
Mech. Sci., 12, 443–449, 2021
https://doi.org/10.5194/ms-12-443-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mixed synthesis method of motion and
path of planar four-bar linkages

Rui Wu, Ruiqin Li, Hailong Liang, and Fengping Ning
School of Mechanical Engineering, North University of China, 030051 Taiyuan, China

Correspondence: Ruiqin Li (liruiqin2020@163.com)

Received: 3 September 2020 – Revised: 4 March 2021 – Accepted: 23 March 2021 – Published: 27 April 2021

Abstract. The mixed synthesis of motion and path generation, which is also known as the Alt–Burmester prob-
lem, is an attractive problem for study. However, such a problem for the four-bar linkages which possess more
thanM poses (M > 5) and mixedN path points has not been well-solved. In this work, a mixed synthesis method
is developed for planar four-bar linkages to cope with the above problem. The developed method can quickly
select an optimal combination that contains five poses and N points by using the conic filtering algorithm, which
is based on the similar characteristics of the value and direction between the conic and coupler curves in a certain
neighborhood. Next, the selected five poses are substituted into a simplified equation system of motion synthesis
which includes four equations and four variables to solve the parameters of the planar four-bar linkage. Finally,
a case is provided to validate the effectiveness of the developed method in the mixed synthesis problem.

1 Introduction

In general, kinematics problems are categorized into three
kinds of problems that can be solved by three different so-
lutions (Nolle, 1974; Li et al., 2020). Such a classifica-
tion covers most kinematics synthesis problems. Some kine-
matic synthesis problems, however, fall into a class of prob-
lems that cannot be well-solved, such as the mixed synthesis
problem with motion and path constraints. Therefore, fur-
ther research on this kind of kinematics synthesis problem
is needed. Tong et al. (2013) proposed naming such a mixed
kinematics problem the Alt–Burmester problem and devel-
oped a combination of the geometric constraint program-
ming (GCP) and numerical solutions of synthetic equations
to solve such a problem. Brake et al. (2016) used a numerical
algebraic geometry method to study all the Alt–Burmester
problems with finite solutions under the case 2M +N ≤ 10
(M poses, N path points), where each solution set under the
general case has dimensions and orders from zero to eight.
Sharma et al. (2019) presented an analytical method based on
the Fourier approximation to deal with the mixed synthesis
problems, where the harmonic decomposition of the closed-
loop equation represents the analytic relationship between
the direction and the path. Then, the path points are converted
to a back position to obtain the parameters of the motion

synthesis problem. Zimmerman (2018) presented a graphi-
cal method for solving the mixed synthesis problems. How-
ever, this research only focused on the case of 2M+N ≤ 10.
Sharma et al. (2019) further generalized the research on the
Alt–Burmester problem to the case 2M +N > 10 under the
constraint M ≤ 5. In view of these, this paper proposes a
mixed synthesis method for such a problem, namely the
Alt–Burmester problem (2M +N > 10), where M satisfies
M > 5.

Motion, path, and function generation are three categories
of linkage synthesis problems that have three different syn-
thesis equations (Zhao et al., 2016b; Pennestri and Valen-
tini, 2018). In general, planar four-bar linkages can accu-
rately visit up to five positions or nine path points (Zhao
et al., 2016a; Sleesongsom and Bureerat, 2018). Bai et al.
(2020) studied a single-degree-of-freedom 10-bar mecha-
nism to track 10 exact positions. Among the above three
kinds of mechanism synthesis problems, the path genera-
tion of four-bar linkages is the most challenging problem
(Wampler et al., 1992; Khan et al., 2015; Buskiewicz, 2018)
because of the complexity of the path synthesis equation.
To solve path synthesis equations, various methods were at-
tempted, such as the homotopy method, the evolutionary al-
gorithm, and the Fourier algorithm (Morgan and Wampler,
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1990; Cabrera et al., 2011; Guigue and Hayes, 2016). Also,
another path synthesis problem, the coupler-curve synthesis,
has been studied with a fully analytical method and a method
that combines both the analytical and graphical methods (Wu
et al., 2021; Bai et al., 2021). There are few reports on the
study of equations for mixed synthesis problems. In this pa-
per, a mixed synthesis method based on the equation of mo-
tion synthesis is proposed.

