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Abstract. A rigid-body dynamic model of multi-stage planetary roller screw mechanism (multi-stage PRSM)
is proposed in this paper. The structure of multi-stage PRSM is introduced and the motion analysis is presented.
The total kinetic energy of the mechanism is calculated. The rotation of the screws and carriers is chosen as
generalized degrees of freedom. The generalized forces and motion equations of multi-stage PRSM are derived
using the Lagrange method. The transient and steady-state behaviours of multi-stage PRSM are simulated, fol-
lowed by an analysis of the influence of friction coefficients and thread pitches on the motion and forces acting
on the multi-stage PRSM. Taking a two-stage PRSM as an example, the simulation results show that the friction
coefficient between screw #1 and screw #2 has a slight effect on efficiency and rotational velocity ratios of carri-
ers to screws. When the sum of the pitches of screws is a constant, the axial component of contact force between
screw #1 and roller #1 decreases with the increase in the pitch of screw #1.

1 Introduction

Multi-stage planetary roller screw mechanism (PRSM) is
a mechanical device which consists of several single-stage
PRSMs for converting rotational motion into long-stroke lin-
ear motion. The mechanism has the advantage of giving an
increased linear stroke for nearly the same closed length as
a single-stage PRSM. As the axial motion of the nut can be
transferred to the screw in the multi-stage PRSM, its output
speed is much higher than the single-stage PRSM. It also has
the advantages of high carrying capacity, long lifetime and
high stiffness. Thus, the multi-stage PRSM is better suited
to long stroke applications that require high loads and high
speed, such as in the vehicle, metallurgy and chemical indus-
tries.

Despite the importance of the multi-stage PRSM, there
is little fundamental research to support its engineering ap-
plication. Most of the previously published papers have fo-
cused on the single-stage PRSM. These papers addressed
meshing characteristics (Jones et al., 2013; Fu et al., 2017;
Sandu et al., 2018), load distribution (Zhang et al., 2016;

Abevi et al., 2016), kinematic analysis (Jones and Velinsky,
2012), lubrication and wear (Auregan et al., 2015; Xie et al.,
2019), manufacturing (Zhang et al., 2015), and thermal mod-
elling (Qiao et al., 2019). According to the bond-graph for-
malism, Karm et al. (2009) developed a simplified dynamic
model of the inverted PRSM and integrated it into a model
of electromechanical actuator. Considering the elastic con-
tacts between parts, Morozov et al. (2017) proposed a dy-
namic model of the PRSM to calculate the natural frequen-
cies of the mechanism and a linear electromechanical actu-
ator with the PRSM. Ma et al. (2017) proposed a dynamic
model of PRSM based on the bond graph theory that ac-
counts for friction forces, axial clearances, and the stiffness
of the screw. Qiao et al. (2017) developed a dynamic model
of the inverted PRSM in AMESim software, and the model
was used to analyse the dynamic response of electromechan-
ical brake system. Badrinarayanan et al. (2018) regarded the
PRSM as a screw–nut transmission system and derived a mo-
tion equation of the PRSM. Using the Lagrange method and
a viscous friction model, Jones et al. (2016) derived the mo-
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tion equations of single-stage PRSM and found that the car-
rier rotational velocity obtained from a dynamic model was
slightly slower than that from an ideal kinematic model. In
order to calculate the forces acting among the screw, roller,
nut and carrier, Fu et al. (2018) developed a rigid-body dy-
namic model of single-stage PRSM based on Newton’s sec-
ond law. Fu et al. (2020) then proposed an efficient dynamic
model by combing the Lagrange method and Newton’s sec-
ond law to reduce computation time. Wu et al. (2020) devel-
oped a purely torsional model of the PRSM and examined
the relationship between nature frequencies and the number
of rollers.

Although the above studies have made significant contri-
butions to the performance analysis of single-stage PRSM,
some issues need to be addressed for better understanding of
the dynamics performance of multi-stage PRSM. Firstly, the
torques and forces acting on different single-stage PRSMs
are different and related to each other. Secondly, the number
of parts in multi-stage PRSM is greater than in single-stage
PRSM. An efficient dynamic model should be developed to
avoid solving a large number of nonlinear equations. Lastly,
the influence of connections between different single-stage
PRSMs on the dynamics of multi-stage PRSM needs to be
studied.

