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Abstract. Springback is an inevitable problem in the local bending process of hull plates, which leads to low
processing efficiency and affects the assembly accuracy. Therefore, the prediction of the springback effect, as a
result of the local bending of hull plates, bears great significance. This paper proposes a springback prediction
model based on a backpropagation neural network (BPNN), considering geometric and process parameters.
Genetic algorithm (GA) and improved particle swarm optimization (PSO) algorithms are used to improve the
global search capability of BPNN, which tends to fall into local optimal solutions, in order to find the global
optimal solution. The result shows that the proposed springback prediction model, based on the BPNN optimized
by genetic algorithm, is faster and offers smaller prediction error on the springback due to local bending.

1 Introduction

Plate cold forming is widely used as a manufacturing pro-
cess in the fields of aerospace, vehicles and sea vessels. In
large-scale ship construction, a large number of plates are
assembled and welded together. Plate forming is a repeti-
tive process, producing different ship plate shapes, as needed
(Hamouche et al., 2018). In this process, the geometric shape
of the plate is altered by the applied force, until it achieves
the desired final complex shape. Given that only the final
shape of the plate is known, the selection and application
range of process parameters are difficult to determine (Hou
et al., 2017; Jianjun et al., 2017). The traditional approach
to process parameter settings is based on past experience
of on-site operators and experimental trial-and-error meth-
ods. These conditions can certainly be improved, shortening
the cold forming process time of the outer plate of the ship,
which directly affects the following stages of assembly and
welding in terms of time, ultimately expediting the shipbuild-
ing cycle.

In shipyards, single curvature surfaces and complex sur-
faces of small curvature are made by the incremental plate
forming method, where the shape requirements of curved
surfaces are gradually achieved, as local bending is accu-
mulated. Problems encountered in local bending include
wrinkle, crack, and springback. The first two can be elim-

inated by improving the corresponding processing technol-
ogy, whereas springback is an inevitable problem (Su et al.,
2020). At present, reducing the processing time caused by
springback and providing corresponding springback com-
pensation are two of the most important problems in the field
of ship plate cold forming.

In traditional machining, optimal process parameters are
determined through empirical methods, implying extreme re-
liance on the hands-on experience of the skilled worker. The
original analytical methods have the disadvantage of lower
accuracy. However, the development of finite element tech-
nology has made numerical simulation an important method
in the study of the springback problem, after plate cold form-
ing (Qiuchong et al., 2016; Shi et al., 2004; Liu et al.,
2019). Prior (1994) concluded that the application of ex-
plicit and implicit algorithms is very helpful in solving the
springback problem. Taherizadeh et al. (2010) showed that
a non-associated mixed-hardening model significantly im-
proves the prediction of earing in the cup-drawing form-
ing process and the prediction of springback in the side-
wall part of drawn channel sections. Thipprakmas and Ro-
jananan (2008) examined the springback and spring-go phe-
nomena in the V-bending process, using the finite element
method (FEM). Trzepiecinski and Lemu (2017) carried out
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Figure 1. Plate forming by free bending. (a) Principle of forming; (b) processing sequence; (c) ship building process.

Figure 2. Simplified drawing of local bending.

numerical simulation, where they studied the influence of
calculation parameters on the springback prediction.

The numerical simulation method imposes high require-
ments on the boundary conditions and requires iterative cal-
culations for complex machining, which takes a long time
and requires high performance of the computational equip-
ment. Therefore, it is proposed to use machine learning algo-
rithms to construct a mathematical model, which can accu-
rately describe the real system, providing calculation results
similar to the real ones, for analysis purposes, while the pre-
diction or optimization problem is realized on the approxi-
mation model (Salais-Fierro et al., 2020; Mucha, 2019). Liu
et al. (2007) used the genetic algorithm to optimize a back-
propagation neural network (BPNN) and built the springback
prediction model of the U-bend of the plate. Froitzheim et
al. (2019) established a new artificial neural network model
to predict the geometric parameters related to metal sheet

