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Abstract. This study conducts an analytical investigation of the dynamic response characteristics of a two-stage
series composite system (TsSCS) with a planetary transmission consisting of dual-power branches. An improved
incremental harmonic balance (IHB) method, which solves the closed solution of incremental parameters pass-
ing through the singularity point of the analytical path, based on the arc length extension technique, is proposed.
The results are compared with those of the numerical integration method to verify the feasibility and effective-
ness of the improved method. Following that, the multi-scale perturbation (MsP) method is applied to the TsSCS
proposed in this subject to analyze the parameter excitation and gap nonlinear equations and then to obtain the
analytical frequency response functions including the fundamental, subharmonic, and superharmonic resonance
responses. The frequency response equations of the primary resonance, subharmonic resonance, and superhar-
monic resonance are solved to generate the frequency response characteristic curves of the planetary gear system
(PGS) in this method. A comparison between the results obtained by the MsP method and the numerical integra-
tion method proves that the former is ideal and credible in most regions. Considering the parameters of TsSCS
excitation frequency and damping, the nonlinear response characteristics of steady-state motion are mutually
converted. The effects of the time-varying parameters and the nonlinear deenthing caused by the gear teeth
clearance on the amplitude–frequency characteristics of TsSCS components are studied in this special topic.

1 Introduction

Planetary gear systems (PGSs) are widely used in various
fields such as ships, aviation, automobiles, machinery, and
metallurgy based on their unique advantages. However, their
vibration and noise have always been hot topics in academia
and the focus of discussion in the engineering community.
Especially in conventional power underwater devices, the
PGS noise has exceeded 100 dB. Planetary gears are the most
critical underwater components of ships that transfer real-
time power and time-varying motion. Owing to its compact
transmission structure, strong anti-scuffing bearing perfor-

mance, and high transmission precision, the planetary gear
transmission is widely used in various mechanical systems.
The application of the PGS in the underwater military in-
dustry has created an urgent demand for lightweight and re-
liable structures (Inalpolat and Kahraman, 2009). Planetary
gears have various dynamic response properties due to their
complex inherent characteristics (Feng and Zuo, 2012). The
dynamic behavior analysis of the alternating meshing pro-
cess is a popular area of study in the design and applications
of various planetary gear mechanisms and their transmission
systems (Hotait and Kahraman, 2013; He et al., 2017; Pan et
al., 2018). Many researchers have been working on new sim-
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ulation analysis methods to gain an in-depth understanding
of the dynamic meshing transients of planetary gears (Chen
et al., 2019; Suslin and Pilla, 2017; Morgado et al., 2008).
Numerous studies have been performed on the dynamic be-
havior analysis method, which plays an important role in de-
termining the performance of planetary gears. In addition, the
machinery industry is paying more attention to the dynamic
characteristics of planetary gear drives and the resulting vi-
brations and noise (Hu et al., 2017; Weis et al., 2017; Lin and
Zhang, 2018).

A two-stage series composite system (TsSCS), consisting
of a PGS with dual-power branches, is a complex and flexible
mechanical system that comprises several parts (Zhou et al.,
2020). A TsSCS is generally divided into two parts: the trans-
mission system (gear train, transmission shaft, and bearing)
and the structural system (gearbox, dual-branch composite
planetary gearbox, dynamometer, and bracket) (Sánchez et
al., 2017). The increasing number of studies on the vibra-
tions and noise produced by underwater devices, particularly
on controlling the noise produced by the power rear trans-
mission system of underwater devices, must account for the
TsSCS and its meshing process, in addition to the real-time
dynamic meshing force acting on the system.

Few theoretical studies consider the TsSCS with a plane-
tary transmission consisting of dual-power branches as a sub-
ject (Liang et al., 2018). It is important to possess some pro-
fessional design knowledge while studying the unique kine-
matics and geometric characteristics of a TsSCS consisting
of a planetary transmission with dual-power branches (Ege
et al., 2018). The TsSCS, with a dual-power branch planetary
transmission, is preferred to the horizontal shaft gear deceler-
ation system, especially in applications requiring high linear
speed power density designs and kinematic flexibility to op-
timize different speed ratios (Marchetti et al., 2020; Garam-
bois et al., 2019; Acri et al., 2019). It has been demonstrated
that reducing the spoke thickness to increase gear flexibility
also resolves several internal gear and planetary frame er-
rors and operational errors, in addition to making the system
lighter (Yang et al., 2021). Moreover, a flexible internal gear
improves the load sharing between planets, which is an im-
portant feature if manufacturing- and assembly-related gear
and carrier errors are inevitable. Thus, it is difficult to quan-
tify the factors that influence the TsSCS with a dual-power
branch planetary transmission under quasi-static conditions.

