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Abstract. This paper presents a geometric synthesis method for compliant mechanisms based on similarity
transformation of pole maps. Motion generation is a typical and common mechanism synthesis task, so this
study takes it as the design requirement to expound the proposed method. Most of the current research work
relies on numerical solution of the nonlinear Bernoulli–Euler beam model, numerical simulations or physical
experiments to study the synthesis method of compliant mechanisms. There is a lack of simpler and more ef-
ficient methods to achieve motion generation of compliant mechanisms with various topologies. This study is
based on pole map which is a geometric tool to describe the motion of rigid-body mechanisms. In this paper, we
first demonstrate the feasibility of applying the similarity transformation of pole map to compliant mechanisms.
It is proved that the pole map of compliant mechanisms has the same characteristic as rigid-body mechanisms
during similarity transformation. Then we present the procedure of synthesis method in detail and expound the
establishment method of function module which can avoid the functional defects of the final designed mecha-
nism. At last, we take the compliant geared linkages and compliant four-bar linkage as examples to illustrate the
novel synthesis approach. The result is an applicable and effective synthesis method for motion generation of
compliant mechanisms.

1 Introduction

The compliant mechanism can be defined as a mechanism
that obtains some of its motion by means of the deforma-
tion of elastic elements (Howell, 2001). If the length of the
compliant section is similar to the length of the rigid sec-
tion, the geometric nonlinearity caused by large bending dis-
placements must be considered (Kimball and Tsai, 2002). At
present, researchers have developed many methods for ana-
lyzing the large deflection of flexural beams, such as ellip-
tical integral method, beam constraint model, Adomian de-
composition method, pseudo-rigid-body model (PRBM), and
non-linear finite element analysis method (FEA). Based on
these studies, researchers can design compliant mechanisms.
Midha et al. (1994) introduced the kinematics-based design
method. The theoretical approach using the numerical solu-
tion of the nonlinear Bernoulli–Euler beam model is one of
the most common analysis and design methods, but its cal-

culation process is very complicated (DeBona and Zelenika,
1997). Howell and Midha (1994) created the synthesis ap-
proach based on PRBM, and it can provide a practical means
for analyzing and designing the compliant mechanism. Li et
al. (2017) proposed 3R PRBM method and used it to ana-
lyze and design compliant mechanisms. In the field of com-
pliant linkage synthesis, Bagivalu Prasanna et al. (2020) in-
troduced a methodology to determine the possible deflected
configuration of a compliant four-bar mechanism for a given
set of load or displacement boundary conditions. Valentini
and Pennestri (2018) presented an original methodology for
addressing the kinematic synthesis of a compliant four-bar
mechanism by using PRBM. Alqasimi et al. (2016) designed
a linear bistable compliant crank–slider mechanism by using
PRBM to solve the kinetic and kinematic equations. Hanke et
al. (2015) presented a graphical synthesis algorithm and used
this method to solve two-position synthesis of planar com-
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pliant mechanisms. Huang and Schimmels (2019, 2020) re-
searched the synthesis method of compliant five-bar linkages
and presented a geometric approach to the passive realization
of any given planar compliance with a six-joint fully serial
or six-spring fully parallel mechanism. Topology optimiza-
tion method has been widely used in the design of distributed
compliant mechanisms (Zhou and Mandala, 2012; Patiballa
and Krishnan, 2017; Liu et al., 2017), but it commonly leads
to complex structures that may cause higher manufacturing
costs using elastic material. Diab and Smaili (2017) pre-
sented an ants-search-based method for optimum synthesis
of compliant mechanisms under various design criteria. Choi
and Cho (2020) presented a configuration and sizing design
optimization method for large deformation planar compliant
mechanisms.

Since it is difficult to analyze the displacement of elastic
elements or flexural beams during the deformation, the syn-
thesis method of compliant mechanisms is usually not as sys-
tematic as rigid-body mechanisms. Therefore, the novel effi-
cient and simple approach is the focus in the research field of
compliant mechanism synthesis. The motion generation of
compliant mechanisms can be used to solve some practical
engineering problems, such as using compliant mechanisms
to replace rigid-body mechanisms for avoiding disadvantages
of rigid-body mechanisms or achieving the guidance task of
some light-weight products. Thus, the goal of this study is
to explore a new method for motion generation of compliant
mechanisms. Lin et al. (2018) proposed a method to describe
the finitely separated positions by using the pole map. Taking
this method as the fundamental principle, Lin et al. (2018)
use pole maps as unified geometric identification between
the guidance mechanisms and given positions. By perform-
ing similarity transformation on a certain basic mechanism,
a geometric synthesis approach for planar motion genera-
tion is proposed. This method can be applied to the design
of rigid-body mechanisms with various types. However, this
geometric synthesis approach has not been used in the design
of compliant mechanisms, and it lacks practical and effective
calculation procedures for the synthesis of more than three
positions. Therefore, still using the pole maps as geometric
tool to describe planar positions, this paper will study the fea-
sibility of the similarity transformation of compliant mecha-
nisms and propose a novel method for motion generation of
compliant mechanisms.