The studied mixed synthesis method is mainly for the Alt–
Burmester problem with the case 2M+N > 10,M > 5. The
steps of the proposed method are roughly depicted as fol-
lows.

1. The conic filter algorithm is employed to transform the
mixed synthesis problem into a motion synthesis prob-
lem.

2. A more easy-to-solve motion synthesis with four equa-
tions and four variables is governed for analysis.

3. More binary linkage groups can be obtained by solving
the equations of motion synthesis.

4. The four-bar linkage synthesis is achieved by the opti-
mal combination.

The remainder of this paper is organized as follows: Sect. 2
explains the theory of the filtering algorithm. Section 3 es-
tablishes a model and provides the derivation of the exact
synthesis equation. Section 4 gives a case to validate the ef-
fectiveness of the proposed method. Section 5 summarizes
the contribution of this paper.

2 Conic filtering algorithm

The conic filtering algorithm uses a conic curve to fit the
given pose and path points for finding the five-pose com-
binations that include the optimal combination. Under this
algorithm, a mixed synthesis problem is turned into an exact
motion synthesis problem. In this work, the over-constrained
problem is transformed into a motion synthesis problem by
quickly selecting the target design points. As there are many
motion synthesis problems of the planar four-bar linkages,
the mixed synthesis problem can be solved more elegantly
after such a transformation.

To better explain the principle of the conic filtering algo-
rithm, an important theorem, Taylor expansion, is reviewed.
The mathematical form of the Taylor expansion on a binary
function at point (xk,yk) is expressed as

f (x,y)= f (xk,yk)+ (x− xk)f ′x(xk,yk)

+ (y− yk)f ′y(xk,yk)

+
1
2

(x− xk)2f ′′xx(xk,yk)

+
1
2

(x− xk)(y− yk)f ′′xy(xk,yk)

+
1
2

(x− xk)(y− yk)f ′′yx(xk,yk)

+
1
2

(y− yk)2f ′′yy(xk,yk)+ on. (1)

Such an expansion approximates the value of a target func-
tion in the neighborhood of a certain point by constructing a
polynomial that contains the derivatives of the target func-
tion as coefficients. The beauty of Taylor expansion is that a
complex primitive function can be approximated by a simple
polynomial, and the principle of the conic filtering algorithm
has a similar idea.

Both Blechschmidt and Uicker (1986) and Bai and An-
geles (2015) mentioned that a coupler curve is a sixth-order
nonlinear equation. However, solving the coupler curve in
such a sixth-order nonlinear equation is still a challenging
problem. It is easier to use a five-pose composite to form
a conic curve (which will be illustrated later) than to use a
traditional nine-point for the path generation. Therefore, the
developed conic filtering algorithm mainly uses five points
on the coupler curve to synthesize a conic curve. The value
of the synthesized conic curve in some specific ranges can be
approximated to a value on the coupler curve.

The conic algebraic equation f (x,y) can be expressed as

f (x,y)= A1x
2
+A2xy+A3y

2
+A4x+A5y+A6 = 0, (2)

where Ai is the coefficients of conic algebraic equation
f (x,y) and A1 6= 0.

With the introduction of the new coefficients ai =
Ai+1
A1

,
the conic algebraic equation f (x,y) can be re-written by

f (x,y)= x2
+ a1xy+ a2y

2
+ a3x+ a4y+ a5 = 0. (3)

The conic filtering algorithm calculates errors by finding
a conic curve in a given range to replace the coupler curve.
Also, the use of the conic curve can reduce the computational
complexity and computing cost in solving the mixed synthe-
sis. Although there is no rigorous mathematical proof for the
conic filtering algorithm, its principle is intuitive from the
geometric point of view, as shown in Fig. 1.

In Fig. 1, all the points P1, P2, P3, P4, P5, and P6 are on
the coupler curve 0(x,y), where the form of the conic equa-
tion corresponds to Eq. (3). According to the formula, any
five points can determine unique conic curves, and an ad-
ditional point will determine five more conic curves (C5

M =

M!
5!×(M−5)! ). The conic curve fi(x,y) and the coupler curve
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Figure 1. Geometric schematic of the conic filtering algorithm.