Modals are the inherent characteristics of gear transmis-
sion systems (Wu et al., 2019; Wang et al., 2018; Dai et al.,
2021). A modal analysis is used to determine the vibration
characteristics of the designed structure or its transmission
components. The modal analysis is a part of the structural
dynamics analysis and is also the starting point for the subse-
quent transient dynamics, harmonic response, and spectrum
analyses (Kosała, 2019). Each mode has a corresponding nat-
ural frequency, damping ratio, and mode shape (Rosa et al.,
2020). A modal analysis is a modern technique that is used
to study the dynamic characteristics of a transmission system

structure, including modal analysis of linear vibration theory
and experimental modal analysis (Bi et al., 2017). An exper-
imental modal analysis can only be carried out after the com-
ponents of the structure have been processed and assembled.
However, it has a longer test cycle and is more expensive.
In addition, it is easily affected by the quality of the pro-
cessing and assembly steps. Thus, it is difficult to use these
results in the design analysis stage (Arasan et al., 2021). As
a result, the experimental analysis is used to verify the re-
sults of the analysis of the theoretical model and modify it
accordingly. Various modal parameters, such as the modal
frequency, shape, quality, stiffness, and damping, affect the
dynamic load design (Rosa et al., 2020).

Since most of the internal, planetary, and sun gears are
excluded from these models, it is not possible to study the
effect of the internal gear thickness on the performance of
the TsSCS and its effect on the stress acting on the planetary
and sun gears and the load sharing between the planets. Sim-
ilarly, it is not possible to accurately predict the shape and
deflection of the gears. Although the abovementioned stud-
ies indicate that the adverse effects of the gear and planet
carrier manufacturing errors can be minimized by improving
the planetary load-sharing characteristics under quasi-static
conditions, these modifications lead to increased gear con-
tact stress. These static analyses alone cannot predict the ac-
tual design of the system because the increasing flexibility of
the TsSCS causes its performance to change only under dy-
namic conditions. This might also lead to a rise in the stress
acting on the gear. The current study, thus, studies the in-
herent characteristics of the TsSCS, constructs its dynamic
model, and synthetically analyzes its inherent and dynamic
response characteristics.

On such research topics, scholars have begun to carry out
theoretical research on the dynamic characteristics of PGSs,
including many aspects of the dynamic characteristics of
PGSs, such as free vibration, dynamic response, load sharing,
vibration control, and dynamic stability, but detailed study of
dynamic characteristics of the TsSCS with a planetary trans-
mission consisting of dual-power branches of underwater de-
vices has not yet been reported.

As mentioned above, the overall structure of the subject
of research has been revealed. In Sect. 2, the mathemati-
cal model of the semi-numerical analysis is presented. In
Sect. 3, the simulation application (analysis and application
of improved methods and simulation application of multi-
scale perturbation analysis method) of the analysis method
has been discussed in detail. In Sect. 4, the validation based
on frequency response characteristic analysis has been high-
lighted.
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2 Mathematical model of the semi-numerical
analysis

The first step of the dynamic calculation is to determine the
natural frequency and mode shape of the structure while ig-
noring its damping. These results reflect the basic dynamic
characteristics of the structure and its response trend under
dynamic loads. The double-branch composite transmission
system test bench is considered to be a single elastic body. As
shown in Fig. 2, a transmission diagram of the double-wide
helical planetary composite system, with a two-level power
branch, for high speed and heavy duty applications, has been
proposed. The differential equation of motion describing the
overall vibration of the test bench is given as

Mü(t)+Cu̇(t)+Ku(t)=Q(t), (1)

where ü(t), u̇(t), and ut refer to the acceleration, velocity,
and displacement vectors of the nodes in the vibration sys-
tem, respectively. M, C, and K represent the mass, damping,
and stiffness matrices of the vibration system, respectively.
Qt represents the external force vector received by node.
Only the inherent characteristics of the vibration system are
modeled and solved in the modal analysis. The model does
not contain external force terms and neglects the damping
terms that are assumed to have an insignificant impact on the
system. The differential equation of motion for an undamped
free vibration system is given as

Mü(t)+Ku(t)+ 0. (2)

The resonance solution form of the equation is given as
(Sakaridis et al., 2019)

u(t)= φ sinωnt, (3)

where u is the displacement vector, and φ is the characteristic
vector of the amplitude of the displacement vector u. ωn is
the natural angular frequency.