Based on the issues mentioned above, a rigid-body dy-
namic model of multi-stage PRSM is proposed in this study
by using the Lagrange method. The total kinetic energy of
the mechanism is given after the motion analysis. The gen-
eralized forces corresponding to the rotation of the screw
and carriers are derived by taking the friction forces at the
screw–roller and screw–screw interfaces into consideration.
Then, the motion equations of multi-stage PRSM are devel-
oped. Lastly, an example is provided to show the transient
and steady-state behaviours of multi-stage PRSM. The influ-
ence of friction coefficients and the pitches of threads on the
motion and forces acting on the multi-stage PRSM is also
analysed and discussed.

2 Modelling

2.1 Kinetic energy

As shown in Fig. 1, the multi-stage PRSM mainly consists
of screws, nuts, rollers, carriers and ring gears. The symbol
k denotes the kth stage (k = 1, 2, . . . , nT , nT is the number
of stages in the multi-stage PRSM). In Fig. 1, nT = 2. The
axial motion of nut #(k− 1) is transferred to screw #k by
two thrust bearings. The global coordinate system is fixed in
space with its Z axis coincident with the axis of screw #1.
As screw #(k−1) and screw #k are connected by the splined
shaft shown in Fig. 1, the rotational velocities of screw #k
(k>1) θ̇Sk are the same:

θ̇Sk = θ̇S (k = 1,2, . . .,nT ) , (1)

where θ̇S is the given rotational velocity of the screw.

Figure 1. Structure and motion analysis of the multi-stage planetary
roller screw mechanism (multi-stage PRSM).

In this paper, screws, rollers and nuts are assumed to be
right-handed and the axial velocity of nut #kżNk is given as

żNk =−
θ̇S

2π

k∑
i=1

LSi, (2)

where LSi is the lead of screw #i and i = 1, 2, . . . , k. Then,
the axial velocity of screw #k (k>1) żSk can be given as

żSk = żN(k−1) (k > 1), (3)

where żN(k−1) is the axial velocity of nut #(k− 1).
When screws are rotating, rollers are rolling inside nuts.

If the rotational velocities of rollers about the screw axis are
the same and are equal to those of carriers, the velocity at the
centre of roller #kvRk is calculated as

vRk =

√
θ̇2

Pk(rSk + rRk)
2
+ ż2

Nk, (4)

where θ̇Pk is the rotational velocity of carrier #k, and rSk and
rNk are the nominal radii of screw #k and roller #k.

Referring to the kinematic analysis given by Jones and
Velinsky (2012), the rotational velocity of roller #k θ̇Rk about
its axis can be expressed as

θ̇Rk =− (nSk − 1) θ̇Pk, (5)

where nSk is the number of starts on the thread of screw #k.
Using Eqs. (1)–(3), the kinetic energy of screws TS in the

multi-stage PRSM can be derived as

TS =
1
2

nT∑
k=1

(
JSk θ̇

2
Sk

)
+

1
2

nT∑
k=2

(
mSk ż

2
N(k−1)

)
, (6)

where JSk and mSk are the moment of inertia and the mass
of screw #k. As the rotation of all nuts shown in Fig. 1 is
constrained, the kinetic energy of nuts TN is

TN =
1
2

nT∑
k=1

(
mNk ż

2
Nk

)
, (7)

where mNk is the mass of nut #k.
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According to the motion analysis shown in Fig. 1, the ki-
netic energy of carriers TP is written as

TP =
1
2

nT∑
k=1

(
2JPk θ̇

2
Pk

)
+

1
2

nT∑
k=1

(
2mPk ż

2
Nk

)
, (8)

where JPk andmPk are the moment of inertia and the mass of
carrier #k. The kinetic energy of rollers TR is derived as

TR =
1
2

nT∑
k=1

(
NRkJRk θ̇

2
Rk

)
+

1
2

nT∑
k=1

(
NRkmRk v̇

2
Rk

)
, (9)

where NRk is the total number of roller #k, and JRk and mRk
are the moment of inertia and the mass of roller #k. Then, the
total kinetic energy of the multi-stage PRSM Ttotal is

Ttotal = TS+ TN+ TP+ TR. (10)

Substituting Eqs. (6)–(9) into Eq. (10), the total kinetic en-
ergy Ttotal can be expressed as a function of the rotational
velocities of the screw and carriers:

Ttotal =
1
2
θ̇2

S

nT∑
k=1

[
JSk +

(
1

2π

k∑
i=1

LSi

)2

(mNk + 2mPk +NRkmRk)
]