0(x,y) have highly similar curve properties within a cer-
tain range (or a large neighborhood). For example, the conic
curve f1(x,y) within the range of (P1–P5) has a smaller error
than the coupler curve, while the conic curve f4(x,y) within
the range of (P1, P2, P4–P6) has a larger error than the cou-
pler curve, though their shapes are similar.

The errors of both the conic curve and the coupler curve
are smaller within a certain range. Therefore, the conic curve
is used to select the optimal combination instead of the cou-
pler curve. In this work, we believe that the most suitable
point for the synthesis of the coupler curve is to select five
points that correspond to the conic curve calculated by the
optimization theory.

It should be emphasized that the angle problem is not con-
sidered in the filtering process. Because the curves in a cer-
tain range are highly similar, this work assumes that the prop-
erties of the curves are also similar.

The process of the filtering algorithm can be implemented
by the following three steps.

1. Calculate all combinations of pose constraints.

2. Calculate the conic coefficients for solving the corre-
sponding error.

3. Find the minimum error of the conic curve.

The objective function for minimizing the error can be ex-
pressed by

fobj =

N∑
i=1
|Piy − fi(x)|, (4)

where fi(x) is the conic function and Piy is known.

3 Problem formulation

A typical four-bar linkage is shown in Fig. 2, where the origin
of the fixed coordinate system is denoted by O–XY and can

Figure 2. A typical planar four-bar linkage.

be arbitrarily selected. The position of the four-bar linkage
can be uniquely determined by the five points, A,B,C,D,
and P . B(b1x,b1y) andD(d1x,d1y) are the coordinates of the
fixed pivots. Herein, A(a1x,a1y), B(b1x,b1y), C(c1x,c1y),
andD(d1x,d1y) are the coordinates described inO–XY . The
position of the revolute joints (A and C) at the ith position
are represented by A(aix,aiy) and C(cix,ciy). θ is the rota-
tion angle between line AC and the horizontal axis. θi is the
rotation angle of the ith pose.

The four-bar linkage can be divided into two dyads,
namely PAB and PCD. These two links have the same mo-
tion synthesis because PAB and PCD have the same motion
equation.

Because the dimension of the linkage AB is always fixed
during the movement, there is a constraint equation on the
linkage AB.

(aix − b1x)2
+ (aiy − b1y)2

= (a1x − b1x)2
+ (a1y − b1y)2

i = 2,3, . . .5, (5)

where aix and aiy in Eq. (5) can be expressed by the follow-
ing matrix form:[
aix
aiy
1

]
=

[
cosθi −sinθi Pix −P1x cosθi +P1y sinθi
sinθi cosθi Piy −P1x sinθi −P1y cosθi

0 0 1

]

·

[
a1x
a1y
1

]
, (6)

where θ is the rotation angle of the four-bar linkage; θi is the
rotation angles of the ith pose; (aix,aiy) are the coordinates
of point A for the ith movement; (Pix,Piy) are the coordi-
nates of point P for the ith movement. Substituting Eq. (6)
into Eq. (5), the following equations are derived.
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Fi(a1x,a2y,b1x,b2y)= (Pix − b1x −P1x cos(θi)

+P1y sin(θi)+ a1x cos(θi)− a1y sin(θi))2

+ (Piy − b1y −P1y cos(θi)−P1x sin(θi)

+ a1y cos(θi)+ a1x sin(θi))2
− (a1x − b1x)2

− (a1y − b1y)2 i = 2. . .5, (7)

where Fi(aix,aiy,b1x,b1y) is the function of each motion
synthesis; (b1x,b1y) are the coordinates of point B for the
first movement; (c1x,c1y) are the coordinates of point C for
the first movement; (d1x,d1y) are the coordinates of point D
for the first movement.

