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The unbalance-induced vibration of a high-speed rotor directly affects the manufacturing accuracy.
To effectively suppress this undesired vibration and avoid the complicated process of using trial weights dur-
ing the balancing adjustment, a modal-based balancing method for a high-speed rotor without trial weights is
proposed. First, the matrix sweep operation is employed to acquire the unbalance equivalent plane (EP). Next,
the equivalent concentration methods, using the vector feedback principle (VFP) and modal equivalent principle
(MEP), respectively, are studied and compared, while the equivalent transfer of the continuous unbalance vector
to the EP is realized. Then, through modal analysis and the MEP, a balancing method, without trial weights
required, is proposed for the high-speed rotor, which only needs to collect vibration data below critical speed.
Finally, the rotor model and the presented method are validated on a rotor test platform, where the simulation and
experiment results show that the unbalance-induced vibration has been effectively suppressed, ensuring smooth

and safe operation of the rotor at high speed.

High-speed rotating systems, as the driving source of cutting
tools or actuators, are widely used in manufacturing equip-
ment such as CNC machine tools (Brecher et al., 2007), and
their dynamic performance directly affects the manufactur-
ing accuracy. A high-speed rotor is the core component of a
typical rotating system. Due to material anisotropy, installa-
tion eccentricity and other factors, the actual rotation axis of
a rotor is usually not aligned with its geometric axis, which
induces unbalance and vibration when working at high speed
(Knowles et al., 2017). If the vibration exceeds a certain
limit, the quality and efficiency of the rotation system will
decrease, resulting in the failure of the manufactured parts.
Therefore, how to suppress the unbalance-induced vibration
becomes a key problem of the high-speed rotor system’s ap-
plication.

There are two classic methods for balancing flexible rotors
(Kellenberger, 1972; Kang et al., 1996; Foiles et al., 1998;
Xu et al., 2001): the influence coefficient (IC) method and
the modal balancing (MB) method. Regarding the former,

Zhou et al. (2004) presented an active balancing method of
the rotor system during acceleration, which relies on the ICs
at different speeds. Xu and Fan (2013) analysed the vibration
form of a rigid rotor under unbalance inertia force: the am-
plitude and phase of the unbalance-induced vibration signal
are obtained based on the principle of the cross-correlation
method. Chu et al. (2018) introduced the system-level bal-
ancing method, where the IC approach is applied to solve
the problem of excessive floor panel vibration. In the case
of the MB method, Han (2007) aimed at the new general-
ized modal balancing for non-isotropic rotor systems, which
uses the derived unbalance modal responses from the com-
plete modal analysis. Deepthikumar et al. (2013) described
the eccentricity distribution of the finite-element model by a
polynomial curve and estimated the unbalance distributions
based on the MB principle and the measured vibration re-
sponses; then, the rotor is balanced at its first bending critical
speed. Since the above two methods have their own advan-
tages and disadvantages, scholars try to integrate the advan-
tages of the two methods and put forward a unified balancing
method (Darlow et al., 1981; Kang et al., 1997). Khulief et



al. (2014a) developed a low-speed unbalance identification
method for high-speed rotors, which relies on the knowledge
of the ICs and the modal characteristics of the rotor. How-
ever, these methods still need to use trial weights during the
balancing process, which complicates the operation of bal-
ancing and increases the cost.

If the unbalance distribution of the rotor can be accurately
identified, without the need for trial weights, the balancing
process will become simple and safe. Thus, the balancing
method without trial weights attracted research focus. Schol-
ars have done a lot of work on such methods (Moton, 1985;
Zhu and Wang, 1995; Xu et al., 2000; Delgado, 2002; El-
Shafei et al., 2004). Ramlau and Niebsch (2009) described a
new method for the detection and reconstruction of imbal-
ances in the rotor of a wind turbine, avoiding test-weight
measurements, while the wind turbine model can be used
to predict the vibrations, given a specific imbalance distri-
bution. Li et al. (2013) provided a new balancing method
without trial weights for flexible rotors, which is based on
the traditional MB method and combines the dynamic char-
acteristics of the rotor. Khulief et al. (2014b) developed a
hybrid experimental and analytical technique for balancing
high-speed flexible rotors: this approach does not rely on trial
runs and does not require one to operate the supercritical ro-
tor in a high-speed balancing facility. Bin et al. (2014) devel-
oped a virtual dynamic balancing methodology without trial
weights and have validated it by solving a shafting dynamic
balancing example with no trial-weight requirements. Zhang
et al. (2016) proposed a balancing method based on a virtual
IC matrix for flexible rotors without trial weights, and the va-
lidity of the ICs is verified by an experiment on a rotor test
rig. Wang et al. (2017) provided an efficient way, which is
based on a novel measurement point vector method, for rotor
balancing without test runs and external excitations, and only
the measured unbalance response of the rotor shaft under
steady-state operating conditions is needed. Ye et al. (2018)
proposed a balancing method without trial weights by using
the dynamic similitude scale model; this method could be
used to directly obtain the required coefficients for the bal-
ancing problem of the prototype system through a similarity
model test.