forming. Serban et al. (2020) developed an artificial neu-
ral network (ANN) model for springback prediction in the
case of free cylindrical bending of metal sheets. Yang and
Kim (2020) used the optimized BPNN method, based on the
genetic algorithm, to predict and optimize the wall angle of
the Al3004 sheet with a thickness of 1 mm. Trzepiecinski and
Lemu (2020) proposed a cold-rolled anisotropic steel plate
springback prediction method, based on the combination of
multi-layer perceptron artificial neural network (ANN) and
genetic algorithm (GA). Dib et al. (2020) proposed single
and ensemble classifiers to predict the springback and maxi-
mum thinning of the U channel and the maximum equivalent
plastic strain and maximum thinning of the square cup. Guo
and Tang (2017) presented a springback bending angle pre-
diction model, based on the combination of error backpropa-
gation neural network and spline function (BPNN-Spline) to
rapidly and accurately predict the springback bending angle
in the V-die air bending process. It is evident that the ma-
chine learning approach is widely used in plate cold forming
of different plate types and different machining parameters,
providing good prediction results.

In this article, a geometric model, describing the deforma-
tion behavior in the local bending process, is established. In
addition, global optimization algorithms are used to improve
global search ability of BPNN, which is prone to falling into
a local optimum. In total, four springback prediction models,
based on the GA-BPNN algorithm and the improved par-
ticle swarm optimization (PSO)-BPNN algorithms, are es-
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Figure 3. The shape of 2D plate forming.

tablished. The comparison of the prediction results of the
models to the experimental results verifies the high predic-
tion accuracy of all optimized BPNN models. Especially in
the case of local bending, the prediction model, based on the
GA-BPNN algorithm, provides a faster solution at less than
10 s. The results show that the prediction model, based on the
GA-BPNN algorithm, has higher applicability on the specific
research object and selected process parameters of this arti-
cle.

The rest of this paper is arranged as follows. In Sect. 2,
local bending independent and dependent variables are de-
fined, and data are obtained by experiments. In Sect. 3, the
related algorithm theory is introduced, and prediction models
of optimized BPNN are established. In Sect. 4, five predic-
tion models are evaluated, by comparing coefficient of deter-
mination, mean square error, prediction results, errors, and
relative errors so as to derive the superiority of GA-BPNN.
Finally, the future research direction is pointed out.

2 Experimental procedure

2.1 Material

Q235 (structural steel) is widely used in ships, vehicles and
containers, due to the moderate carbon content, the superior
comprehensive performance, and its well matched properties
such as strength, plasticity, and welding. In this paper, Q235
is selected for mechanical performance research, as shown in
Table 1, where E is Young’s modulus; δs is yield strength; µ
is Poisson’s ratio; ρ is density; K is strengthening factor; n

is strain hardening exponent; r is thickness anisotropy coef-
ficient; and r0, r45, and r90 are the Lankford coefficients ob-
tained at 0, 45, and 90◦, respectively, according to the rolling
direction of the sheet.

2.2 Method

The experimental principle of plate local bending is shown
in Fig. 1a, where a test plate size of 400 mm× 200 mm is
illustrated. During the experiment, the stamping head is fed
vertically downwards, under the pressure provided by the oil
pump, while the plate is displaced along the thickness direc-
tion. When unloading, the plate shape changes due to the in-
duced elastic strain recovery. In cases of single curvature sur-
faces and complex surfaces with small curvature, it is neces-
sary to continuously move the position of the plate and apply
multiple local bending deformations, in order to plastically
deform it to reach the final target shape, as shown in Fig. 1b
and c. In this experiment, only one local bending, in a series
of multi-pass local bending deformations, is studied.

2.3 The definition of experimental parameters

The greatest problem of plate local bending is springback,
which occurs after unloading and involves many parameters
of the actual bending process. The parameters can be distin-
guished as material parameters, geometric parameters, and
process parameters. According to the variable type, there are
plate variables, punch variables, die variables, contact sur-
face variable, bending setting variable, and blank holder vari-

https://doi.org/10.5194/ms-12-777-2021 Mech. Sci., 12, 777–789, 2021



780 B. Xu et al.: Prediction of springback in local bending of hull plate

Table 1. Mechanical properties of the Q235 plate.

