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Elliptical vibration cutting (EVC), as a precision machining technology, is used in many applications.
In precision machining, control accuracy plays an essential role in improving the machinability of difficult-to-
machine materials. To improve the control accuracy, dynamic and static characteristics of the system need to be
tuned to obtain the optimal parameters. In this paper, we use a glowworm algorithm with an improved adaptive
step size to tune the parameters of a robust adaptive fuzzy controller. We then obtain the optimal controller
parameters through simulation. The optimal solution of the controller parameters is then applied to a 3D EVC
system model for simulation and closed-loop testing experiments. The results indicate that a good agreement
between the ideal curve and the tracking signal curve verifies the optimality of the controller parameters. Finally,
under certain cutting conditions, the workpieces of three different materials are cut with two different cutting
methods. The study revealed that the surface roughness value is reduced by 20 %-32 %, which further verifies

the effectiveness of the optimal controller’s parameters.

Elliptical vibration cutting (EVC) technology was first pro-
posed by Shamoto in 1984 (Ma et al., 2004). For decades,
EVC devices evolved from 2D to 3D, and many experiments
verified their superiority in the machining of difficult-to-
machine materials. Since the 1990s, in-depth research works
have been conducted on elliptical vibration cutting and de-
signing EVC devices (Tan et al., 2018; Kim and Loh, 2007,
Zhang and Song, 2019). The machinability of difficult-to-
process material was also examined in Lu et al. (2017) and
Dong et al. (2020), and path planning was reported on in Kim
and Loh (2008), Jieqiong et al. (2013) and so on. However,
the improvement of control accuracy in the process of 3D
EVC is a challenging task, and both the dynamic and static
characteristics of the system need to be tuned to obtain the
optimal parameters. Precision control also plays a significant
role in the machining performance of 3D EVC. Therefore,
we use a glowworm algorithm with an improved adaptive
step size to tune the parameters for a robust adaptive fuzzy
controller.

To meet the control requirements and achieve effective
precision machining, suitable controller parameters must be
carefully selected. Parameter tuning improves the dynamic
and static characteristics of the system by changing the pa-
rameters of the control unit to achieve a more efficient con-
trol performance. In engineering, different methods, such as
the critical proportionality method, response curve method,
attenuation curve method (Yang et al., 2012; Verboven et al.,
2005; Petkov, 2018), etc., are often used for parameter tun-
ing. However, for complex control systems, the optimal pa-
rameters for the tuning of the controller need intelligent opti-
mization algorithms. Instances of such intelligent algorithms
are particle group algorithms (Karakuzu, 2010), genetic algo-
rithms (Ortiz et al., 2018), neural network algorithms (Sheng
et al., 2017) and various new bionic intelligence algorithms,
e.g., bat algorithms (Li et al., 2018; Xue et al.,2015), cuckoo
search algorithms (Yildiz, 2012; Gandomi et al., 2011), etc.

Extended research has been done on tuning controller pa-
rameters in recent years. Soma et al. (2004) proposed a ficti-
tious reference iterative tuning (FRIT), where only one shot
of experimental data is required to perform the offline non-



linear optimization and obtain the optimal parameter of the
controller in the real closed loop. The result of the control ex-
periments confirmed the validity of FRIT. Garcia-Gutiérrez
et al. (2019) proposed an optimization program based on the
cuckoo search (CS) algorithm to optimize all parameters of
a fuzzy logic control (FLC) and applied their proposed algo-
rithm to a nonlinear magnetic levitation system. Comparative
simulation results were also provided to validate the featured
improvement of such an approach, which can be extended to
other FLC-based control systems. Nie et al. (2017) proposed
an adaptive chaotic particle swarm optimization (ACPSO) to
optimize the parameters of the proportional integral deriva-
tive (PID) controller. The results of the performance test for
their algorithm showed that ACPSO was efficient when used
to find the best parameters of the PID controller. Further-
more, Zhu and Liu (2020) conducted extensive studies on
machining chatter and presented a novel approach to detect
the milling chatter based on variational mode decomposition
(VMD) and energy entropy. It was found that the parameters,
such as the number of modes (K) and the quadratic penalty
(), need to be empirically selected when the raw signal is
decomposed by the VMD. Aimed at solving the problem of
selecting K and «, Liu et al. (2018) also presented an au-
tomatic selection method of VMDs based on kurtosis. The
results show that VMD can be used to effectively decom-
pose the nonstationary signal. When the kurtosis of the re-
construction signal is the largest, the best VMD parameters
are obtained.