Although remarkable balancing effects are obtained by the
aforementioned approaches, there are still some issues worth
further study, for example the optimization of unbalance cor-
recting planes, the balancing realization based on the low-
speed data collection, and efficiency improvement of the bal-
ancing process. Moreover, in some methods, the constructed
model is only used to obtain the virtual vibration IC, while
the characteristics of rotor dynamics are not taken into ac-
count. Aiming to solve the problem at hand, the authors have
devised a modal-based balancing method for a high-speed
rotor, which makes full use of modal information of the ro-
tor to solve and correct the continuous unbalance vector. The
scientific contribution of this paper is the proposal of a non-
trial-weight balancing method, which adapts to optimal se-

lection of the equivalent correcting plane and requires one
only to collect vibration data below critical speed. The paper
is structured into five sections. Following the introduction,
Sect. 2 includes the selection of the equivalent plane for cor-
recting unbalance, and the equivalent transfer principle of the
continuous unbalance vector to the equivalent plane is pre-
sented. Based on this, a modal-based unbalance identifica-
tion method is proposed. Section 3 analyses the effectiveness
of the modal equivalent principle and the proposed balancing
method by numerical simulation. The experimental platform
is presented in Sect. 4 along with the experimental results
and discussion. Lastly, the conclusions are given in Sect. 5.

In theory, the higher the number of unbalance correcting
planes, the better the desired effect will be. However, when
there are too many correcting planes, the condition number
of the corresponding IC matrix will get higher, which eventu-
ally leads to unreasonable counterweight results. Therefore,
there is always at least one group of planes, called equivalent
planes (EPs), which are able to produce an equivalent exci-
tation effect to the one derived by all the correcting planes.
The matrix sweep operation (MSO) can be used to obtain
EPs in the unbalance problem. Suppose a;;(i =1,2,...,N)
is a diagonal element in A € CNxN| a;; # 0, the MSO pro-
cess from matrix A to B with a;; as the pivot element can be
expressed as B =MSO(A, i), and each element in matrix B
can be expressed as

bii = 1/a;i, bij = ajj/aii, bji = aji/aii,
J#EIL A, j=1,2,...,N),

by = ay — agiaii/a;;,

k#£il#i G,j=1,2,....,N).

6]

If the maximum value of a;; is not less than the preset thresh-
old value u, the correcting planes described in matrix A can
be analysed successively through the MSO with the maxi-
mum value as the pivot element. In this process, the correct-
ing plane with the smallest multicollinearity corresponding
to the maximum value will always be selected first, while
the plane with strong multicollinearity will be excluded so
as to achieve obtaining of the EPs. Based on this principle,
suppose H is the subscript set of diagonal elements after the
MSO, while P is the set of other subscript elements. A rep-
resents the matrix of ICs between different correcting planes
and unbalance vectors. The threshold value is considered to
be 1 = v/No/ W, where o is the standard deviation and W is
the maximum correction mass that can be applied. The basic
steps to derive the EPs of unbalance-correcting planes based
on the MSO are as follows.

1. The values are initiated: H® = &, P© — {1,2,...,N},
A© =ATA; find i e PO sothatal) =al);ifa ) >

- Yii > i —



W, continue to step 1; otherwise, the algorithm ends,
while the EP does not exist.

2. In step k, A® =MSOA*D k), (i e P41, the
subscript set is updated: H® = H*~Du (i}, P® =

k—1 ‘. . k (k) _ (), .
PED —{iy); find igqr € PO so thata ), =a;;s if
a(k) > and k < N — 1, continue to the step k + 1

lk1lk41 — K .
until k = N — 1; then, the algorithm ends, while the

planes corresponding to the elements in set H are EPs.