Although the principle of similarity transformation of
pole map has been applied to the motion analysis of rigid-
body mechanisms, it is not clear whether it can be applied
to compliant mechanisms. Hence this paper first demon-
strates the feasibility of applying this principle to compli-
ant mechanisms. The geometric similarity of deformation
curves, which are formed by flexural beams with different
lengths, is discussed, and it is proved that the pole map of
compliant mechanisms has the same characteristic as rigid-
body mechanisms during similarity transformation. Then this
paper presents the detailed procedure of synthesis method.

Figure 1. Motion positions and pole map.

Next, the function module is introduced as the basis of mech-
anism synthesis, which can achieve the functional character-
istics required by the design. Finally, this study illustrates the
synthesis approach with two examples of three-position and
four-position motion generation. Compared with other meth-
ods, the synthesis method proposed in this paper is based on
geometric similarity transformation, and hence it can avoid
the overly complicated mathematical calculation. Function
module is introduced at the beginning of the design process,
so this method can ensure that the final solution mechanism
will satisfy the functional characteristics of design require-
ments, such as the trajectory shape of the guidance point, the
rotation angle range of the guidance link, the workspace and
the mounting position of the fixed frame, etc. In addition,
this method is not limited to the design of a specific type
of compliant mechanism, and it can be applied to compliant
mechanisms with various topological structure.

2 Theoretical basis

2.1 Position changes described by pole map

Prescribed positions Ei (Ui,βi) (i = 1,2, . . .,n) can be de-
scribed by n− 1 poles Pji (i = 1,2, . . .,n and i 6= j ) relative
to the initial position Ej

(
Uj ,βj

)
and their corresponding ro-

tation angles (Lin et al., 2018). The shape formed by these
poles is defined as pole map. As shown in Fig. 1, the initial
position E1 can reach E2, E3 and E4 by rotating around P12,
P13 and P14 respectively, so the triangle P12P13P14 forms
the pole map. Given any two plane positions Ej

(
Uj ,βj

)
and

Ek (Uk,βk), the pole Pjk can be determined by a complex
number as (Lin et al., 2018)

Pjk
(
αjk

)
=
i

2
Uke
−iαjk −Uj e

iαjk

sinαjk
, (1)

where αjk = βjk/2=
(
βk −βj

)
/2.

Mech. Sci., 12, 375–391, 2021 https://doi.org/10.5194/ms-12-375-2021



S. Lin et al.: Geometric synthesis method of compliant mechanism 377

Figure 2. Position description by the pole map.

2.2 Geometric identification of moving planes

The displacement of finitely separated positions can be repre-
sented by a pole map. If the two pole maps are geometrically
identical (i.e., the pole coordinates and corresponding angles
in the first pole map are equal to those in the second pole
map respectively), then the two displacements represented
by the two pole maps are the same. As shown in Fig. 2, the
displacement of plane positions U1, U2 and U3 determines
the pole map P12P13, and the displacement of plane posi-
tions R1, R2 and R3 determines the pole map Q12Q13. If
P12 =Q12, α12 = γ12, P13 =Q13, α13 = γ13, then the two
series of displacements are the same, so positions Ui and Ri
can be considered in the same motion plane Ei . Therefore,
the pole map can be regarded as the identification for motion
planes.

2.3 Geometric similarity of the pole map of rigid-body
mechanisms

For any rigid-body mechanism, the position Ei (Ui,βi) of a
certain component during the motion can be described by the
initial positionE1 (U1,β1) and pole P1i , and the pole map de-
termined by the continuous displacement of the component
is a pole curve. If the mechanism is subjected to geometric
similarity transformation including translating, rotating and
scaling, to obtain a new mechanism, then the finitely sepa-
rated positions E1E2. . .En of the original mechanism will be
transformed to new positions E′1E

′

2. . .E
′
n. The relationship

between the original pole map P12P13. . .P1n and the new
pole map P ′12P

′

13. . .P
′

1n is geometric similarity, which is the
same as the similarity relationship between the two mech-

Figure 3. Geometric similarity transformation of rigid-body mech-
anism.

anisms. For example, in the planar mechanism A0A1B1B0
shown in Fig. 3, the initial angle is φ = π/2, and P1i is the
pole of guidance link A1B1 in the motion position of φ = φi .
Mechanism A′0A

′

1B
′

1B
′

0 is obtained by geometrically trans-
forming the original mechanism A0A1B1B0, and P ′1i can be
obtained by calculating the pole of link A′1B

′

1 in the motion
position of φ′ = φi . Then the pole curve 5 formed by P1i is
geometrically similar to the pole curve 5′ formed by P ′1i .