Although the above article has tuned the controller pa-
rameters and further verified the optimality of the controller
parameters through simulations and experiments, it has not
been applied in the machining experiment, and the effective-
ness of the optimal parameters of the controller cannot be
obtained more intuitively. In this paper, based on the nonlin-
ear Wiener model of 3D EVC, an improved adaptive step size
glowworm swarm optimization algorithm (IASGSO) is used
to tune the parameters of the robust adaptive fuzzy controller
and obtain the optimal solution of the controller parameters.
The optimal solution of the controller parameters is also ap-
plied to the 3D EVC device system model for simulation and
closed-loop test experiments. Our simulation results verify
the optimality of the robust adaptive fuzzy controller param-
eters. Finally, a copper rod, an aluminum rod and a titanium
alloy (Ti6A14V) are machined by 3D EVC and 3D EVC with
arobust adaptive fuzzy controller improved by IASGSO. The
effectiveness of the control system is also verified by ana-
lyzing and comparing the surface morphology and surface
roughness values of the produced samples.

In this paper, the 3D EVC device is a hybrid drive three-
dimensional elliptical vibration-assisted cutting device (3D

EVC), as shown in Fig. 1. The device of the developed ap-
paratus is mainly composed of two parts, i.e, the upper part
and the lower part. The lower part has a compliant mecha-
nism that can be fixed on a lathe by the connecting block.
The piezoelectric stack 1 and the piezoelectric stack 2 are
also fixed on the lower compliant mechanism, and the piezo-
electric stack 3 is fixed on the upper compliant mechanism.
For easy analysis, three axes are defined, e.g., the axis along
piezoelectric stack 1 is defined as Y1, the axis along piezo-
electric stack 2 is defined as Y2, and the axis along piezo-
electric stack 3 is defined as X. It should be noted that, for
the three piezoelectric stacks, the motions are approximately
independent of each other, i.e., there is no transverse motion
introduced, which is helpful for extending the life of piezo-
electric stacks that is affected by shearing effects. Besides,
the 3D elliptical vibration can be obtained when three input
displacement signals with different phase shifts are adopted.
The displacement signal generated by the piezoelectric stack
is acquired by three displacement sensors, which are fixed on
the apparatus through sensor holders. As feedback signals,
these displacement signals can be used to form a closed-loop
control.

The parallel series hybrid driving system is driven by three
ballast stacks of two parallels and one vertical with the non-
linear resonance, and the position of the space 3D ellipse
is achieved by adjusting the signal parameters of the piezo-
electric stack drive. There are three piezoelectric stacks po-
sitioned to drive the flexible hinges along three directions,
respectively, and there is no coupling between them. At the
same time, the X-direction flexible device is driven along the
X direction by the piezoelectric stack, and the flexible de-
vice in the Y direction is driven by two parallel piezoelectric
stacks. By adjusting the phase difference between the driving
signals of the two piezoelectric stacks, the X-direction flex-
ible device can generate a two-dimensional elliptical motion
track on the YOZ plane, so that the device generates an ideal
three-dimensional elliptical motion track.

The principle of the 3D EVC is shown in Fig. 2. The con-
crete cutting principle is the continuous progression of the
tool in the process of material removal. Therefore, the move-
ment trajectory of the tool is a three-dimensional elliptical
motion. As shown in Fig. 2, points 1-5 represent the position
of the tool at different times, which constitutes a complete
cutting cycle. It can be divided into two stages, i.e., effective
cutting and tool-workpiece separation.

The objective is to achieve the best machining performance
and precision control in the precision machining of elliptical
vibration cutting. Therefore, a perfect control system is re-
quired to be developed to achieve such a precision control.
This section focuses on system modeling of the 3D EVC de-
vice and identification of the system model.
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Figure 1. The 3D EVC system. (a) Model structure of 3D
EVC. (b) Schematic diagram of the 3D EVC.
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Figure 2. The principle of the 3D EVC.