The resonance form of the equation is a key to the nu-
merical solution. It is derived under the assumption that all
degrees of freedom of the vibrating structure move in a syn-
chronous manner. During this process, the basic shape of the
structure does not change; only the amplitude varies. Accord-
ing to the dimensionless differential equation of the planetary
gear of the planetary gear train, its matrix form can be rewrit-
ten as

Mÿ+ ĉ(ẏ, τ )+ ĥ(y,τ )=Mÿ+ ĉ(ẏ, τ )ẏ

+K(y,ωmiτ )y = F(τ ). (4)

It is noteworthy that the stiffness matrix K is no longer
symmetric due to the transient nature of the phase angle of
the planetary gears.

2.1 Incremental harmonic balance and arc length
extension method

The harmonic balance method uses a description function
to approximate the nonlinearity caused by the gap and is
widely used in PGSs (Acri et al., 2019). The excitation
and response parameters are assumed to be harmonic func-
tions and are substituted in the nonlinear equation. The ap-
proximate expressions of the response and phase parame-
ters can thus be obtained using the condition of equal power
coefficients. Since this method is not limited by the de-
gree of nonlinearity, all the frequency response values can
be obtained. However, owing to the limitations of the as-
sumed excitation and response form, the accuracy of this
method is not satisfactory, particularly if the first harmonic
is considered. It results in the artificial loss of the superhar-
monic, subharmonic, or chaotic responses. Lau and Cheung
proposed the incremental harmonic balance (IHB) method
in 1981 to improve the accuracy of the existing harmonic
balance method. A Taylor series expansion was performed
on the nonlinear differential equations while ignoring the
higher-order derivatives to obtain the differential equations
in an incremental form. The Fourier series and the Galerkin
method were then used to obtain nonlinear algebraic equa-
tions. The entire process is divided into an incremental com-
ponent (Newton–Raphson method) and a harmonic balance
component (Galerkin method). This method has the advan-
tage of free control algorithm convergence accuracy, among
many others, and is thus an effective method for solving com-
plex nonlinear problems (Daneshjou et al., 2017). Rohan and
Lukeš (2019) used the incremental harmonic balance method
for a two-stage star gear train with multiple degrees of free-
dom; however, it is only used the response as an incremen-
tal parameter. If a singular point is encountered along the
path of the solution branch, the quasi-arc length parameter
is introduced. The original variables and parameters are as-
sumed to be functions of the arc length. This condition is
added to the original equation to smoothly track the path
through the singular point (Guo et al., 2014). The harmonic
balance method, based on the continuation of the arc-length,
has been applied to the pure torsion model of a fixed shaft
and a single-stage planetary transmission (Tomilina, 2015).
The incremental harmonic balance method, based on the con-
tinuation of the arc length, is used to calculate the dynamic
characteristic equation of the system used in this study. The
two incremental parameters (response and fundamental fre-
quency) are expressed in terms of the arc length to smoothly
overcome the singular points along the path. The formula to
calculate the steady-state response of a two-stage herring-
bone PGS is presented in this study. This method has not
yet been applied to planetary gear transmission systems.
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2.2 Incremental harmonic balance method

A new time variable τh =�τ is introduced in this method.
The expression of y, initially written in terms of τ , is rewrit-
ten in terms of τh. As a result, Eq. (4) is written as

�2Mÿ+�C (ẏ, τh) ẏ+K
(
y,
ωmi

�
τh

)
y = F(τh), (5)

where M, C, and K are the mass matrix, damping matrix, and
stiffness matrix of the TsSCS respectively. ωmi is the natural
angular frequency. The incremental process is the first com-
ponent of the IHB method. If yj0 and �0 are the solutions of
Eq. (5), their neighboring points can be expressed as

yj = yj0+1yj ,�=�0+1�,j = 1,2, . . .,M+N, (6)

where 1yi and 1� are the incremental parameters.
By substituting Eq. (6) into Eq. (5) and omitting high-

order small quantities, the incremental equation matrix can
be obtained with 1yi and 1� as the unknown quantities.