3 Synthesis method

3.1 Geometric similarity of flexural beam

As shown in Fig. 3, the rigid-body mechanism has geometric
similarity during the geometric transformation process, while
the pole maps before and after the transformation also have
the same geometric similarity. However, because of the com-
plexity of the force and deformation, the feature of compliant
mechanisms during the geometric transformation cannot be
directly analogized from the law of rigid-body mechanisms.
In order to study the feasibility of applying the similarity
transformation of pole maps to compliant mechanism, it is
necessary to demonstrate that the compliant mechanism and
its pole maps both have the geometric similarity in translat-
ing, rotating, and dimension scaling, just like the transforma-
tion feature of rigid-body mechanism shown in Fig. 3. First,
this paper will analyze the deformation of the flexural beam
which satisfies the Bernoulli–Euler beam equation.

Figure 4 shows the deformation of a cantilever beam sub-
ject to a combined end force and external bending moment.
The coordinate frame is established by taking the fixed end
as the coordinate origin and the direction of initially straight
beam as the positive direction of x axis. The end force F
can be decomposed into a horizontal force Fx and a vertical
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force Fy . The coordinates of the free end Q are (a,b). Point
A, whose position is denoted by (x,y), is an arbitrary point
on the beam, and the curvature at A is

κ =
MA

EI
=
Fy (a− x)−Fx (b− y)+M0

EI
. (2)

The curve equation of the beam deformation can be ex-
pressed by arc length s, that is, r (s)= x (s) i+ y(s)j . Dif-
ferentiating Eq. (2) with respect to s, we obtain

κ ′ (s)=
1
EI

(
Fxy
′
−Fyx

′
)
. (3)

According to the differential geometry, the formula x′′2+
y′′2 = κ2 is known. Differentiating this formula with respect
to s yields

x′′x′′′+ y′′y′′′ = κκ ′. (4)

Since x′2+y′2 = 1, it can be differentiated as x′x′′+y′y′′ =
0. We continue to differentiate this equation and get x′′2+
x′x′′′+y′′2+y′y′′′ = 0. Substituting x′′2+y′′2 = κ2 into the
equation leads to

x′x′′′+ y′y′′′ =−κ2. (5)

According to Eqs. (4) and (5), we have[
x′′′

y′′′

]
=

[
x′ y′

x′′ y′′

]−1[
−κ2

κκ ′

]
=

1
x′y′′− x′′y′

[
−κ2y′′− κκ ′y′

κ2x′′+ κκ ′x′

]
. (6)

Next, we calculate x′y′′− x′′y′, the denominator of the right
side of Eq. (6). Since x′2+ y′2 = 1, the expression (x′y′′−
x′′y′)2 can be expanded and derived as(
x′y′′− x′′y′

)2
= x′2y′′2− 2x′y′′x′′y′+ x′′2y′2

= y′′2− y′2y′′2− 2x′y′′x′′y′

+ x′′2− x′′2x′2

= x′′2+ y′′2−
(
x′x′′+ y′y′′

)2
.

Substituting x′x′′+ y′y′′ = 0 and x′′2+ y′′2 = κ2 into the
above equation yields

(
x′y′′− x′′y′

)2
= κ2. Considering the

direction of the tangent vector
(
x′,y′

)
and the normal vec-

tor
(
x′′,y′′

)
at pointA, we obtain x′ > 0,y′ > 0,y′′ > 0,x′′ <

0,κ > 0, and hence

x′y′′− x′′y′ = κ.

Substituting the above formula into Eq. (6) gives

x′′′ =−κy′′− κ ′y′

y′′′ = κx′′+ κ ′x′. (7)

Figure 4. Large deflection of a flexural beam subject to arbitrary
end loads.

Figure 5. Scale transformation of the flexural beam.

As shown in Fig. 5, a flexible beam with a length of L is
under the action of the end loads F1(Fx1Fy1) and M1. The
position of the free end point is denoted by (a1,b1), and the
curve equations of beam deformation are denoted by x1 (s)
and y1 (s). According to Eqs. (2), (3) and (7), the differential
equations describing the curve can be calculated as shown in
the following.

x′′′1 =−
Fy1 (a1− x1)−Fx1 (b1− y1)+M1

EI
y′′1

−
Fx1y

′

1−Fy1x
′

1
EI

y′1

y′′′1 =
Fy1 (a1− x1)−Fx1 (b1− y1)+M1

EI
x′′1

+
Fx1y

′

1−Fy1x
′

1
EI

x′1, (8)

where a1 = x1 (L), b1 = y1 (L). When 0< s < L, x1 (s) and
y1 (s) satisfy the differential equations of Eq. (8).