The nonlinear Wiener system model of the single-input,
single-output (SISO) process of 3D EVC can be represented,
as in Lu et al. (2019), as follows:

{ x(1) =] (61 W
(1) =3 62 +e(t),

where x(¢) represent the output of the linear part, the input
of the nonlinear part of the system and the unfathomable out-
put of the dynamic part in the Wiener model. y(¢) represent
the output of the control system. 81 and 6, are the parameter
vectors of the Wiener model, ¢1(¢) and ¢,(¢) are the infor-
mation vectors in of the Wiener model, and e(¢) is the signal
disturbance, which is a zero-mean white noise.

Identification experiments for Eq. (1) use the improved
adaptive step size glowworm swarm optimization algorithm
(IASGSO). According to Lu et al. (2019), the identification
results of the X-direction subsystem of the 3D EVC system
are as follows:

A(g™") =1+0.01539¢"" +0.00771¢ 2
B(g~")=0.062337%+0.3118¢ 2 )
x(1) = 0.0819y(t) — 0.504y%(1) + 0.1168y3(1),
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Figure 3. The IASGSO optimized solution versus the number of
iterations for (a) A, and A3 and (b) py and p3.

where A (¢~!) and B (q~!) are n 4-order and n g-order poly-
nomials in the backward shift operator, respectively. As
shown in Eqgs. (3) and (4), ¢! is a delay operator.

A(q_l) = 1+a1q_1+a2q_1+...+anAq_"A 3)

B(q”) =big " +bog ...+ buyq " (4)

2.3 Robust adaptive fuzzy controller

In this section, we propose an improved design of a robust
adaptive fuzzy controller for SISO-uncertain nonlinear sys-
tems. Consider a class of nonlinearly indeterminate SISO
systems that are subject to external disturbances as follows:

Xi=g x)xip1+ filxp)+di(x,1)

Xn=8gn (X u+ fr(x)+dy(x,1) )
y =X,
where x; = [xq,....x 1 x = (x1,.. L xn)T s the system state

vector, u, y € R are the input and output of the control sys-
tem, f;(-) is the unknown smooth nonlinear function, g; (-)
is the unknown smooth virtual control nonlinear gain func-
tion, and d; (x,1)(1 <i <n) is the uncertainty and bounded
external disturbance.

Here we define the tracking error, z, which tracks a given
reference signal, y; (¢), and further assume that the given ref-
erence signal, y;(¢), is bounded as follows:

2=y = y(). (6)

According to the hypothesis in Lin et al. (2020), we sup-
pose the system has no zero dynamics and set f(x)=
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f1(u,0), g(x) = g1 (u,0) and u = T~!(x). Equation (5) i
then changed to the following:

2]

Y =g@u+ f)+dx,1). @)

Considering the three-dimensional elliptical vibration-
assisted cutting system as in Yang et al. (2004), we then adopt
the SISO nonlinear Wiener system. Therefore, in the follow-
ing:

YO = g, D) + f e, +d(@), ®)

where g(x, 1) and f(x,¢) are nonlinear functions, g(x, ) > 0,
and d(z) is the outside interference.

According to the control algorithm in Lin et al. (2020),
the control rate, the intermediate calming function and the
parameter adaptive rate are selected as follows:

Yo =—5z1+

Y3 = —0.05z0 4+ 50 — izpzzz

U= —0.02z3 + 53 — ):3,03Z3

5»2 =0.2 pQZ% — 0.53\2 (9)

5»3 =0.1 p3Z% - 1.53\3
pi(x;)= ﬁ&'%f + ﬁ(lﬁf,i =2,3,

where z and y; represent tracking errors and reference sig-
nals, respectively. s represents the estimates of 1. A repre-
sents the estimates of A, and ¢ and « are normal numbers.

Before optimizing the controller parameters, an appropriate
performance indicator function should be selected as the fit-
ness function of the algorithm. The error-integral criterion is
one of the most commonly used performance indicators for
measuring the performance of control systems. There are the
following four error integrals: integral of the squared error
criterion (ISE), integral of time multiplied by squared error
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criterion (ITSE), integral of the absolute value of error crite-
rion (IAE) and integral of time multiplied by the absolute
value of error criterion (ITAE). Among these, ISE is pre-
ferred for suppressing large errors, and IAE is better at sup-
pressing smaller errors. ITAE can also suppress long-term
errors effectively, making the adjustment time shorter, and
the performance indicators of ITSE can control large devia-
tions and shorten the adjustment time. Therefore, ITES is the
most appropriate fitness function for this algorithm, and it is
defined as follows:

ITSE= / oot[e(t)]zdt, (10
0

where e(?) represents the deviation between actual output
and expected output, and ¢ is time.