�2
0M1ÿ+�0C1ẏ+K1y

=R− (2�0Mÿ0+Cẏ0)1� (7)

R = F (τh)−
[
�2

0Mÿ0+�0Cẏ0+Ky0

]
, (8)

where R is the unbalanced force vector (also referred to as
the residual correction term in some studies). If yj0 and �0
are exact solutions, then R = 0.

The second component of the IHB method involves the
harmonic balance process. The steady-state response of the
system is described by a Fourier series. The response con-
tains only odd harmonics and is given as follows.

yj0 = aj0+

Nc∑
k=1

[
ajk coskτh+ bjk sinkτh

]
= CsAj (9)

1yj0 =1aj0+

Nc∑
k=1

[
1ajk coskτh+1bjk sinkτh

]
= Cs1Aj (10)

The response of the system and its increment can be writ-
ten in the following matrix form.

y0 = SA,1y = S1A (11)

After substituting Eq. (11) into the incremental Eq. (7) and
the unbalanced force Eq. (8), the Galerkin averaging process
is applied to obtain the equations for the unknown quantities
1A and 1�.

Kjc1A=R−Rjc1�, (12)

where Kjc =
∫ 2π

0 ST (�2
0MS′′+�0CS′+KS)dτh,

R =
∫ 2π

0 ST F(τh)−
∫ 2π

0 ST (�2
0MS′′+�0CS′+KS)dτhA,

and Rjc =
∫ 2π

0 ST (2�0MS′′+CS′)dτhA.

Figure 1. Partial schematic diagram of the balance path based on
the arc length extension method.

2.3 Arc length extension method

The arc length parameter equation, corresponding to Eq. (5),
can be expressed as

g(p)− s = 0. (13)

Assuming g(p)= pT p, p =
[
AT ,�

]T and substituting
the increments of A, �, and S in Eq. (13), the increment
equation can be obtained, as shown below.

∂g

∂AT
{1A}+

∂g

∂�
1�−1s+ g− s = 0 (14)

Figure 1 shows a part of the analytical balance path of the
arc-length extension method. And Eq. (13) can be rewritten
as

g(p)− s =
{
p′
}T
{p−pc} = 0 (15)

p′ = {pc−pcc}/‖pc−pcc‖ . (16)

The initial values of the upper and lower points pu of the
balance path are determined by the values of the previous two
points, pc and Pcc.

The complete incremental equation can be obtained by
combining Eqs. (12) and (14).

[
Jp
]
{1p} =

[ [
Kjc

] [
Rjc

]
{∂g/∂A}T ∂g/∂�

]{
1A

1�

}
=

{
R

−g+1s+ s

}
= [R̃], (17)

where Jp is the Jacobian matrix relative to {p}.
The above equation is expressed in an iterative form that

can be easily calculated, as shown below.

pi+1 = pi +
[
Jp
]−1 (pi) R̃ (pi) (18)
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Figure 2. Transmission diagram of a planetary composite system
with a two-level power branch.

Equation (18) represents the Newton–Raphson iterative
equation that is obtained after introducing the arc length pa-
rameter. The arc length parameter is used to predict the value
of the next solution from the current solution and is used as
the initial value in the next iteration.

3 Simulation application of the analysis method

3.1 Analysis application of the improved method

The transmission diagram of the double-wide helical plan-
etary composite system, with a two-level power branch, for
high speed and heavy duty applications, is shown in Fig. 2.
The system is composed of a star gear train I (sun gear zI

s ,
planet gear zm, and ring gear zI

r ) that is connected to a planet
gear train II (sun gear zII

s , planet gear zn, ring gear zII
r , and

planet carrier H ). The superscripts I and II correspond to
the series of the component. The input power is transmit-
ted to the load L by the sun gear zI

s . The input speed of the
second-stage planetary gear train is reduced according to the
deceleration of the first-stage planetary gear train, thereby
increasing the stability and smoothness of the transmission.
The system parameters are listed in Tables 1 and 2. The cal-
culated nonlinear response characteristics of the system are
shown in Figs. 3 to 5, which correspond to the time domain
response history, phase diagram, and Poincaré mapping of
the system, respectively. Owing to the space constraints in
this paper, we have only mentioned the torsional response of
the representative components. However, this does not im-
ply that the translational response of the components can be
neglected.

Since the number of unknowns exceeds the number of
equations, the expected increment must be specified before
performing the actual calculation. The increment specified in
this article is equal to 1�. Based on the structural flowchart
of the improved incremental harmonic balance method de-
picted in Fig. 3 and the dimensionless parameters listed in

Figure 3. Flowchart of the numerical integral calculation system
response.