Based on the obtained EPs, the continuous unbalance
vector can be corrected using the traditional IC balancing
method, which can be expressed as

W=—-A"ls, )

where W € CX*! is the counterweight vector on K correct-
ing planes, § € C’*! is the vibration response on J measur-
ing planes, and A is the IC matrix between the vibration re-
sponse and the unbalance vector.

If K < J, Eq. (2) has a unique solution or an optimized
solution, and the continuous unbalance vector is directly cor-
rected with a finite number of correcting planes, which can
be called the vector feedback principle (VFP). Based on this,
the continuous unbalance vector is equivalently transferred to
the EP, producing the continuous unbalance correction with-
out solving the unbalance forces on all nodes. However, the
VFP does not consider the modal characteristics of the rotor,
while its dynamic balance effect will be difficult to maintain
near the critical speed. Therefore, it is necessary to analyse
the equivalent principle of the unbalance vector from the per-
spective of the modal shape.

As shown in Fig. 1, the dynamics model of the rotor-bearing
system can be divided into two parts, the finite-element
model of the rotor and the one of the journal-bearing re-
straint. It is assumed that the FE model has N nodes, while
the N — 1 shaft segments can be assembled by using the
common finite-element procedure (Cao and Altintas, 2005;
Zou et al., 2019). The radial displacement and rotation of
a single element, in the generalized coordinate system, can
be expressed as 8, = {yn,0:,, 20, =0y, }T, n=1,2,....,N),
where y, and z, are the displacements of the y and z axes,
respectively, while 6y, and 6, are the rotation angles of the
y and z axes, respectively.

The dynamic differential equation of the rotor is described
as

M+ CS + K8 = F" +F°, 3)

where M is the system mass matrix, M € R*¥*4N K is the
system stiffness matrix, K € RAN>AN and C is the system
damping and gyroscopic matrix, C € R*V*4N FU represents

T
the unbalance force and is defined as F}, = [F ;n, 0,F" O} ,
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Structural diagram of the rotor system.

F" € R*N*1_FP represents the oil film force and is defined
as FO = {F&,O, F;’,O}T, F° € R*V>1 where F}l? and F are
the components of the oil film force (Capone, 1991; Xie et
al., 2021) in the y and z directions, respectively.

The main vibration modal shape of the ith or-
der is expressed as ®; = {@,; (x1), 9, (x2),....9; (xN)}T €
R i=1,2,....n, where ¢; (x;) =g (xj),O,O,O}T,
i=1,2,...,n, while the vibration modal shape of the rotor
can be expressed as ® =[P, Dy,...,D,] € RN X1 the un-
balance response § on the measuring planes can be converted
to & in modal coordinates:

§ = PE, “)

where § € C*N*1 & = ¢ +in, & and 1 are the components of
the deflection on the ¢ — x and n — x planes, respectively.

By substituting Eq. (4) into Eq. (3) and multiplying both
sides of the equation by ®T, the dynamic differential equa-
tion of the rotor becomes

o"MoE + 0TCoE + 0TKDE — &7 (F“ + Fb) . (5)

Due to the orthogonality of each vibration modal shape,
®™® =M*, ®TCP =C* and ®TKP = K* are diago-
nal matrices, while the elements on the diagonal are m} =
®'M®;, ¢ = ®C®; and k} = ®]K®,. Similarly, the N
order modal unbalance force can be expressed as F* = ®TF,
where F = FU + FP. Therefore, Eq. (5) can be written as

M*€ + C*¢é + K*¢ = F*, (6)

where M* € R"*" C* ¢ R"*" K* € R"*" and F* € R"*!,

Assuming that the particular solution of the vibration re-
sponse is & = &’/ and that F* = Fje/*¥ is the simple har-
monic excitation, then Eq. (6) can be written as

(K" —M*Q? 4 jQC*& =F}. (7
The deflection of the unbalanced rotor can be expressed as

o0 ijr l r dx r
pol=oe=3 " fof(x></; ()dvy ()
J=m) +ac2

®)




where ¢, represents the component of the rth modal shape
in e"(x), a, represents the phase of this component, ¢, (x) is
the modal shape, while the subscript r represents the order;
v, = fém (x)qbr2 (x)dx is the correcting coefficient.