Using the robust adaptive fuzzy controller presented in
Sect. 2.3, it can be seen that, if the precision control is to
be achieved, we need to achieve the desired tracking accu-
racy. Hence, the tracking error (z =y (¢) — y;(¢)) needs to
be made as small as possible by adjusting the controller pa-
rameters, where 5»2, ):3, p2 and p3 are the influence parame-
ters. For the robust adaptive fuzzy controller, ITSE is used as
the fitness function of the algorithm to rectify the controller
parameters. Furthermore, we use iterative operations of an
improved adaptive step glowworm swarm optimization algo-
rithm (IASGSO; Lu et al., 2019) to derive a set of optimal
control parameters that minimize the performance index of
the control system.

Parameters of the robust adaptive fuzzy controller are deter-
mined by the TASGSO algorithm (Lu et al., 2019), as de-
scribed in the following:

1. Initializing the TASGSO parameters means the popula-
tion size is 20, the maximum number of iterations is
200, the neighborhood threshold (the number of neigh-
borhood fireflies) is 5 and the perception radius and de-
cision radius are both 2.048. Furthermore, the concen-
tration of fluorescein is 5, and the step length is 0.03.



The setting of the system control parameters.

Parameters 5\2 ):3 02 p3  Parameters 5»2 5»3 02 03
1 0.1 03 0.2 0.1 11 05 15 0.01 0.005
2 02 0.6 0.2 0.1 12 05 15 0.05 0.025
3 03 09 0.2 0.1 13 05 1.5 0.1 0.05
4 04 12 0.2 0.1 14 05 15 0.15 0.75
5 05 1.5 0.2 0.1 15 05 15 015 0.755
6 0.1 03 0.01 0.005 16 0.1 03 0.01 0.005
7 02 06 0.05 0.025 17 02 06 0.05 0.025
8 03 09 0.1 0.05 18 03 09 0.1 0.05
9 04 12 0.15 0.75 19 04 12 0.15 0.75
10 05 15 0.01 0.005 20 05 15 0.05 0.005

Value of each parameter (test parameters % and 5\3).

Parameters 0 P3 ):2 i3

First group 05 15 02 0.1
Second group 0.2 0.6 0.2 0.1
Third group 01 03 02 0.1

Value of each parameter (test parameters p, and p3).

Parameters P P3 ):2 5\3

First group 05 15 0.2 0.1
Second group 0.5 1.5 0.1 0.05
Third group 05 15 0.01 0.005

It is also necessary to set the value range of the con-
troller parameters that need to be optimized. These
ranges are defined as 5\2 €[0.1,0.5] , 5»3 €10.3,1.5],
p2 €10.01,0.2] and p3 € [0.05,0.25].

. According to the value interval of the parameters,
20 groups of different control parameter points are se-
lected as the parameter set which needs to be optimized.
The ITSE is then used as the adaptability function of the
algorithm, as shown in Table 1.

. Calculating the adaptability function values of each pa-
rameter set updates the glowworm luciferin and com-
pletes the change phase of the renewal of fluorescein.

. Updating the neighbors within the decision domain and
the glowworm’s movement location and completing the
update phase of glowworm position.

. Updating the adaptive step and dynamic decision do-
main range to complete the update phase of the dynamic
perceptive range.

. Deciding whether the algorithm meets the target accord-
ing to the maximum number of iterations. If it is satis-
fied, then the optimal solution is achieved.

We use the above process to tune the parameter based on the
TASGSO algorithm. The simulation in this paper was imple-
mented in MATLAB, and the optimization trajectory of con-
trol parameters ()ALQ, 13, 02, p3) are also shown in Fig. 3. As
it can be seen, by increasing the number of iterations, each
operation will produce a better solution. The obtained con-
trol parameters are improved after 200 iterations. Finally, the
optimal solution of the controller parameters can be obtained
as Ay =0.5, A3 =1.5, p» = 0.2 and p3 = 0.1.