Tables 1 and 2, the specific iterative process of the improved
method is given as follows.

The amplitude–frequency characteristic curves of the sys-
tem operating at the approximate working speed are shown
in Fig. 4. The figure compares the results obtained by the in-
cremental harmonic balance method and those obtained by
the numerical integration (NI) method. The latter is based on
the variable step size of the fourth and fifth steps, which is
the Runge–Kutta method.

The meshing frequency lies in the range of 3.3–3.7 kHz,
as shown in Fig. 4b and c. Amplitude jumps are observed in
both the sun gear and star gear of the star gear system. The
two methods are in this area. The amplitude values obtained
from both the methods do not match as well in this region as
they do in the others. In addition, the results of the numerical

https://doi.org/10.5194/ms-12-701-2021 Mech. Sci., 12, 701–714, 2021
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Figure 4. Variation of the torsional response amplitude of each component of the PGS using the IHB method.
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Figure 5. Amplitude–frequency variation curve of each component of the planetary gear system.
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integration method indicate the presence of a resonance peak
in other regions; however, the IHB method does not seem to
indicate the presence of a resonance peak. This is because the
number of harmonic response terms is insufficient.

The ring gear of the star gear system, shown in Fig. 4a,
and the sun gear of the planetary gear system, shown in
Fig. 4e, produce minimal amplitude resonance. The results
obtained by the numerical method and IHB method follow
a similar trend; however, a significant difference exists be-
tween the amplitude values. The variations in the amplitude
of the planetary carrier, shown in Fig. 4d, and the planetary
gears, shown in Fig. 4f, are relatively gentle. The curves ob-
tained from the two methods gradually tend to become con-
sistent with increasing mesh frequency, resulting in a signif-
icant amplitude variation of the planetary gears. This is con-
sistent at a 4.0 kHz bit frequency. The above analysis demon-
strates that the improved method is in agreement with the law
of amplitude–frequency change for each part of the system,
thereby illustrating the feasibility of this method.

3.2 Simulation application of the multi-scale
perturbation analysis method

The incremental harmonic balance method, which is based
on the arc-length continuation technique, is a semi-analytical
and semi-numerical method. It is necessary to perform a
purely analytical study of the dynamic characteristic equa-
tion of the system. Current studies adopt the multi-scale per-
turbation analysis method to obtain the analytical solutions
of parametric excitation and gap nonlinear system equations
(Li et al., 2019). The multi-scale perturbation (MsP) method
can obtain the analytical frequency response functions of a
system, including the fundamental, subharmonic, and super-
harmonic resonance responses (Tittus et al., 2020). Thus, this
technique demonstrates the impact of important parameters
on the response of the nonlinear dynamic characteristics, un-
like conventional numerical methods.

The small parameter ε = |ĉ(I)
sn|/k

II
sp, ĉ(I)

sn is introduced in the
first-order Fourier coefficient of the meshing stiffness of the
sun gear and planetary gears in the planetary gear system.
kII
sp refers to the average meshing stiffness and is written

in its dimensionless form for each gear pair, as shown below.

kI
sm(τ )= kI

sp

[
1+ ε

∞∑
l=1

(
blsme

j lωm1τ + cc
)]
,

kI
rm(τ )= kI

rp

[
1+ ε

∞∑
l=1

(
blrme

j lωm1τ + cc
)]

(19)

kII
sn(τ )= kII

sp

[
1+ ε

∞∑
l=1

(
clsne

j lωm2τ + cc
)]
,

kII
rn(τ )= kII

rp

[
1+ ε

∞∑
l=1

(
clrne

j lωm2τ + cc
)]
, (20)

where c(l)
sn =

ĉ
(l)
sn

|ĉ
(l)
sn|
=O(1), c(l)

rn =
ĉ

(l)
rn

|ĉ
(l)
sn |

kII
sp

kII
rp
=O(1),

b
(l)
sm =

kII
sp

kI
sp

b̂
(l)
sm

ĉ
(l)
sn

=O(1), b(l)
rm =

kII
sp

kI
rp

b̂
(l)
rm

ĉ
(l)
sn

=O(1).

