundamental frequency, which can
avoid excitation of the natural modes of vibration of the
machinery system.

ii. All segment displacement, velocity, acceleration, and
jerk profiles are expressed by a sinusoidal time func-
tion consisting of a selected frequency fundamental har-
monic and at least its first three harmonics, and the over-
all synthesized trajectories only contain a finite num-
ber of low harmonics, which minimizes the number
of high-frequency harmonics of the required actuation
forces/torques with the aforementioned operational ad-
vantages.

iii. The developed algorithm can realize smooth axial kine-
matic control action with specified contour error limita-
tion.

In the provided example, since the trajectory synthesis
with the TPM is performed with a prescribed fundamental
frequency and continuous jounce boundary condition, the
trajectory pattern must include at least three harmonics of
the fundamental frequency. More harmonics may, however,
be used to provide more trajectory parameters to achieve, for
example, higher precision, usually at the expense of operat-
ing speed.

In the provided example, a point-to-point trajectory was
shown to be synthesized. The method and algorithm may
readily be used to synthesize general trajectories with or
without defined intermediate precision points or with more
loosely defined precision points to, for example, minimize
contour errors.
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