+
θ̇2

S
8π2

nT∑
k=2

mSk

(
k−1∑
i=1

LSi

)2

+
1
2

nT∑
k=1

θ̇2
Pk

[
2JPk +NRkJRk(nSk − 1)2

+NRkmRk(rSk + rRk)2
]
. (11)

2.2 Generalized forces and motion equations

As shown in Fig. 2, MSk and fSk are the driven torque and
the friction force acting on the internal spline teeth of screw
#k. FNk is the external force acting on nut #k, and fSrk is the
friction force between screw #k and roller #k. oPk–xPkyPkzPk
is a local coordinate system fixed at the centre of carrier #k.
φPk is the angle between the X axis and xPk axis. There is
no slip at the nut–roller interface if screws, rollers and nuts
are regarded as rigid bodies, and manufacturing and assem-
bly errors are not included. Besides, the friction coefficients
in thrust bearings are usually very small. Hence, the friction
force at the nut–roller interface and that in thrust bearings are
ignored in this paper. When the driven torque MSk is given,
the friction force fSk can be expressed as

fSk = µSS
|MSk|

rSSk
sign(θ̇S) (k > 1), (12)

where µSS is the friction coefficient between external and
internal spline teeth, and rSSk is the nominal radius of internal

spline teeth on screw #k. sign() is a symbolic function, and
sign(θ̇S) is defined as

sign
(
θ̇S
)
=


1 θ̇S > 0
0 θ̇S = 0
−1 θ̇S < 0

. (13)

As mentioned by Fu et al. (2018), the slip velocity between
screw #k and roller #k can be represented in the local coor-
dinate system oPk–xPkyPkzPk as

vPk
Rsk =

 −rSrk(θ̇S− θ̇Pk) sinϕSrk − nSk θ̇PkrRsk sinϕRsk
rSrk(θ̇S− θ̇Pk)cosϕSrk − nSk θ̇PkrRsk cosϕRsk

θ̇SLSk/(2π )

 , (14)

where rSrk , rRsk , ϕSrk and ϕRsk are the contact radii and
angles at the screw–roller interface, which can be obtained
from the model developed by Fu et al. (2017). According to
Coulomb’s law, the friction force fSrk is

f Srk =

 fSrxk
fSryk
fSrzk

=HPk ·µSRFSrk

(
−vPk

Rsk
)∥∥vPk

Rsk

∥∥ , (15)

where fSrxk , fSryk and fSrzk are theX, Y and Z components
of the friction force f Srk , µSR is the friction coefficient at
the screw–roller interface, FSrk is the contact force between
screw #k and roller #k, and HPk is the rotational matrix relat-
ing to the global coordinate system O–XYZ and local coor-
dinate system oPk–xPkyPkzPk:

HPk =

 cosφPk sinφPk 0
−sinφPk cosφPk 0

0 0 1

 . (16)

Based on the Lagrange method, the generalized force cor-
responding to the rotational velocity of the screw θ̇S can be
given as

GS = FN(nT ) ·
∂żN(nT )

∂θ̇S
+MS1 ·

∂θ̇S1

∂θ̇S

+

nT∑
k=1

[
NRkf

T
Srk ·

∂
(
HPkv

Pk
Sk
)

∂θ̇S

]

+

nT∑
k=2

(
fSk ·

∂żSk

∂θ̇S

)
, (17)

where FN(nT ) is the external force acting on the last nut,MS1
is the driven torque acting on screw #1 and vPk

Sk is the veloc-
ity of the contact point on screw #k represented in the local
coordinate system oPk–xPkyPkzPk as

vPk
Sk =

[
−θ̇SrSrk sinϕSrk θ̇SrSrk cosϕSrk 0

]T
. (18)

The generalized force corresponding to the rotational veloc-
ity of carrier #k is

GPk =NRk
(
−f Srk

)T
·
∂
(
HPkv

Pk
Rk
)

∂θ̇Pk
, (19)
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where vPk
Rk is the velocity of the contact point on roller #k

represented in the local coordinate system oPk–xPkyPkzPk as

vPk
Rk =

 θ̇Pk (−rSrk sinϕSrk + nsrRsk sinϕRsk)
θ̇Pk (rSrk cosϕSrk + nsrRsk cosϕRsk)

−
(
θ̇SLSk

)
/(2π )