Material E (GPa) δs (MPa) µ ρ (kg/m3) K (MPa) n r

r0 r45 r90

Q235 210 235 0.3 7850 576.3 0.2298 0.94 0.98 1.03

ables (Table 2). It is very important to study the influence of
different factors on the springback of the plate.

The independent variables are determined based on actual
production experience.

1. In local bending, the forming effect is only related to
the size of punch and die, so the length and width of the
plate are not considered influencing factors.

2. Lindgren (2007) proved that material parameters have
an impact on the quality of plate forming, based on finite
element analysis, but the plate material in this paper is
determined, so it is not considered an influencing factor.

3. The final result of punching speed and force is the sword
displacement, which is directly studied in this article.

4. During the cold forming process, the plate and the die
are in line, so the die radius is not studied.

5. Since, in the actual local bending process of the plate,
the contact surface material and lubrication informa-
tion is provided, the contact friction coefficient between
each component and the plate is determined according
to the actual situation, and it is a fixed value in this anal-
ysis.

6. The bending time is a fixed value in the analysis in this
article.

7. The presence of the blank holder force will cause the
plate to become thinner, during the cold bending pro-
cess, while it may even break if this force is too large.
Therefore, this study does not use the blank holder force
to ensure the free bending of the plate.

Based on the above analysis, the plate thickness t , the
sword displacement d, the distance between the punch and
the die b, and the punch radius R1 are the independent vari-
ables as shown in Fig. 2.

2.4 The definition of springback

Springback occurs after loading and manifests in three forms:
the springback radius increases, the bending angle decreases,
and the displacement along the thickness direction becomes
smaller, as shown in Fig. 3.

2.4.1 The bending angles α1 and α2

Using the lowest point of the processed plate as the origin,
the coordinates of points S2, S3, andT3 are (x1,y1), (0,0),
and (x1,0), respectively.

tanα2 =

∫ y1
0 dy∫
0
x1dx
=
y1

x1
, (1)

α2 = arctan
y1

x1
. (2)

The bending angle of the right-hand side of the plate α2 is
obtained by Eq. (2), while the bending angle of the left-hand
side of the plate α1 can be obtained in the same way.

Where S2 is the contact point of the plate and die, S3 is
the midpoint of the plate, T3 is the pedal, x1 is the amount of
lateral bending deformation, and y1 is the maximum height
difference.

2.4.2 The springback radius R3

– Step 1: Find the center of circle O2.

Consider a straight line, perpendicular to line segment
S2S3, passing through the midpoint T1 of this line seg-
ment. In the same way, a straight line, passing through
the midpoint of S1S3 and perpendicular to this line seg-
ment, is drawn on the left half. The intersection O2 of
the two straight lines is the center of the circle.

Where, S1 is the contact point of the plate and die, O2
is the center of a circle of curvature radius.

– Step 2: Calculate the springback radius R3.

because 6 S2S3T3+ 6 S3S2T3 = 90◦

6 O2S3T1+ 6 S2S3T3 = 90◦

therefore 6 O2S3T1 = 6 S3S2T3

because 6 O2T1S3 = 6 S3T3S2 = 90◦

According to whether the two angles of one triangle corre-
spond to the two angles of another triangle, the two triangles
are similar.

therefore 4O2S3T1v4S3S2T3 (3)
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Table 2. Influencing factors of springback in local bending.

Variable type Specific variables

Plate variables Plate length, plate width, plate thickness, material
Punch variables Punch radius, punching speed, punching force, sword displacement
Die variables Die radius, distance between punch and die
Contact surface variable Surface contact friction coefficient
Bending setting variable Bending time
Blank holder variable Blank holder force

Figure 4. System process steps of plate cold forming.

Next, the following formulas are derived:

lS3T1 =
lS2S3

2
=

√
(x1− 0)2

+ (y1− 0)2

2
, (4)

lO2S3

lS2S3

=
lS3T1

lS2T3

, (5)

R3 = lO2S3 =
lS3T1

lS2T3

· lS2S3 =
x2

1 + y
2
1

2y1
. (6)

The specific value of R3 is calculated, as shown in Eq. (6).

2.4.3 The displacement along the thickness direction c

The displacement in the thickness direction is as follows:

c = lP3S3 , (7)

where P3 is the midpoint of the initial plate, and S3 is the
midpoint of the plate after springback.
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Table 3. Experimental results.