The time required for the contact gear pair to disengage is
assumed to be negligible with respect to the response period,
i.e., ξ

T
=O(ε), where ξ is the disengagement time, and T =

2π
�

is the response period. The Fourier expansion of the non-
meshed function of the contact gear pair is expressed in terms
of the fundamental frequency �, as shown below.

2
(
δI
sm

)
= 1+ ε

∞∑
h=0

(
ĝ(h)
sme

jh�τ
+ cc

)
,

2
(
δI
rm

)
= 1+ ε

∞∑
h=0

(
ĝ(h)
rme

jh�τ
+ cc

)
(21)

2
(
δII
sn

)
= 1+ ε

∞∑
h=0

(
θ̂ (h)
sn e

jh�τ
+ cc

)
,

2
(
δII
rn

)
= 1+ ε

∞∑
h=0

(
θ̂ (h)
rn e

jh�τ
+ cc

)
(22)

The corresponding eigenvalue of Eq. (11) is expressed as

(Kb+K0)Vi = c2
i MVi, (23)

where K0 is the linear time-invariant average meshing stiff-
ness matrix, and K(y, t)=Ke+Kb+K0+Kd (y, t). Kd rep-
resents the change range matrix of the average meshing stiff-
ness K0, with its mean value equal to zero. Kb is the support
torsional stiffness matrix (including the support stiffness of
the star and planet gears). Ke is the additional stiffness matrix
generated due the transient phase angle of the planetary gear,
Ke = CII

pn+CII
sn+CII

rn, where CII
pn, CII

sn, and CII
rn are the co-

efficient matrices related to CII
pn, CII

psn, and CII
rn, respectively.

The vibration mode is given by V =
[
V1, . . .,V3(M+N+4)

]
,

and it satisfies the relation V TMV = I. The average stiffness
matrix K is given below.

K=K0+Kb =

M∑
m=1

(
kI
spKI

sm+ k
I
rpKI

rm

)
+

N∑
n=1

(
kII
spKII

sn+ k
II
rpKII

rn

)
, (24)

where KI
sm, KI

rm, KII
sn, and KII

rn are the coefficient matrices
related to kI

sp, kI
rp, kII

sp, and kII
rp.

Substituting Eqs. (25)–(28) into Eq. (11), we obtain

Mẏ+Cẏ+Key+ (Kb+K0)y+ ε
N∑
n=1

kII
spQ

II
s KII

sny

+ ε

N∑
n=1

kII
rpQ

II
r KII

rny+ ε

M∑
m=1

kI
spQ

I
sK

I
smy

+ ε

M∑
m=1

kI
rpQ

I
rK

I
rmy+O(ε)= F, (25)
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Figure 6. Bifurcation diagram of the variation of damping ratio with the error.
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where QI
s =

[∑
∞

l=1b
(l)
sme

j lωm1τ +
∑
∞

h=0ĝ
(h)
sme

jhωτ
]
+ cc,

QI
r =

[∑
∞

l=1b
(l)
rme

j lωm1τ +
∑
∞

h=0ĝ
(h)
rme

jhωτ
]
+ cc,

QII
s =

[∑
∞

l=1c
(l)
sne

j lωm2τ +
∑
∞

h=0θ̂
(h)
sn e

jhωτ
]
+ cc,

QII
r =

[∑
∞

l=1c
(l)
sr e

j lωm2τ +
∑
∞

h=0θ̂
(h)
rn e

jhωτ
]
+ cc.

The modal coordinate transformation y = V z can be used
to write the additional stiffness matrix coefficients in terms of
the small parameters. The resulting modal coordinate form,
obtained after the transformation of Eq. (31), is given as

z̈q + ελq żq + c
2
qzq + εn

II
c

3(M+N+4)∑
w=1[

N∑
n=1

CII
pnEpnqw +

N∑
n=1

CII
snEsnqw +

N∑
n=1

CII
rnErnqw

]
zw

+ ε

3(M+N+4)∑
w=1

[ M∑
m=1

(
kI
spQ

I
sGsmqw + k

I
rpQ

I
rGrmqw

)
+

N∑
n=1

(
kII
spQ

II
s Gsnqw + k

II
rpQ

II
r Grnqw

)]
zw

= V Tq F= fq , (26)