 , (20)

where LSk is the lead of screw #k.
Using the total kinetic energy shown in Eq. (11) and the

generalized forces given in Eqs. (17) and (19), the motion
equation of the multi-stage PRSM is given as{ d

dt (
∂Ttotal
∂θ̇S

)− ∂Ttotal
∂θS
=GS

d
dt (

∂Ttotal
∂θ̇Pk

)− ∂Ttotal
∂θPk
=GPk

, (21)

and Eq. (21) can be rewritten as

GS = θ̈
2
S

nT∑
k=1

[
JSk +

(
1

2π

k∑
i=1
LSi

)2

(mNk + 2mPk +NRkmRk)
]

+
θ̈2

S
4π2

nT∑
k=2

mSk

(
k∑
i=1
LSi

)2

GPk = θ̈
2
Pk

[
2JPk +NRkJRk(nS− 1)2

+NRkmRk(rSk + rRk)2
]

. (22)

The motion equation shown in Eq. (22) includes (nT+1)
nonlinear equations. As the contact force, FSrk , between
screw #k and roller #k and the driven torque, MSk , acting
on the internal spline teeth of screw #k are not given, more
equations should be added in order to solve Eq. (22).

According to the equilibrium of the torques and forces act-
ing on screw #k, the rotational and translational motion equa-
tions of screw #k are

JSk θ̈S = rSrk

(
fSryk cosϕSrk − fSrxk sinϕSrk

)
+MSk −MS(k+1), (23)

mSk z̈Sk =−FN (k−1)+ fSk − fS(k+1)+ fSrzk +FSrzk, (24)

where FSrzk is the axial component of the contact force be-
tween screw #k and roller #k and can be given as

FSrzk =
FSrk√

1+ tan2βSk +
[
LSk/ (2πrSrk)

]2 , (25)

where βSk is the flank angle of screw #k.
Similarly, the motion equation corresponding to the axial

translation of roller #k and nut #k is given as(
mRk +

mNk

NRk

)
z̈Nk =−fSrzk −FSrzk +

FNk

NRk
, (26)

where FNk is the external force acting on nut #k and NRk is
the total number of roller #k. There are (4nT − 1) unknowns
in Eqs. (22)–(26) which provide (4nT − 1) nonlinear equa-
tions. The motion and the forces acting on roller #k, screw
#k and nut #k in the multi-stage PRSM can be obtained by
solving Eqs. (22)–(26).

Figure 2. Force analysis of the kth stage in the multi-stage PRSM.

3 Results and discussion

3.1 Transient and steady-state behaviours

A two-stage PRSM (nT = 2) is used as an example in this
section. The structural and mass parameters of screw #1, nut
#1, roller #1 and carrier #1 are given as follows. The nominal
radii of screw #1, roller #1 and nut #1 are rS1 = 9.75, rR1 =

3.25 and rN1 = 16.25 mm, respectively. The lead, start num-
ber and flank angle of screw #1 are LS1 = 10 mm, nS1 = 5
and βS1 = 45◦, respectively. The total number of roller #1 is
NR1 = 7. The mass of roller #1 and nut #1 are mR1 = 0.017
andmN1 = 2.5 kg. The inertia moments of screw #1, roller #1
and carrier #1 are JS1 = 55, JR1 = 0.08 and JP1 = 3 kg mm2,
respectively. The structural and mass parameters of screw #2,
nut #2, roller #2 and carrier #2 are rS2 = 16.5, rN2 = 27.5,
rR2 = 5.5, nS2 = 5,LS2 = 10, βS2 =45 mm,NR2 = 7,mS2 =

0.77, mN2 = 18, mR2 = 0.04 kg, JS2 = 170, JR2 = 0.48 and
JP2 = 12 kg mm2. The nominal radius of internal spline teeth
on screw #2 is rSS2 = 13 mm.

When the external force acting on nut #2 is FN2 = 5000 N,
and the rotational velocity of the screw is 100 rad s−1. The
transient and steady-state behaviours of the two-stage PRSM
are shown in Fig. 3a–d. In Fig. 3a,

ζPSk =
θ̇Pk

θ̇S
(k = 1or2), (27)

where ζPSk is the rotational velocity ratio of carrier #k to the
screw.