Experiment Punch Plate Distance Sword Springback
number radius thickness between displacement radius

R1 (mm) t (mm) punch and die d (mm) R3 (mm)
b (mm)

01 310 8 9 0.9 390
02 320 8 10 1.0 374
03 330 8 11 1.1 376
04 340 8 12 1.2 378
05 350 8 13 1.3 377
06 360 8 14 1.4 376
07 300 10 10 1.2 330
08 310 10 11 1.3 331
09 330 10 9 1.1 325
10 340 10 14 0.8 325
11 350 10 11 0.9 323
12 360 10 8 1.0 320
13 300 12 12 0.8 520
14 310 12 13 0.9 485
15 320 12 14 1.0 450
16 330 12 11 1.1 393
17 350 12 9 1.3 333
18 360 12 10 1.4 329
19 300 14 14 1.2 386
20 310 14 11 1.3 341
21 320 14 8 1.4 296
22 330 14 13 1.1 408
23 340 14 10 0.8 488
24 350 14 9 0.9 456
25 300 8 8 0.8 405
26 320 10 12 1.4 329
27 340 12 8 1.2 336
28 360 14 12 1.0 430

The springback radius R3 is the most intuitive expression
of the physical quantity of springback. In the actual produc-
tion conditions of a sea vessel, the processing personnel usu-
ally uses the sample box or sample plate, to measure the
curvature of the hull plate, and the unfitted part is partially
processed again, hence the springback radius R3 is set as a
dependent variable.

2.5 Experimental data

There is a group of 28 experiments: the first column indicates
the experiment number, the next four columns are features,
and the last column is the response. Experimental results re-
arrange the features according to the order shown in Table 3.

3 Establishment of the machine learning model

Aiming at the highly nonlinear problem of springback in the
case of plate local bending, as affected by many factors, such
as material, geometry, and forming process, machine learn-
ing algorithms are used to explore the rules between differ-

ent input variables and output results, in order to calculate a
springback prediction and the respective compensation. The
BPNN can learn and store a large number of input–output
pattern mapping relationships, without the need to reveal the
mathematical equation describing this mapping relationship
in advance (Miranda et al., 2020). It is suitable for solving
multivariable and nonlinear problems, but the BPNN eas-
ily falls into a local optimal solution (Inamdar et al., 2000;
Kazan et al., 2007; Nasrollahi and Arezoo, 2012; Zhao et al.,
2014). This paper proposes an optimized version of BPNN,
based on the genetic algorithm and improved particle swarm
algorithm, in order to find the global optimal solution. Con-
sequently, by comparing the prediction errors and calculation
efficiencies of BPNN based on the genetic algorithm and im-
proved particle swarm algorithm, a better optimization algo-
rithm is selected to make the BPNN reach an accurate predic-
tion by efficient calculation. Furthermore, according to the
idea shown in Fig. 4, through on-site processing, experimen-
tal processing, and numerical simulation, a large number of
sample data are obtained, complementing the construction of
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Figure 5. The flowchart of training BPNN.

the springback prediction system, in order to improve the ef-
ficiency of on-site processing.

3.1 Data preprocessing

– Step 1: Data normalization processing. In order to elim-
inate the difference between magnitudes, the sample
data are normalized and mapped to [0,1], according to
the following formula:

x =
x− xmin

xmax− xmin
. (8)

– Step 2: Train/test split. The last five sets of data in Ta-
ble 3 are used as testing data, while the remaining data
sets are used as training data.

3.2 Backpropagation neural network

The backpropagation neural network (BPNN), proposed by
Rumelhart et al. (1986), is a multi-layer feedforward neural
network, trained according to the error backpropagation al-
gorithm, which consists of an input layer, a hidden layer, and
an output layer.

The ith BP neuron can be expressed as follows:

yi = f

(
n∑
j=1

ωijxj − θi

)
, (9)

where xj is the j th input variable, ωij is the neuron weight
value, θi is the neuron bias value, and yi is the ith output
variable.

The number of hidden layers p is obtained as

p =
√
n+ q + a, (10)

where n is the number of input layers, q is the number of
output layers, and a is an integer and a ∈ (1,10).