where Gsm = V
TKI

smV , Grm = V
TKI

rmV , Gsn =

V TKII
snV , Grn = V

TKII
rnV , Epn = V TCII

pnV , Esn =
V TCII

snV , and Ern = V TCII
rnV , Epnqw, Esnqw, and Ernqw

represent the elements in the qth row and ωth column of the
matrices Epm, Esn, and Ern, respectively. Gsmqw, Grmqw,
Gsnqw, and Grnqw represent the elements in the qth row and
the ωth column of the matrices Gsm, Grm, Gsn, and Grm,
respectively. The modal damping factor 2ζqcq has been
introduced and rewritten in terms of the small parameter
ε as ελq = 2ζqcq . εnII

c = ω
II
c , where ωII

c is the speed of
the second stage planet carrier. The small parameter ε is
related to the time change of the phase angle of the planet
gear in the second stage. A multi-scale method is applied
by introducing multi-scale variables such as τn = εnτ and
zq (τ0,τ1, . . .)= zq0(τ0,τ1, . . .)+ εzq1(τ0,τ1, . . .)+O(ε2).
Based on the abovementioned variables, the perturbation
equation with the first approximate solution is proposed, as
shown below.

∂2

∂τ 2
0
zq0+ c

2
qzq0 = fq (27)

∂2

∂τ 2
0
zq1+ c

2
qzq1 =−2

∂2zq0

∂τ0∂τ1
− λq

∂zq0

∂τ0

− nII
c

3(M+N+4)∑
w=1

( N∑
n=1

CII
pnEpnqw

+

N∑
n=1

CII
snEsnqw

+

N∑
n=1

CII
rnErnqw

)
zw0

−

3(M+N+4)∑
w=1

[ M∑
m=1

(
kI
spQ

I
sGsmqw

+ kI
rpQ

I
rGrmqw

)
+

N∑
n=1

(
kII
spQ

II
s Gsnqw + k

II
rpQ

II
r Grnqw

)]
zw0 (28)

Equation (34) is the perturbation equation used to calculate
the closed solution. The frequency response characteristics of
the system under different excitations can be studied using
this equation.

The amplitude–frequency characteristics of the system are
obtained and studied after solving the frequency response
equations under different resonance conditions according to
the multi-scale perturbation analysis method. A natural fre-
quency of 973.1 Hz is selected to study the frequency re-
sponse characteristics of the system during resonance in the
vibration mode of the planetary gear system. The amplitude–
frequency characteristics of the system are analyzed and
compared with the results obtained using the numerical in-
tegration method. The calculated amplitude–frequency char-
acteristic curve is shown in Fig. 5. Figure 5a shows that the
response amplitude of the ring gear of the star gear train cal-
culated by the multi-scale method differs significantly from
that of the numerical method. No amplitude jump was ob-
served, as shown in Fig. 5b and c. The variation trends of
the planetary carrier and gears of the planetary gear train, as
shown in Fig. 5d and f, are identical. The trends followed by
the variation of the responses in both methods are identical,
as shown in Fig. 5e. The larger difference is also the mag-
nitude of the amplitude. The difference between the values
of the amplitude obtained through both methods is relatively
large for the planet carrier and small for the planet gear.

4 Validation based on frequency response
characteristic analysis

However, the variation of the sun gear in the middle plane-
tary gear system is similar to that of the ring gear in the star
gear system. The response amplitudes of the sun gear and the
star gear in the star gear system are not consistent with those
obtained from the numerical method. The variation trends
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Figure 7. Phase plan of the composite transmission system.
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Table 1. System parameters.

Physical quantity and Sun gear Ring gear Planet carrier Star/planet gears
transmission parts’ marking