A step response performance test was used to verify the opti-
mal degree of control parameters which concluded from the
previous results. Here we change the value of the parameters
according to the response curve of the system with different
values of parameters. We then obtain the impact of variations
in the controller parameter changes on the system response
curve; hence, the influence of adjusting parameters on the
control characteristics could be determined. The following
are the results:

1. For constant values of pp and p3, we obtain )12 and 5»3.
The corresponding values of each parameter in the sys-
tem are shown in Table 2. The response curve is also
shown in Fig. 4. As it is seen in Fig. 4, by reducing the
value of )22 and )12, the system response becomes faster,
the overshoot (maximum deviation) and oscillation are
increased and the stability of the system is reduced.

2. For constant values of 5\2 and ):3, we obtain p, and p3.
The corresponding values for each parameter in the sys-
tem are presented in Table 3. The system response curve
is further illustrated in Fig. 5. As seen in Fig. 5, by in-
creasing the value of py and ps3, the system response
becomes slower, the overshoot amount (maximum de-
viation) is reduced, the oscillation is weakened and the
stability of the system is improved.
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Figure 6. The 3D EVC closed-loop control system.
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As it is seen above, the following conclusions can be
drawn: by increasing the values of A, and A3 or p; and p3,

4 The 3D EVC system control experiment

the tracking error (z; = y(#)—y(7)) becomes smaller, and the 4 1 ¢josed-loop test experiment for 3D EVC control
desired tracking accuracy is achieved. Ultimately, the opti-

mal control parameters are A, = 0.5, A3 = 1.5, pp = 0.2 and

p3 =0.1.

Mech. Sci., 12, 433-442, 2021

system
4.1.1 Experimental setup

The 3D EVC closed-loop control system is shown in Fig. 6.
The system comprises a 3D EVC device, an NI cRIO-9033
controller capacitive displacement sensor, a power amplifier
and a Lenovo notebook computer. This section investigates
the displacement tracking and velocity tracking of the sinu-
soidal signal of the 3D EVC device.

https://doi.org/10.5194/ms-12-433-2021
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Figure 8. The overall system of cutting experiments.

Table 4. Surface roughness values for work parts under both machining methods.

I--n ! a 4

Power amplifier g

Material of Method of Surface  Roughness
workpiece processing roughness  reduction
(Sa) rate
Copper rod 3DEVC 0.385 -
3D EVC under the control of the robust 0.305 20.7%
adaptive fuzzy controller
Aluminumrod 3D EVC 0.666 —
3D EVC under the control of the robust 0.454 31.83%
adaptive fuzzy controller
Titanium alloy 3D EVC 0.563 -
(Ti6A14V)
3D EVC under the control of the robust 0438 222%

adaptive fuzzy controller

The robust adaptive fuzzy controller was programmed by
LabVIEW software, and the NI cRIO-9033 controller was
used to collect data. The display control of the LabVIEW
front panel is used to process the collected data and output
the fitting curve. The external interference in the experiment
is also taken as dj(¢) = sin(¢); the initial value of the system
variable (x1, x2, x3) was [0.2, 27, 0]. The reference signal in
the ideal state was y;(¢) = sin(;r¢). The values of each param-
eter variable in the system are ):2 =0.5, 5»3 =1.5 0p =02
and p3 = 0.1. The values are fed into the LabVIEW system
design software program, and the data are collected by the
NI cRIO-9033 controller. We then fit the collected sine func-
tion curve with the ideal standard sine function curve, and
the experimental results are compared and analyzed.

4.1.2 Testresults and analysis

Running the program in the system design software Lab-
VIEW and using and NI cRIO-9033 controller to transfer
the collected data to the Wiener system model of the 3D
EVC device, the displacement tracking curve-fitting diagram

https://doi.org/10.5194/ms-12-433-2021

is obtained, as in Fig. 7a. The speed tracking curve-fitting di-
agram is also shown in Fig. 7b. As it is seen in Fig. 7, the re-
sults showed a good agreement between the ideal speed sig-
nal curve and the tracking speed signal curve. Similarly, the
ideal speed signal curve is consistent with the tracking speed
signal curve. Both displacement tracking curve and veloc-
ity tracking curve have a high fitting degree, which indicated
that the robust adaptive fuzzy controller under the optimal
parameters provides a better tracking effect.