The activation function is as follows:

f (x)=
2

1+ e−2x − 1. (11)

In this paper, the numbers of input layers and output lay-
ers are 4 and 1, respectively, while the number of hidden
layers is 11. The network training function is Levenberg–
Marquardt. The minimum error of the training target is set
to 0.001, the number of training sessions is set to 1000, and
the learning rate is set to 0.01.

The training process of BPNN is shown in Fig. 5.

3.3 Genetic algorithm

The genetic algorithm (GA) is an evolutionary algorithm,
whose basic principle is to imitate the evolutionary law
of natural selection and survival of the fittest in the natu-
ral world. It was originally proposed by Holland in 1967
and mainly composed of three basic operations: selection,
crossover, and mutation (Liu et al., 2007).

3.4 Particle swarm optimization

Particle swarm optimization (PSO) is a new global optimiza-
tion algorithm, invented by Eberhart and Kennedy. PSO is
an optimization tool, based on iteration, similar to the ge-
netic algorithm. The system is initialized to a set of random
solutions, while the optimal value is reached through itera-
tion (Machado et al., 2021). The particle swarm algorithm
decides the search path, according to its own speed, whereas
it does not have the crossover and mutation operations of the
genetic algorithm, as these are added to the particle swarm
algorithm at a next step.

3.5 The BPNN optimized by genetic algorithm

The BPNN optimized by the genetic algorithm (GA-BPNN)
mainly uses the genetic algorithm to select a new population
generated by replication, crossover, and mutation of individ-
uals with large fitness value, in order to optimize the initial
weight and bias values of the BPNN, optimizing the BPNN
approach to better predict the output, based on the algorithm
flow illustrated in Fig. 6.

The main steps of the genetic algorithm are as follows:

– Step 1: Encode the weight values ωij and bias values
θi of the BPNN to obtain the initial individual, set the
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Figure 6. The flowchart of optimized BPNN based on the genetic algorithm.

Figure 7. The flowchart of optimized BPNN based on improved particle swarm optimization.

population size to 50, and initialize population; the di-
mension of individual d is as follows:

d = l×m+m+m× n+ n, (12)

where l is the number of inputs, m is the number of
hidden layers, and n is the number of outputs.

– Step 2: Set the maximum number of iterations to 100,
and set the reciprocal of the residual sum of squares as
the fitness function of the genetic algorithm; the formula

is as follows:

f =
1

n∑
i=1

(
yi − ŷi

)2 . (13)

(Higher values of f indicate better individual fitness.)

where f is the fitness function, ŷi is the predicted value
of the ith sample, yi is the experimental value of the ith
sample, and n is the number of samples.

– Step 3: First select the individual with the higher fit-
ness value in the population, as the parent to replicate,
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Figure 8. The flowchart of particle swarm optimization based on
adaptive mutation.

and then obtain a new generation of individuals through
crossing fragments in individuals; perform mutation op-
erations on the randomly selected individuals to finally
obtain a new population.

– Step 4: When the fitness value of the population reaches
the maximum fitness value or the maximum number of
iterations, the optimization ends; otherwise, return to
step 3.

– Step 5: Decode the individual with the maximum fitness
value and assign it to the neural network to obtain opti-
mal weight and bias values.

3.6 The BPNN optimized by particle swarm algorithm

The BPNN, as optimized by the standard particle swarm op-
timization algorithm (SPSO-BPNN), updates the speed and
position of each particle, through the particle swarm algo-
rithm, to obtain the lowest fitness value of the particle, while
the position of the particle is assigned to the initial weight
and bias values of the BPNN. The algorithm flow is shown
in Fig. 7.

The main steps of particle swarm optimization are as fol-
lows:

– Step 1: Set the basic parameters of particle swarm algo-
rithm, such as particle position and velocity range, iter-
ation number, inertia factor, learning factor, population
size, etc and initialize the initial position and velocity
of each particle in the population. The dimension of the
particle d is shown in Eq. (12).