Level 1 Level 2 Level 1 Level 2 Level 1 Level 2 Level 1 Level 2

Quality (kg) 102 398 258 647 1300 300 647

Equivalent moment of inertia I/r2 (kg) 51.5 199 244 613 1300 150 324

Base circle diameter (mm) 385.27 479.24 1700.84 1700.84 657.78 610.80

Number of teeth 41 51 181 181 70 65

Meshing stiffness (N/m) kI
sp = 21.532× 109; kI

rp = 3.393× 109; kII
sp = 21.802× 109; kII

rp = 3.281× 109

Support stiffness (N/m) kI
r = k

II
c = k

II
r = k

II
s = k

I
p = k

II
p = 1.0× 1010; kI

s = 100; k12
rs = 0

Torsional stiffness of central member (N/m) kI
su = k

I
ru = k

II
su = k

II
ru = k

II
cu = kpmu = kpnu = 1010

Torsional stiffness of shaft (Nm/rad) k12
rsu = 2.0× 108

Pressure angle (◦) αsm = αrm = αsn = αrn = 20

Helix angle (◦) βbm = βbn = 24.62

(1) The initial value y0 is fixed according to the excitation frequency �=�0. (2) The increment 1A is obtained by substituting the value of the parameter 1� in Eq. (18).
Replace A with A+1A to obtain the updated values of the parameter 1y from Eq. (18). This is used to obtain 1y from Eq. (17). The modified solution y is then obtained
from Eq. (12). The process is repeated until the value of the parameter A satisfies R = 0. (3) A new increment is provided to �0 such that �=�0 +1�. The value of the
parameter A that is obtained in (2) is set as the initial value. The harmonic balance process is repeated, and the value of the parameter A is updated until it meets the condition
R = 0. (4) The arc length parameter s is introduced to determine the initial value of the next point from the value of the parameters A and � obtained in (2) and (3). This is
substituted as the initial value in Eq. (18), and the iteration step mentioned in (2) is repeated.

Table 2. Dimensionless parameters.

Parameter Star gear Planetary
representation train gear train

Dimensionless parameter ω̂ ω̂ = 1.1892e+ 0.04

Dimensionless parameter eI
s1 eI

s1 = 3.6059e− 0.05

Dimensionless meshing frequency ωmi ωm1 = 0.2758 ωm1 = 0.2758

Damping ratio ζ ζ = 0.02

Dimensionless error amplitude êI
sm = ê

II
sm = 1.1093

obtained through both methods were also different. The im-
pact of the variation of the damping ratio on the amplitude–
frequency response characteristics, upon the introduction of
the third harmonic error, is studied. It can be seen from Fig. 6
that the bifurcation characteristics of the system are complex,
and the introduction of errors increases the influence of the
damping ratio. The steady-state response of the ring and sun
gears of the star gear train is either a non-harmonic periodic
response or a simple harmonic periodic response, as shown
in Fig. 6a and e. The gears of the planetary gear train always
maintain a harmonic response without bifurcation, as shown
in Fig. 6f. The steady-state response of the planetary carrier
of the planetary gear train, as shown in Fig. 6d, is bifurcated
from a single period to a double period when the damping
ratio ζ is equal to 0.03. The steady-state response of the sun

gear of the star gear system, as shown in Fig. 6b, directly
branches from period doubling to a harmonic period response
at ζ = 0.035, and attains a chaotic state at ζ = 0.023. The
steady-state response of the star gear, as shown in Fig. 6c,
involves a period-doubling bifurcation from a single-cycle
bifurcation at ζ = 0.036. The steady-state response then bi-
furcates from period doubling to a chaotic state at ζ = 0.023.

The nonlinear response characteristics are depicted
through a phase diagram of the system–time domain in
Fig. 7. The phase diagrams shown in Fig. 7a, b, and c form
a closed curve loop, irregular shape, and an open curve, re-
spectively. The phase diagrams shown in Fig. 7d and f are
ellipses. The response carrier of the planetary gear train pro-
duces a pseudo-periodic response, as shown in Fig. 7e.
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The above analysis shows that the results obtained by the
multi-scale method can predict the trend of variation of the
responses of each component in a few regions. However, it
produces linear changes in the region involving an increase
in the amplitude. This behavior is attributed to the fact that
only one approximate solution was obtained in this study. It
is very difficult to increase the order of the solution for a
nonlinear system having multiple degrees of freedom. Thus,
the numerical method of calculation is more suited to be the
main method, with the analytical method serving as an aux-
iliary option.

5 Conclusions

The current paper proposes the application of the semi-
numerical incremental harmonic balance and semi-analytical
multi-scale perturbation methods to a two-stage series com-
posite PGS. Through this study, we attempt to solve the dy-
namic characteristic equation of a two-stage series composite
PGS through an analytical calculation.

The arc-length continuation technology is introduced to
improve the incremental harmonic balance method. The
improved method is used to calculate and analyze the
amplitude–frequency characteristics of the system. The fea-
sibility and effectiveness of the method are verified by com-
paring the results with those obtained using the numerical
integration method.

The analytical multi-scale perturbation method is then ap-
plied to a two-stage series composite PGS. The frequencies
of the main resonance, subharmonic resonance, and super-
harmonic resonance are obtained. A comparison between the
current results and those obtained from the numerical inte-
gration method suggests that it is feasible to use the multi-
scale method to analyze the two-stage series composite PGS.
However, the results may not be accurate in some regions.
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