To make the concentrated force loaded on the EP equiv-
alent to the distributed unbalanced force on the rotor, the
vibrations generated by the two should be equal. Assum-
ing that the equivalent concentrated force on EP is p(xx)
(k=1,2,...,K), the following equation needs to be estab-
lished:

|6 (x)| = @&

2| WSy fEg (o
X
r [—w,zflpumr(m o )—0 ©

J—n2)? +4c2p

where 1, = Q/w,, k = arctan[2¢n, /(1 — nf)] represents the
mechanical lag angle and ¢ represents the modal damping
coefficient, which is derived by experiment or obtained by a
proportional relation to stiffness and mass.

Then, the equivalent balancing equation can be derived
from Eq. (9):

o
- Zr:l

I
WrZZ(:lp(xk)(pr (xx) =, / f(x)¢r (x)dx. (10)
0

According to Eq. (10), the continuous unbalance vector dis-
tribution on the rotor can be equivalently concentrated, with-
out changing the vibration characteristics of the rotor, as long
as the modal unbalance force on the rotor remains constant,
which can be called the modal equivalent principle (MEP).
Since a small unbalance force at low speed cannot excite the
vibration modal shape of the rotor, the MEP is more applica-
ble to high-speed rotor operation.

In the above analysis, the continuous distributed unbalance
vector can be equivalently concentrated to EP, according to
the MEP. Based on this fact, the modal-based unbalance
identification method is presented in this section. Given the
unbalance response analysis in Eq. (3), it can be concluded
that the maximum relativity between the vibration response
and unbalance vector takes place along the radial direction.
Hence, the radial motion alone is used as the balancing tar-
get in the following approach. Assuming that the unbalance
masses are distributed on U nodes, while only J(J < N)
measuring planes and K (K < N) correcting planes are used
to eliminate the unbalance force. The vibration response and
the unbalance force are transformed between physical and
modal coordinates according to the following:

{ §=9,¢,

T 1)
F* = ®]F,

where @, = fo o, "} ek, o) =

{oi (x1),9i (x2), ... 0i(x)}T € R7*1 is a  sub-vector

of the vibration modal shape with J measuring

planes, £ e C"*! is the response in modal co-
T

ordinates, <I>lT/={<I>(lU),<I>(2U),...,<I>fIU)} € RV,

‘I’EU) ={¢i (x1), 9 (x2), ..., 0 (xp)}T € RU*! is a sub-
vector of the vibration modal shape with U unbalanced
nodes, F={f(x1), f(x2),..., f(xp)}T € CU*! is the un-
balance force distributed on U nodes, and F* € C"*! is
the unbalance force of the first n order modes in modal
coordinates.

Due to the limitation of the measurement planes and the
uncertainty of the unbalance nodes, the ®; and <I>5 may
not necessarily be of full rank. Therefore, Eq. (11) should
be transformed into the following form:

§=(2)0,) 83, (12)
F=(oy®}) oyF*. (13)

Substituting Eq. (12) into the Fourier-transformed form of
Eq. (6) leads to the following:

. —1
(K* — Q*m —i—]QC*) (@70,) ' o7s. (14)
Next, substituting Eq. (14) into Eq. (13) provides the follow-
ing:
F=(o,05) &y (K* QM+ jQC*)
x (@7®,) " @78 (15)

According to the analysis of the MEP, the unbalance vec-
tor distribution on the rotor can be corrected by the counter-
weights W added on the EP, as long as the following modal
equivalence relation is satisfied.

O W=—-&F, (16)

T
where <I>;< = {<I>(1K), <I’(2K),..., <I>£,K)} e R"K|

@) = (g (x1), 05 (x2), ... @i )} € REXD s a sub-
vector of the vibration modal shape with K correcting
planes, and W = {w(x1), w(x2),..., wx)T e CKX1 is the
counterweight vector applied on the correcting planes.

By substituting Eq. (13) into Eq. (14), the counterweight
vector can be obtained as

W=—(0x0%) ' @x0] (o,0]) '@y
x (K*— @2M* + joC*) (8] 0,) ' @8, a7

To verify the equivalent method of the unbalance force, the
finite-element model of the rotor system, consisting of 50 el-
ements and 51 nodes, is established, corresponding to Fig. 2.