It is obvious that Eq. (7) is an equation system consist-
ing of four equations and four parameters (a1x , a1y , b1x ,
and b1y). Because this equation system cannot be solved di-
rectly by the traditional equation solver, a classical elimina-
tion method is used to simplify it (Wen-Tsun, 1986). The re-
solved equations by such a method are composed of a set of
triangular equations, which can be solved directly by the new
equation solver. Besides, the resolved equation system im-
proves computational efficiency and robustness. Due to the
complexity of the expression of the resolved equations, a set
of simplified expressions are derived:

F2(a1x,a1y,b1x,b1y)= 0, (8)
F3(a1y,b1x,b1y)= 0, (9)
F4(b1x,b1y)= 0, (10)
F5(b1x,b1y)= 0. (11)

Parameters a1x and a1y are eliminated in the operations
in Eqs. (10)–(11). It is obvious that Eqs. (10)–(11) are the
binary quadratic equations whose analytic solutions can be
obtained by the symbolic calculation. The resulting solution
is then substituted into Eqs. (8)–(9) to obtain all the solutions.
Herein, the detailed steps are listed.

1. Give a mixed constraint in the plane coordinate system.

2. Calculate the value of the function f (x,y) and find the
minimum value that corresponds to the five coordinates
Pi(Pix,Piy).

3. Substitute the solved parameters Pi(Pix,Piy) into
Eqs. (10)–(11); then the parameters, b1x and b1y , can
be solved.

4. Substitute the solved parameters, b1x and b1y , into
Eqs. (8)–(9); then the parameters, a1x and a1x , can be
solved.

5. Find the combinations of two dyads that satisfy all the
conditions in the motion synthesis.

Compared with other research on the Alt–Burmester prob-
lem, the differences between this work and the existing liter-
ature are depicted in Table 1.

4 Case study

In this paper, a case is provided to illustrate how the devel-
oped method can find the parameters of a planar four-bar
linkage from mixed constraints.

The case is presented in Table 2, where the problem is
a classical mixed synthesis problem (nine poses and three
points) to synthesizing the new coupler curve for tracing a
set of poses and points.

There are nine pose constraints and three point constraints
in Table 2, generating a total of 126 (C5

9 =
9!

5!×(9−5)! ) com-
binations. Each combination consists of five poses and three
path points. The first combination is substituted into Eq. (3)
to obtain the corresponding coefficient matrix of the conic
equation described.


60.947026 63.683203 7.6373038 7.9801756 1.0
58.080652 66.574433 7.1183239 8.1593157 1.0
54.076119 67.21148 6.5960477 8.1982608 1.0
46.593298 65.259819 5.7676716 8.078355 1.0
39.236149 60.969413 5.024934 7.8082913 1.0



·


a1
a2
a3
a4
a5

=


58.328409
50.670535
43.507845
33.266036
25.249962

 . (12)

Five coefficients of the conic curve that corresponds to the
first set of poses can be obtained by solving the linear system.
To further solve the total of 126 combinations, the optimal
value of the 126 groups for the error calculation is 0.12 mm.
The minimum value of the function corresponds to a set of
coordinates P1, P3, P6, P8, and P9.

It should be emphasized that the five points are selected
from a group of points P1–P9, whereas points P10–P12 only
impact the calculation of the error. Next, the mixed synthesis
problem in Table 2 is transformed into a precise synthesis
problem.

The coordinates are substituted into Eqs. (8)–(11), which
generates the following results:

1.487a1y − 3.507a1x + 3.370b1x − 1.777b1y

+ 0.007a1xb1x + 0.168a1xb1y

− 0.168a1yb1x + 0.007a1yb1y + 3.629= 0, (13)

15.885a1y − 1.198b1x − 14.036b1y − 0.929a1yb1x

− 0.330a1yb1y + 0.953b1xb1y

− 0.0002a1yb
2
1x − 0.0002a1yb

2
1y

+ 0.043b2
1x + 0.322b2

1y − 29.494= 0, (14)
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Figure 3. Flowchart of the mixed synthesis method.

Table 1. Comparison of studied cases and methods in different research.

No. Literature Studied cases Methods

1 Tong et al. (2013) 2M +N ≤ 10, M < 5 Geometric constraint programming
2 Brake et al. (2016) 2M +N ≤ 10, M < 5 Numerical algebraic geometry
3 Zimmerman (2018) 2M +N ≤ 10, M < 5 Graphical method
4 Sharma et al. (2019) 2M +N > 10, M < 5 Fourier analysis
5 This work 2M +N > 10, M > 5 Conic filtering algorithm

Table 2. List of points and poses traced by coupler link.