– Step 2: Calculate the fitness value of each particle and
store its current position and fitness value in the individ-
ual best value; store the position and fitness value of the
individual with the best fitness value in the global best
value. The fitness function is as follows:

f =

n∑
i=1

∣∣yi − ŷi∣∣ , (14)

(Lower values of f indicate better fitness of each parti-
cle.)

where f is the fitness function, ŷi is the predicted value
of the ith sample, yi is the experimental value of the ith
sample, and n is the number of samples.

– Step 3: Update the individual optimal position and
global optimal position of the particles.

– Step 4: Update the velocity and position of each particle,
according to the following formula:

νij (t + 1)= ωνij (t)+ c1r1(t)
[
pij (t)− xij (t)

]
+ c2r2(t)

[
pgi(t)− xij (t)

]
, (15)

xij (t + 1)= xij (t)+ νij (t + 1), (16)

ω = ωmax−
(ωmax−ωmin)× t

tmax
, (17)

where c1 and c2 are learning factors, ω is the inertia
weight, r1 and r2 ∈ (0,1) are the random values, pij is
the particle individual optimal position, pgi is the global
optimal position, xij is the current particle position, vij
is the current particle velocity, ωmax is the maximum
inertia weight, ωmin is the minimum inertia weight, t is
the current iteration number, and tmax is the maximum
iteration number.

In this paper, c1 = c2 = 2, ωmax = 0.9, ωmin = 0.4,
tmax = 20, the population size is 20, the particle veloc-
ity ranges from−1 to 1, and the particle position ranges
from −5 to 5.

The inertia weight is an important parameter that affects
the performance of PSO; the larger it is, the larger the
particle velocity changes and the larger the search range
of the solution is. Conversely, the smaller the inertia
weight is, the smaller the search range of the solution
is. Therefore, this paper uses nonlinear inertia weights
to improve the convergence speed of the standard parti-
cle swarm optimization (SPSO), as follows:

ω = ωmax− (ωmax−ωmin)× tan
(

t

tmax
×
π

4

)
. (18)
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Figure 9. The flowchart of particle swarm optimization based on natural selection.

– Step 5: Calculate the fitness value of the new particle
and compare the current individual optimal position, in-
dividual best fitness value, global optimal position and
global best fitness value to the values stored in step 2
and update.

– Step 6: When the fitness value of the population reaches
the minimum fitness value or the maximum number of
iterations, the optimization ends; otherwise, it returns to
step 3.

– Step 7: Assign the position of the particle with the min-
imum fitness value to the neural network to obtain opti-
mal weight and bias values.

3.6.1 Particle swarm optimization based on adaptive
mutation

Particle swarm optimization based on adaptive mutation
(APSO) utilizes the mutation principle in genetic algorithm,
while the mutation operation is introduced in the particle
swarm algorithm in order to reinitialize some particles with a
certain probability. Furthermore, the mutation operation can
expand the particle search space and maintain particle diver-
sity. If r1 or r2 is greater than 0.95, the random particle posi-
tion will vary. The operation process is as shown in Fig. 8.

3.6.2 Particle swarm optimization based on natural
selection

In this section, the particle swarm optimization, based on the
natural selection principle (SelPSO), is described. In each it-
eration, the particle swarm is sorted according to the fitness
value, while the worst half of the particles in the swarm is
replaced by the best half, as the original historical optimal

value of each individual is retained. The operation process is
as shown in Fig. 9.

3.7 Model evaluation index

In order to further evaluate the prediction performance of the
model, four indexes are selected: coefficient of determination
(R2), mean squared error (MSE), error (Error), and relative
error (RE). The respective formulas are as follows:

R2
=

(
n

n∑
i=1
ŷi · yi −

n∑
i=1
ŷi

n∑
i=1
yi

)2

(
n

n∑
i=1
ŷi

2
−

(
n∑
i=1
ŷi

)2
)(

n
n∑
i=1
y2
i −

(
n∑
i=1
yi

)2
) , (19)

MSE=
1
n

n∑
i=1

(yi − ŷi)2, (20)

Error= yi − ŷi, (21)

RE=

∣∣ŷi − yi∣∣
yi

, (22)

where ŷi is the predicted value of the ith sample, yi is the
experimental value of the ith sample, and n is the number of
samples.