The mass disk units, which can be used as correcting planes,
are located at the 11th, 18th, 23rd, 29th, 34th and 41st nodes,
the measuring planes are located at the 15th and 37th nodes,
while the journal-bearing units are located at the 5th and 47th
nodes.

The MSO analysis of the model, as illustrated in Fig. 2,
shows that the third and fifth disks are EPs, while the rest of
the planes are redundant ones. The relationship between EPs
and other planes is as follows:

a; = 0.8315a3 — 0.4720as,
ay = 1.2200a3 — 0.4471as,
as = 0.4504a3 + 0.6520as,
a6 = —0.2062 x a3 +0.7589as,

(18)

where o represents the IC and the subscript represents the
respective correcting plane.

In order to prove the validity of EPs, the relationship
between the left- and right-hand sides, in Eq. (18), is de-
termined at 2400, 3200 and 4000 r/min, respectively, while
comparison of the findings follows. Since there are two mea-
suring planes used to collect vibration information, each disk
can obtain six ICs, which are then verified. Figure 3 shows
that the results obtained by both sides of Eq. (18) are iden-
tical; that is to say, the effect of the first, second, fourth and
sixth disks on the vibration characteristics of the rotor can
be completely replaced by that of the third and fifth disks,
proving the existence of EPs.

To verify the effectiveness of the equivalent principle on
the EP for dynamic balancing, the distributed unbalance vec-
tors in redundant planes are equivalent to EPs, according
to the VFP and MEP, respectively, while the unbalance re-
sponse characteristics, before and after equivalent operation,
are compared and analysed. Here, the vibration response is
obtained based on the rotor model, as shown in Fig. 2 at
3400 r/min, while the unbalance vectors on the first, second,
fourth and sixth disks are, respectively, equivalent to the ones
on the third and fifth disks. The details of equivalent results
are listed in Table 1, while the comparison of unbalance re-
sponses after equivalence of disks, based on the VFP and
MEP, is shown in Fig. 4.

As shown in Fig. 4, if the unbalance vector on a redun-
dant disk is transferred to the third and fifth disks using the
MEP, the rotor unbalance response is consistent with the ini-
tial state, within the full speed range. However, if the VFP is
employed to implement the equivalent transfer operation, the
unbalance response is only consistent with the initial state,
at around 3400 r/min, while the variation of the two response
curves becomes obvious, at a different speed value. This phe-
nomenon is due to the fact that the VFP does not consider
the influence of the rotor modal shape, while rotor vibration
is essentially the superposition of the multiple-modal vibra-
tions excited by the unbalance. If the distributed unbalanced
vector is directly transferred to the EP through the VFP, the
obtained equivalent result does not consider the modal char-
acteristics. When the rotor speed changes, the current balance

effect cannot be maintained. As a result, the MEP is more
suitable than the VFP for dynamic balancing of high-speed
rotors.

In order to verify the effectiveness of the proposed unbalance
identification method, based on the EP and MEP, numerical
simulation of dynamic balancing is performed on the rotor
model (Fig. 2). The virtual initial unbalance, as shown in Ta-
ble 2, is artificially applied on the six disks of the rotor.

The balancing speed is set at 3400 r/min, and the coun-
terweights on the third and fifth disks can be calculated by
Eq. (17), as 24.33 gmm at 244.51° and 7.22 g mm at 297.39°.
Next, in order to suppress the unbalance response at the mea-
suring planes, the identified counterweights are substituted
into the rotor model. The unbalance response before and af-
ter the balancing procedure is illustrated in Fig. 5.

As illustrated in Fig. 5, the comparative results show that
the proposed method can effectively identify the unbalance
vector. After the balancing procedure, the residual vibration
below and beyond the critical speed is very small, which
demonstrates the effectiveness of the method.