No. x y θ

1 7.6373037918 7.9801756302 29.1211478992◦

2 7.1183238675 8.1593157058 25.9649127018◦

3 6.5960476674 8.1982607813 24.2977293227◦

4 5.7676715874 8.0783549729 23.1865360745◦

5 5.0249340341 7.8082912833 23.3640152686◦

6 4.0431099401 7.194429426 25.4316473271◦

7 3.2194240209 6.3515393579 29.8519855528◦

8 2.5529110007 5.0852361728 39.2311179954◦

9 2.4378394248 4.0067577894 50.3931405979◦

10 7.0046239546 8.2733553872 –
11 2.407733797 4.9464769247 –
12 2.3525158972 4.2976666022 –

−0.0003b4
1x − 0.008b3

1xb1y + 0.179b3
1x

− 0.003b2
1xb

2
1y + 0.465b2

1xb1y

− 8.878b2
1x − 0.007b1xb

3
1y

+ 0.010b1xb
2
1y − 0.865b1xb1y

+ 88.138b1x − 0.002b4
1y + 0.084b3

1y

+ 3.423b2
1y − 79.961b1y − 83.024= 0, (15)

−0.001b4
1x − 0.027b3

1xb1y + 0.616b3
1x − 0.010b2

1xb
2
1y

+ 1.40b2
1xb1y − 25.790b2

1x − 0.027b1xb
3
1y

+ 0.528b1xb
2
1y − 11.244b1xb1y

+ 261.378b1x − 0.009b4
1y + 0.485b3

1y

− 1.079b2
1y − 82.963b1y − 463.773= 0. (16)

Table 3. Final result of the mixed synthesis problem.

No. a1 a2 b1 b2 c1 c2 d1 d2

1 5.52 4.59 4.0 2.0 11.6 7.99 12.0 0

It can be found that Eqs. (15)–(16) are a quaternary sys-
tem with two variables, which takes less time to be solved.
Equations (8)–(11) are too complicated to show the specific
details, so only the equation form is given. Equations (13)–
(16) demonstrate the efficiency of equation solving. Finally,
the values of a1x , a1y , b1x , and b1y are obtained by solving
Eqs. (13)–(16).

The results are provided in Table 3, and the planar tracing
results are provided in Fig. 4. Note that these solutions were
generated by a personal computer (Intel Core (TM) I7-6700
CPU and 16 GB RAM). The total calculation time is 87 s,
where the conic filtering algorithm took 68.30 s to screen 128
groups and 18.30 s to solve the results. This demonstrates the
efficiency of the developed method.

5 Conclusions

This paper proposes a method to solve the mixed synthe-
sis problem of planar four-bar linkages. The mixed syn-
thesis problem is first transformed into the exact motion
synthesis problem by a filtering algorithm. Then, the equa-
tions of the motion synthesis problem are re-derived, where
the more concise equations of motion synthesis are gov-
erned. Based on these, the equations of motion synthesis, i.e.
Fi(aix,aiy,b1x,b1y), become more elegantly solved by the
general equation solvers.
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Figure 4. Tracing result of mixed synthesis.

The main contribution of this work bridges the research
gap of a class of mixed synthesis problems (2M +N >

10, M > 5). Besides, compared with the kinematics map-
ping method proposed in Zimmerman (2018), our developed
conic filtering algorithm is easier for realizing the automatic
solving. Furthermore, compared with the analytic method
based on the Fourier approximation proposed in Sharma et al.
(2019), our work supports more concise solution steps as
there is no need to consider additional correspondence.

The developed method is suitable for the mixed synthesis
problems that study the combination of motion and path gen-
eration. In addition, the principle of the developed method
which approximates a higher-order curve with a lower-order
curve has potential values to solve other nonlinear problems,
such as the path synthesis of planar four-bar linkages with N
points (N > 9), which will be studied in the future studies.

Data availability. All the research data are provided in the tables.

Author contributions. RW conceived and wrote the manuscript.
RW, RL, HL, and FN were involved in writing, reviewing, and edit-
ing the manuscript. RL and FN are responsible for project develop-
ment management. RW and HL process data together.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. The authors thank the reviewers and topical
editor for their constructive comments and Copernicus Publications
for their professional language services and earnest typesetting ser-
vices.