4 Results and discussion

This paper builds prediction models based on BPNN, GA-
BPNN, SPSO-BPNN, APSO-BPNN, and SelPSO-BPNN,
each exhibiting prediction performance as shown in Fig. 10.

Considering that the closer the coefficient of determination
is to 1, the better the performance of the model, Fig. 10 shows
that all prediction models have a coefficient of determination
above 0.9, so all perform well.
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Figure 10. Comparison of coefficient of determination and mean
squared error of different models.

Figure 11. Comparison of the prediction results of different mod-
els.

The closer the mean square error is to 0, the better the per-
formance of the model. Figure 10 illustrates that excluding
the initial BPNN, where the magnitude of mean square error
is, the other four magnitudes of mean square error are 10−2

or 10−3. Given that the overall value is below 0.16, the per-
formance of all five prediction models is rated as good.

In summary, the five abovementioned prediction models
are trained to achieve the best performance.

The prediction results and the errors between the exper-
imental values and the predicted values of five prediction
models are shown in Figs. 11 and 12.

Figure 11 shows that the prediction results of the five pre-
diction models roughly fit the experimental values, without
every model’s prediction effect meeting the requirements. In
Fig. 12, the maximum error of BPNN reaches 45.0094 mm
and the minimum error is at 6.5425 mm. The average error
is equal to 23.45 mm, which is significantly higher than the

Figure 12. Comparison of errors of different models.

Figure 13. Comparison of relative errors of different models.

average error of the other four models. Obviously it does not
find the global optimal solution. The maximum errors of the
other four algorithms are all within 30 mm, and their average
error is less than 16 mm, so the initial BPNN prediction ef-
fect is not better than that of the other models. Moreover, the
average error of the prediction model, based on GA-BPNN,
is 7.5 mm, which is the lowest among all models.

The difference in order of magnitude of each experimental
value is different, so it is not comprehensive to characterize
the accuracy of the model by the error alone.

The relative errors of five prediction models are shown in
Fig. 13.

The smaller the relative error, the better the prediction ef-
fect. According to Fig. 13, the average relative error of BPNN
is 6.16 %, and the maximum relative error is 11.4 %, which
is far worse than in other algorithms. The average relative
error of SPSO-BPNN is 4.024 %, the average relative error
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of APSO-BPNN is 3.192 %, and the average relative error of
SelPSO-BPNN is 2.087 %; SPSO-BPNN has the worst pre-
diction accuracy, so improving its global search capability
by optimizing the SPSO algorithm is of actual essence. The
average relative errors of GA-BPNN and SelPSO-BPNN are
1.92 % and 2.087 %, respectively, as they both exhibit good
prediction accuracy. Given that efficiency is a very impor-
tant factor, one should note that the calculation time of GA-
BPNN is less than 10 s, while the calculation time of SelPSO-
BPNN is less than 52 s. In summary, GA-BPNN is more suit-
able for solving the specific problems, as raised in this study.

5 Conclusions

Aiming at the key issues of effective prediction and compen-
sation of springback in plate local bending, this paper pro-
poses a springback prediction technology, based on an im-
proved machine learning algorithm model, which provides
guidance for accurate prediction and efficient springback cal-
culation. The main conclusions obtained are as follows:

1. Considering the BPNN as the basic framework, opti-
mized prediction models are obtained by adding GA,
PSO, and improved PSO. By comparison, it is found
that the prediction model, based on the GA-BPNN al-
gorithm, is more suitable for the springback prediction
problem of the geometrical and process parameters, as
these are selected in this paper.

2. Considering the local bending process of the plate as the
object, the application of the machine learning model
in springback prediction and compensation is realized.
The prediction model, based on GA-BPNN, has a coef-
ficient of determination of 0.98 and a mean square error
of 0.020865. The average error is 7.5 mm, the average
relative error is 1.92 %, and the calculation time is less
than 10 s, indicating high prediction accuracy and high
calculation efficiency.

3. The research object of this paper is a single curvature
plate, and the results apply only to small samples and a
small amount of input. In a follow-up study, more ma-
terial properties will be added to increase the amount of
input, and simulation-based virtual experiments will be
introduced to increase the sample size, in order to study
the double-curvature plate on the basis of the proposed
prediction models.
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