To verify the validity of the proposed rotor model and unbal-
ance identification method, an experimental platform, con-
sistent with Fig. 2, is designed and built (Fig. 6). This sys-
tem consists of a data acquiring and processing device, phase
and displacement sensors, a force hammer and a motor con-
troller. The phase and displacement sensors are fixed on the
support setting along the radial direction, while the output
analog signals, generated by sensors, are transformed into
digital signals by the data acquisition device and collected
by an industrial computer which processes and displays vi-
bration information. The rotor is connected to the motor via
a flexible coupling, the weight of the mass disk assembled
on the rotor is 0.08 kg, while 10 evenly distributed holes are
available for adding counterweights on the disk. The rotor
length is 500 mm and its nominal diameter and the mass disk
are 10 and 50 mm, respectively. The rotor and the mass disks
are made of steel and aluminium, respectively. The density
of the rotor material is 7800 kg/m3 , the elastic modulus is
3.15 x 10" N/m? and the Poisson ratio is 0.3.

In modal test, an impact excitation, generated by an impulse
force hammer with a model of LC-01A, is applied on the
rotor, while the response signal is acquired by an accelera-
tion sensor with a model of ULT2001. Both the excitation
and response signals are collected by the data acquisition de-
vice NI-9220 at a sampling frequency of 15kHz. The mea-
sured excitation and response signal are illustrated in Fig. 7,
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while the simulated and measured frequency response func-
tions (FRFs) of the rotor are shown in Fig. 8.

According to Figs. 7 and 8, the simulated and experimen-
tally measured FRFs are in reasonable agreement. In the sim-
ulated FRFs, the first three natural frequencies have been
found to be 79.5, 286.5 and 544.5 Hz. Meanwhile, the first
three natural frequencies, as obtained by the measured FRFs,
are 81, 291 and 559.5 Hz. The deviation between simulation
and experiment of the first three order modes is 1.9 %, 1.5 %
and 2.6 %, respectively, indicating the high accuracy of the
model.

To verify the effectiveness of the presented unbalance
method, the balancing experiments are performed on the

experimental platform shown in Fig. 6. The eddy current
displacement sensor WD502A and the photoelectric sensor
E3X-HD41 are used to collect the amplitude and phase of
unbalanced vibration, respectively. In order to be consistent
with the simulation conditions as much as possible, the bal-
ancing speed is set to 3400 r/min, and the sampling frequency
is set to 10 kHz. According to Eq. (17), the identified counter-
weights on the third and fifth disks are 15.92 g mm at 250.70°
and 7.22 gmm at 69.47°, respectively.

After completing the counterweight vector identification,
the identified results need to be added on the corresponding
mass disks to suppress the unbalance vibration. Since there
are 10 evenly distributed holes on the third and fifth disks for
adding counterweight screws, and the weight of the coun-
terweight screws is limited to certain values, the identified
counterweight vector needs to be decomposed into different
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Equivalent results of redundant disks in EPs.

Number Balancing information  Initial unbalance VFP ‘ MEP
Disk 3 Disk 5 ‘ Disk3 Disk 5
Disk 1 Amplitude (g mm) 9 7 7.71 7.28 4.12
Phase (°) 135 45 —159.8 135 —45
Disk 2 Amplitude (g mm) 8 6 2.12 9.61 3.47
Phase (°) 60 80 —15.11 60 —120
Disk 4 Amplitude (g mm) 5 4 4.93 2.17 3.38
Phase (°) 120 60 164.61 120 120
Disk 6 Amplitude (g mm) 8 5 3.65 1.59 5.97
Phase (°) 145 100 —139.06 =35 145
3500 4000
3000 @ Tnitial (b) - Initial
Balanced ! Balanced
E 2500 | G 3000 :1
3 | 3 !
E 2000 ! %’ !
! 2000 !
£ 1500 ! £ i
N =
< 1000F < 1000}
‘ [ SN SN —
0 10000 20000 30000 0 10000 20000 30000
Speed (r/min) Speed (r/min)

Comparison of unbalance response before and after the balancing procedure. (a) Left-hand side. (b) Right-hand side.

Experimental rotor test platform.

holes of the disks. In this specific case, in order to realize the
correction process, 0.5 and 0.8 g screws are added to the fifth
and eighth holes of the third disk, respectively, while 0.9 g
and 0.5 g screws are added to the first and fifth holes of the
fifth disk, respectively.

In order to observe the change in the axis orbit along with
radial direction before and after the balancing procedure, the
three-dimensional holospectrum vibration in the full speed
range on the measuring plane is illustrated in Fig. 9. The
outer (red) curve represents the initial vibration and the in-

ner (green) curve is the residual vibration after the balancing
procedure.