Financial support. This research has been supported by the Key
Research and Development Project of Shanxi Province (grant nos.
201903D421051 and 201803D421027), the Postgraduate Innova-
tion Project of Shanxi Province (grant no. 2020BY090), and the
General Program of the Natural Science Foundation of Shanxi
Province (grant no. 201801D221235).

Review statement. This paper was edited by Daniel Condurache
and reviewed by two anonymous referees.

References

Bai, S., Li, Z., and Li, R.: Exact coupler-curve syn-
thesis of four-bar linkages with fully analyti-
cal solutions, Mech. Mach. Theory, 143, 1–15,
https://doi.org/10.1016/j.mechmachtheory.2019.103625, 2020.

Bai, S., Wu, R., and Li, R.: Exact Coupler-Curve Synthesis of Four-
Bar Linkages with Fully Analytical Solutions, in: Advances in
Robot Kinematics 2020, vol. 15, 82–89, Springer International
Publishing, Slovenia, https://doi.org/10.1007/978-3-030-50975-
0_11, 2021.

Bai, S. P. and Angeles, J.: Coupler-curve synthesis of four-bar link-
ages via a novel formulation, Mech. Mach. Theory, 94, 177–187,
https://doi.org/10.1016/j.mechmachtheory.2015.08.010, 2015.

Blechschmidt, J. L. and Uicker, J. J. J.: Linkage synthe-
sis using algebraic curves, J. Mech. Design, 108, 543–548,
https://doi.org/10.1115/1.3258767, 1986.

Brake, D. A., Hauenstein, J. D., Murray, A. P., Myszka, D. H., and
Wampler, C. W.: The complete solution of Alt-Burmester synthe-
sis problems for four-bar linkages, J. Mech. Robot., 8, 041018,
https://doi.org/10.1115/1.4033251, 2016.

Buskiewicz, J.: Reduced number of design parameters in op-
timum path synthesis with timing of four-bar linkage, J.
Theor. Appl. Mech., 56, 43–55, https://doi.org/10.15632/jtam-
pl.56.1.43, 2018.

Cabrera, J. A., Ortiz, A., Nadal, F., and Castillo,
J. J.: An evolutionary algorithm for path synthesis
of mechanisms, Mech. Mach. Theory, 46, 127–141,
https://doi.org/10.1016/j.mechmachtheory.2010.10.003, 2011.

Guigue, A. and Hayes, M. J. D.: Continuous approxi-
mate synthesis of planar function-generators minimising
the design error, Mech. Mach. Theory, 101, 158–167,
https://doi.org/10.1016/j.mechmachtheory.2016.03.012, 2016.

Khan, N., Ullah, I., and Al-Grafi, M.: Dimensional synthesis of me-
chanical linkages using artificial neural networks and Fourier de-
scriptors, Mech. Sci., 6, 29–34, https://doi.org/10.5194/ms-6-29-
2015, 2015.

Li, X. G., Wei, S. M., Liao, Q. Z., and Zhang, Y.: A
novel analytical method for four-bar path generation synthe-
sis based on Fourier series, Mech. Mach. Theor., 144, 103671,
https://doi.org/10.1016/j.mechmachtheory.2019.103671, 2020.

Morgan, A. P. and Wampler, C. W.: Solving a planar four-bar de-
sign problem using continuation, J. Mech. Design, 112, 544–550,
https://doi.org/10.1115/1.2912644, 1990.

Nolle, H.: Linkage coupler curve synthesis: A historical review–
II. Developments after 1875, Mech. Mach. Theory, 9, 325–348,
https://doi.org/10.1016/0094-114X(74)90018-4, 1974.