Because the axial movement of screw #2 is driven by nut
#1 in the two-stage PRSM, the contact fore at the screw#1–
roller #1 interface is larger than at the screw #2–roller #2 in-
terface. Thus, the slope of ζPS1 is steeper than that of ζPS2
before the steady state is reached, as shown in Fig. 3a. It
takes carrier #1 about 0.14 ms to reach at the steady state.
After t = 0.46 ms, carrier #2 reaches at the steady state and
the value of ζPS2 is larger than that of ζPS1. Because the helix
angle of screw #2 is smaller than that of screw #1, the contact
point at the screw #2–roller #2 interface is closer to the point
of tangency between their pitch circles. This will reduce the
slip between screw #2 and roller #2. When the rotational ve-
locity of carrier #k increases, the tangential component of the
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Figure 3. Transient and steady-state behaviours of the two-stage PRSM: (a) rotational velocity ratios, (b) driven torque acting on screw #k,
(c) axial component of the contact force at the screw #k–roller #k interface, (d) efficiency and friction force between screw #2 and screw #1.

slip velocity vPk
Rsk and the friction torque acting on screw #k

decrease. Therefore, the values of driven torques, MS1 and
MS2, at the beginning of the simulation are larger than those
at the steady state, as shown in Fig. 3b. As the rotational
movement of screw #2 is driven by screw #1, the value of
MS1 is much larger than that of MS2 all the time. It should
be noticed that the nominal radius of screw #1 is smaller than
that of screw #2. After t = 0.14 ms, the value ofMS2 remains
stable for a short time and then reduces to the steady-state
value. The difference between the values of MS1 and MS2 is
the largest at t = 0 ms.

The axial component of the friction force between screw
#k and roller #k increases when the rotational velocity of car-
rier #k increases. This will lead to the increase of the contact
force between screw #k and roller #k, as shown in Fig. 3c.
Because the value of FSrz1 is also influenced by the friction
force at the screw #1–screw#2 interface, it decreases when
the driven torque of screw #2 decreases. The contact force
between screw #1 and roller #1 is always larger than be-
tween screw #2 and roller #2. In Fig. 3d, the efficiency η
is expressed as

η =
FN2 (LS1+LS2)

2πMS1
, (28)

where FN2 is the external force of acting on nut #2 and MS1
is the driven torque acting on screw #1.

As shown in Fig. 3d, the efficiency of the two-stage PRSM
is less than 0.45 at the beginning of the simulation and it in-
creases nearly to 0.80 at the steady state. This is because that
the driven torque of screw #1 decreased during the simula-
tion. The friction force between screw #1 and screw #2 is
also as shown in Fig. 3d. According to Eq. (12), the value
of friction force varies with changes in the driven torque of
screw #2. Thus, the change of fS2 in Fig. 3d is similar to that
of MS2 in Fig. 3b.

3.2 Influence of friction coefficients

When the friction coefficient between the screw and roller is
0.1 or 0.2, and that between screw #1 and screw #2 is 0.2 or
0.3, the transient and steady-state behaviours of the two-stage
PRSM are as shown in Fig. 4a–d.

Because the rolling of rollers is driven by friction forces at
the screw–roller interface, the slope of ζPS1 or ζPS2 increases
with the increase in µSR, as shown in Fig. 4a. The friction
coefficient between screw #1 and screw #2 has a slight ef-
fect on the values of ζPS1 and ζPS2. According to Eqs. (15),
(19) and (22), the friction forces at the screw–roller inter-
face and the external forces acting on nuts have no influence
on the values of ζPS1 and ζPS2 when the rotational acceler-
ations of carriers #1 and #2 are zero. As shown in Fig. 4a,
the values of ζPS1 and ζPS2 remain steady at the steady state
under different friction coefficients. As shown in Fig. 4b, the
contact forces between the screw and rollers increase when
the friction coefficient between threads is increased. The ax-
ial components of friction forces at the screw–roller interface
have greater influence on the contact forces at the interface
than the tangential components. The difference between the
contact force at t = 0 and t = 0.75 ms also increases with the
increase in the friction coefficient between threads, as shown
in Fig. 4b. Because the forces acting on the splined shaft can
not affect the forces acting on roller #2, the contact force be-
tween screw #2 and roller #2 is independent from the friction
coefficient between screw #1 and screw #2.

As Fig. 4c shows, the efficiency decreases with the in-
crease in the friction coefficient at the screw–roller inter-
face. Meanwhile, the friction coefficient between screw #1
and screw #2 has a slight effect on the efficiency. This is be-
cause the friction force between screw #1 and screw #2, as
shown in Fig. 4d, is much smaller than the external force act-
ing on nut #2. Besides, the increase of the friction coefficient
at screw #1 and screw #2 can only lead to a small increase
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Figure 4. Influence of friction coefficients on (a) rotational velocity ratios, (b) axial component of the contact force at the screw #k–roller
#k interface, (c) efficiency and (d) friction force between screw #2 and screw #1.