As shown in Fig. 9 and Table 3, the system can operate
smoothly through the first critical speed, while the unbalance
vibration is significantly reduced even in the full speed range.
The comparison between the initial vibration and the resid-
ual vibration shows that the proposed unbalance identifica-
tion procedure is effective, and the counterweight vector, as
identified by the dynamics model and the proposed method,
is accurate.

It can be seen that the residual unbalance response is not
completely suppressed after the balancing operation. The
possible error sources are as follows: first, the rotor platform
manufacturing and assembly accuracy limit the dynamic bal-
ancing effect. In the presented case, there is a specific ini-
tial bending of the experimental rotor: since both bending-
induced vibration and unbalanced vibration present the same
rotating-frequency characteristics, the bending-induced vi-
bration will be regarded as unbalanced vibration in the un-
balance identification process, which leads to some fake bal-
ancing operations during the experiment. Second, the accu-
racy of the dynamic model needs to be further improved.
There are still differences between the model-based vibration
modal data and the actual rotor state. Finally, the balancing



Virtual initial unbalance.

Parameter Disk 1 Disk2 Disk3 Disk4 Disk5 Disk6
Amplitude (g mm) 9 8 12 5 6 8
Phase (°) 135 60 45 120 80 145
300 - 600
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The excitation and responses signal on the rotor. (a) The measured excitation force. (b) The response signal.
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rotor.

quality is affected by other factors, such as the accuracy of
data collection and the robustness of the rotor system.

In addition, when the speed is lower than 3800 r/min, the
residual unbalance response becomes larger as the speed de-
creases. This phenomenon can be explained as follows: the
rotor vibration is the result of the combined action of fault
factors such as bending, unbalance, electromagnetic interfer-
ence, and both the mechanical and electrical run-out, among
others. The unbalance vibration only accounts for a lesser
share of the overall vibration at the lower speed, and the vi-
bration response is mainly caused by non-unbalance factors.
This explains why the residual response at low speed in Fig. 9
is higher than that at 3800 r/min after dynamic balancing.

In order to tackle the unbalance problem, a modal-based bal-
ancing method for a high-speed rotor without trial weights is
proposed. The effectiveness of the proposed method is ver-
ified by using an experimental rotor platform. Based on the
results, the following conclusions are derived.

1. The EP obtained by the MSO can replace the excita-
tion effect of all the correcting planes, and then the dis-
tributed unbalanced vector can be equivalently concen-
trated on the EP through the MEP, without changing the
rotor modal characteristics.

2. A modal-based unbalance identification method for a
high-speed rotor is proposed by using modal analysis
and the MEP, which only needs to collect vibration
data below critical speed and does not need to add trial
weights in the balancing process.

3. The effectiveness of the proposed balancing method is
validated by numerical simulation and field experiment.
The results show that the proposed method can sup-
press the unbalance vibration effectively while ensuring
smooth and safe operation of the rotor at high speed.

Although this method demonstrates a good balancing effect,
there are many factors in the industrial application that can
influence the result, such as the validity of vibration data or
the accuracy of the dynamic model. These are issues in need
of further research to obtain better results. To this end, signal-
processing methods should be introduced to eliminate the in-
terference of other faults with the same unbalance frequency
characteristics, such as the form error of the measurement
section, electromagnetic interference, material anisotropy, or
bending. Furthermore, the accuracy of the dynamic model
can also be improved by combining theory with experiment.
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Table 3. The comparison of unbalance vibration before and after adding counterweights.

Position Rotational speed (r/min)

1400 2000 2600 3200 3800 4400 5000 5600 6200 6800 7400

Left/x (um) Initial 245 225 184 324 831 167.1 1026 688 631 574 577
Balanced 200 212 189 165 9.0 394 324 299 283 246 237
Left/y (um) Initial 150 159 174 238 552 1780 1109 719 612 618 572
Balanced 144 145 112 118 45 357 305 264 228 256 21.1
Right/x (um) Initial 319 274 225 542 1493 2542 1547 963 821 705 669
Balanced 31.6 33.1 261 159 106 398 353 296 247 166 107
Right/y (um) Initial 37 48 96 180 515 1739 966 592 469 459 389

Balanced 83 104 6.2 4.3 9.7 30.7 171 12.0 6.8 126 32

@
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Figure 9. The initial and residual vibration after applying the proposed method. (a) Left-hand side. (b) Right-hand side.
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