Mech. Sci., 12, 443–449, 2021 https://doi.org/10.5194/ms-12-443-2021

https://doi.org/10.1016/j.mechmachtheory.2019.103625
https://doi.org/10.1007/978-3-030-50975-0_11
https://doi.org/10.1007/978-3-030-50975-0_11
https://doi.org/10.1016/j.mechmachtheory.2015.08.010
https://doi.org/10.1115/1.3258767
https://doi.org/10.1115/1.4033251
https://doi.org/10.15632/jtam-pl.56.1.43
https://doi.org/10.15632/jtam-pl.56.1.43
https://doi.org/10.1016/j.mechmachtheory.2010.10.003
https://doi.org/10.1016/j.mechmachtheory.2016.03.012
https://doi.org/10.5194/ms-6-29-2015
https://doi.org/10.5194/ms-6-29-2015
https://doi.org/10.1016/j.mechmachtheory.2019.103671
https://doi.org/10.1115/1.2912644
https://doi.org/10.1016/0094-114X(74)90018-4


R. Wu et al.: Mixed synthesis method of motion and path of planar four-bar linkages 449

Pennestri, E. and Valentini, P. P.: An application of Yaglom’s geo-
metric algebra to kinematic synthesis of linkages for prescribed
planar motion of oriented lines, J. Mech. Design, 140, 1–17,
https://doi.org/10.1115/1.4038924, 2018.

Sharma, S., Purwar, A., and Ge, Q. J.: A motion synthesis approach
to solving Alt-Burmester problem by exploiting Fourier descrip-
tor relationship between path and orientation data, J. Mech.
Robot., 11, 011016, https://doi.org/10.1115/1.4042054, 2019.

Sleesongsom, S. and Bureerat, S.: Optimal synthesis of four-bar
linkage path generation through evolutionary computation with
a novel constraint handling technique, Comput. Intell. Neurosc.,
2018, 1–16, https://doi.org/10.1155/2018/5462563, 2018.

Tong, Y., Myszka, D. H., and Murray, A. P.: Four-bar linkage syn-
thesis for a combination of motion and path-point generation,
in: Proceedings of the ASME 2013 International Design En-
gineering Technical Conferences and Computers and Informa-
tion in Engineering Division, Vol. 6A, 1–10, ASME, Portland,
https://doi.org/10.1115/DETC2013-12969, 2013.

Wampler, C. W., Morgan, A. P., and Sommese, A. J.:
Complete solution of the nine-point path synthesis prob-
lem for four-bar linkages, J. Mech. Design, 114, 153–159,
https://doi.org/10.1115/1.2916909, 1992.

Wen-Tsun, W.: Basic principles of mechanical theorem proving
in elementary geometries, J. Autom. Reasoning, 2, 221–252,
https://doi.org/10.1007/BF02328447, 1986.

Wu, R., Li, R., and Bai, S.: A fully analytical
method for coupler-curve synthesis of planar four-
bar linkages, Mech. Mach. Theory, 155, 1–9,
https://doi.org/10.1016/j.mechmachtheory.2020.104070, 2021.

Zhao, P., Ge, X., Zi, B., and Ge, Q. J.: Planar linkage syn-
thesis for mixed exact and approximated motion realiza-
tion via kinematic mapping, J. Mech. Robot., 8, 051004,
https://doi.org/10.1115/1.4032212, 2016a.

Zhao, P., Li, X., Zhu, L., Zi, B., and Gee, Q. J.:
A novel motion synthesis approach with expand-
able solution space for planar linkages based on
kinematic-mapping, Mech. Mach. Theory, 105, 164–175,
https://doi.org/10.1016/j.mechmachtheory.2016.06.021, 2016b.

Zimmerman, R.: Planar linkage synthesis for mixed motion, path,
and function generation using poles and rotation angles, J. Mech.
Robot., 10, 025004, https://doi.org/10.1115/1.4039064, 2018.

https://doi.org/10.5194/ms-12-443-2021 Mech. Sci., 12, 443–449, 2021

https://doi.org/10.1115/1.4038924
https://doi.org/10.1115/1.4042054
https://doi.org/10.1155/2018/5462563
https://doi.org/10.1115/DETC2013-12969
https://doi.org/10.1115/1.2916909
https://doi.org/10.1007/BF02328447
https://doi.org/10.1016/j.mechmachtheory.2020.104070
https://doi.org/10.1115/1.4032212
https://doi.org/10.1016/j.mechmachtheory.2016.06.021
https://doi.org/10.1115/1.4039064

	Abstract
	Introduction
	Conic filtering algorithm
	Problem formulation
	Case study
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