4.2 Cutting experiments for 3D EVC devices

4.2.1 Experimental setup

The 3D EVC device-cutting experiment was conducted on
the Nanoform 250 ultra-machine made by AMETEK (USA).
The main instruments included the independently developed
3D EVC device, a NI cRIO-9033 controller, a C series ana-
log input module NI 9222, a C series analog output mod-
ule NI 9263, a DE-5300-013 displacement sensor, a power
amplifier, a Nanoform 250 ultra-machine tool, a workstation

Mech. Sci., 12, 433-442, 2021



(a, ¢, e) Surface morphology after 3D EVC processing for the (a) copper rod, (¢) aluminum rod and (e) titanium alloy. (b, d,
f) Surface topography after 3D EVC processing controlled by robust adaptive fuzzy controller for the (b) copper rod, (d) aluminum rod and

(f) titanium alloy.

and so on. The overall system of the cutting experiment can
be seen in Fig. 8.

Here we examine the machining precision of 3D EVC under
the controlling of the robust adaptive fuzzy controller with
optimal parameters. A total of three workpieces with differ-
ent materials (a copper rod, an aluminum rod and a titanium
alloy, Ti6A14V) are considered for comparative verification
experiments with two methods, including 3D EVC and 3D
EVC under the control of robust adaptive fuzzy controller
improved by IASGSO.

As shown in Fig. 9, the surface appearance of the copper
rods, aluminum rods and titanium alloys (Ti6A14V) are com-
pared under the control of 3D EVC and 3D EVC controlled
by robust adaptive fuzzy controller, respectively.

The results of the surface roughness under two different
cutting methods are shown in Table 4. As shown in Fig. 10
and Table 4, the copper rod, aluminum rod or titanium al-
loy (Ti6A14V) all indicate the comparative advantage in the
surface roughness of 3D EVC processing under the control
of robust adaptive fuzzy controller improved by IASGSO.
The surface roughness value reduced to 20 %—32 %. Under
the process of 3D EVC, obvious scratches and pits appeared
on the surface morphology of the workpiece, but this phe-
nomenon is avoided during the processing of 3D EVC under
the control of the robust adaptive fuzzy controller improved

by IASGSO. It confirms that the robust adaptive fuzzy con-
troller under optimal participation has a comparative advan-
tage in the processing accuracy of 3D EVC and, thus, verifies
the validity of the optimal parameters of the controller.

To improve dynamic and static characteristics of the sys-
tem and achieve an ideal control accuracy in the process,
this paper tunes the parameters of the 3D EVC robust adap-
tive fuzzy controller and finds and verifies the optimal solu-
tion through simulation and experiment. Finally, the surface
roughness was compared through cutting experiments, which
proved the effectiveness and the following conclusions are
formed:

1. The controller parameters were tuned by the IASGSO
algorithm, and the optimal solution of controller param-
eters was obtained by MATLAB simulation. Analyzing
the system response curve under different parameters
under the step response performance test, it is known
that increasing the value of )12, ):3 and py, p3 can achieve
the desired tracking accuracy, which verifies the opti-
mality of the IASGSO algorithm for tuning the con-
troller parameters.

2. The controller was applied to the 3D EVC device
system model, and the displacement tracking signal,
speed tracking signal and tracking error were analyzed



through simulation. The control object had a little jit-
ter at the beginning, but it could quickly stabilize and
smoothly move towards the direction of the ideal dis-
placement signal and the speed signal. This verifies the
effectiveness of the optimal parameters of the controller
and the robustness of the controller.

3. A closed-loop test experiment was performed on the
3D EVC control system, and the displacement tracking
curve and the speed tracking curve were collected with
the help of LabVIEW and the NI cRIO-9033 controller.
The result showed that the ideal curve and the tracking
signal curve were approximately coincident. This ver-
ifies the rationality of the parameter adjustment of the
robust adaptive fuzzy device.

4. Under certain cutting conditions, copper rods, alu-
minum rods and titanium alloys were machined by 3D
EVC and 3D EVC under the control of a robust adaptive
fuzzy controller improved by IASGSO. The surface to-
pography of the three sets of workpieces was then ana-
lyzed and compared. The surface roughness values were
reduced by 20 %—32 %, which verifies the rationality of
the controller parameter setting and the effectiveness of
the control system.

No data sets were used in this article.
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