Figure 5. Influence of thread pitches on (a) rotational velocity ratios, (b) axial component of the contact force at the screw #k–roller #k
interface, (c) efficiency and (d) friction force between screw #2 and screw #1.

in the contact force at the screw #1 and the roller #1 inter-
face, as shown in Fig. 4b. As Fig. 4d shows, the friction force
between screw #1 and screw #2 increases with the increase
in the friction coefficients. This is because the driven torque
acting on screw #2 is influenced by the friction force between
screw #2 and roller #2. As Fig. 4d shows, the friction coeffi-
cient between the screw and rollers has greater influence on
the value of fS2 at the beginning of simulation, and that be-
tween screws #1 and #2 has greater influence on the value of
fS2 at the steady state.

3.3 Influence of thread pitches

When the sum of pitches of screw #1 and screw #2 is equal to
4 mm and those are chosen from 1 to 3 mm, the transient and
steady-state behaviours of the two-stage PRSM are as shown
in Fig. 5a–d.

When the thread pitches decrease, the tangential compo-
nents of friction forces at the screw–roller interface increase
and the contact point on the screw is close to the point of

tangency between pitch circles. As shown in Fig. 5a, when
the pitch of screw #1 is decreased, it takes ζPS1 less time to
reach at the steady state, followed by an increase in steady-
state value of ζPS1. The change of the curve of ζPS2 in Fig. 5a
is similar to that of ζPS1. As shown in Fig. 5b, the contact
force at the screw #2–roller #2 interface slightly increases
when the pitch of screw #2 is increased. This is because the
axial component of the friction force at the screw #2–roller
#2 interface increases with the increase in the pitch of screw
#2 and the pitch of screw #1 has no effect on the friction
force. The increase of the pitch of screw #2 leads to the in-
crease in the driven torque acting on screw #2. It enlarges
the friction force between screw #1 and screw #2, as shown
in Fig. 5d. By comparing Fig. 5b and d, it can be found that
the influence of the pitch of screw #2 on the friction force at
the screw #1 and the screw #2 interface is much greater than
at the screw #2–roller #2 interface. Therefore, the value of
FSrz1 decreases when the pitch of screw #1 is increased.

As shown in Fig. 5c, the pitches of screws have slight in-
fluence on the steady-state efficiency of the two-stage PRSM
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when the sum of pitches is a constant. It should be noticed
that if the length of a roller is a constant, the number of
thread teeth on the roller will increase with the decrease in
the thread pitch. Therefore, the pitch of screw #1 can be
smaller than that of screw #2 in order to reduce the contact
forces acting on thread teeth at the screw #1–roller #1 inter-
face. As shown in Fig. 5c, the value of fS2 increases with the
increase in the pitch of screw #2.

4 Conclusions

A rigid-body dynamic model of multi-stage planetary roller
screw mechanism (PRSM) has been proposed in this paper.
A structure and motion analysis of multi-stage PRSM were
presented, and the total kinetic energy of the mechanism was
calculated. The generalized forces corresponding to the rota-
tional movements of the screw and carriers were derived by
using the Lagrange method. The motion equations of multi-
stage PRSM were developed. Based on the examples pro-
vided in this paper, several conclusions are listed below.

Although the nominal radius of screw #1 is smaller than
that of screw #2, the driven torque and contact force acting on
screw #1 are larger than those acting on screw #2. It will take
carrier #2 more time than carrier #1 to reach at the steady
state. When the pitches of screw #1 and screw #2 are the
same, the rotational velocity of carrier #2 is larger than that
of carrier #1 at the steady state.

The efficiency of the two-stage PRSM decreases with the
increase in the friction coefficient at the screw–roller inter-
face. The friction coefficient between screw #1 and screw
#2 has a slight effect on the efficiency. These friction co-
efficients have no effect on the rotational velocities of car-
riers. The friction coefficient between the screw and rollers
has greater influence on the friction force between screw #1
and screw #2 at the beginning of simulation.

When the sum of the pitches of screw #1 and screw #2 is
a constant, the pitches have little influence on the efficiency
of the two-stage PRSM. The influence of the pitch of screw
#2 on the friction force at the screw #1–screw #2 interface
is much greater than at the screw #2–roller #2 interface. The
axial component of contact force between screw #1 and roller
#1 decreases with the increase in the pitch of screw #1.
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