If this flexural beam is scaled by the scaling factor λ while
the material and section shape remain the same, the length
of the new beam is λL and the flexural rigidity EI remains
unchanged, as shown in Fig. 5.
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Subject to the end load F2(Fx2,Fy2) and M2, the position
of free end point is (a2,b2), and curve equations representing
the new beam are determined by the following differential
equations.

x′′′2 =−
Fy2 (a2− x2)−Fx2 (b2− y2)+M2

EI
y′′2

−
Fx2y

′

2−Fy2x
′

2
EI

y′2

y′′′2 =
Fy2 (a2− x2)−Fx2 (b2− y2)+M2

EI
x′′2

+
Fx2y

′

2−Fy2x
′

2
EI

x′2 (9)

Supposing

x2 (s)= λx1

( s
λ

)
y2 (s)= λy1

( s
λ

)
(10)

and then successively differentiating Eq. (10), we can
obtain x′2 (s)= x′1

(
s
λ

)
, y′2 (s)= y′1

(
s
λ

)
, x′′2 (s)= 1

λ
x′′1
(
s
λ

)
,

y′′2 (s)= 1
λ
y′′1
(
s
λ

)
, x′′′2 (s)= 1

λ2 x
′′′

1
(
s
λ

)
, y′′′2 (s)= 1

λ2 y
′′′

1
(
s
λ

)
.

From Eq. (10), we can get a2 = x2 (λL)= λa1 and b2 =

y2 (λL)= λb1.
Substituting the above calculation results and Eq. (10) into

Eq. (9), we have

x′′′1

( s
λ

)
=−

λ2Fy2
[
a1− x1

(
s
λ

)]
− λ2Fx2

[
b1− y1

(
s
λ

)]
+ λM2

EI

· y′′1

( s
λ

)
− λ2Fx2y

′

1
(
s
λ

)
−Fy2x

′

1
(
s
λ

)
EI

y′1

( s
λ

)
y′′′1

( s
λ

)
=
λ2Fy2

[
a1− x1

(
s
λ

)]
− λ2Fx2

[
b1− y1

(
s
λ

)]
+ λM2

EI

· x′′1

( s
λ

)
+ λ2Fx2y

′

1
(
s
λ

)
−Fy2x

′

1
(
s
λ

)
EI

x′1

( s
λ

)
,

where 0< s
λ
< L. If the end load satisfies the functional rela-

tionship given by Eq. (11), the above equations are obviously
the same as Eq. (8).

Fx1 = λ
2Fx2

Fy1 = λ
2Fy2

M1 = λM2 (11)

Therefore, under the condition that the free end load satisfies
Eq. (11), if x1 = x1 (s) and y1 = y1 (s) are the solutions of
differential equations in Eq. (8), then x2 (s)= λx1

(
s
λ

)
and

y2 (s)= λy1
(
s
λ

)
are the solutions of differential equations in

Eq. (9). That is, for two flexural beams whose lengths are L
and λL respectively, when the free end load satisfies Eq. (11),
the deformation curves of beams have geometric similarity
which can be written as

λr1 (s)= r2 (λs) . (12)

Figure 6. Geometric similarity transformation of the compliant
mechanism.

It is easy to prove that during the scaling process of the com-
pliant beam, the position of the free end point corresponding
to the same end angle is also scaled in the same way. Simi-
larly, the end point trajectory before and after scaling is also
scaled, as shown by 51 and 52 in Fig. 5.

3.2 Geometric similarity of compliant mechanism

The scaling of flexural beams is discussed in Sect. 3.1, and
then this paper will study the geometric similarity of the
whole compliant mechanism during geometric transforma-
tion. Taking a typical mechanism as an example, the planar
linkageA0A1B1B0 is a compliant mechanism, as shown in
Fig. 6. The initially straight flexural beam B0B1 is fixedly
connected with rigid link A1B1, and C is an arbitrary point
in the mechanism. It is assumed that this compliant linkage
maintains a static balance throughout the entire range of mo-
tion. When the input angle φ = φ0, the force that link A0A1
applies to linkA1B1 is denoted by FA, and the driving torque
is denoted by M1. At this time, the moment and force which
link A1B1 applies to link B0B1 are denoted by M0 and F ,
respectively.

According to static analysis of link A1B1 and A0A1, we
obtain

A1B1× (−F )−M0 = 0

A0A1× (−FA)+M1 = 0.

Using F = FA, the formula ofM1 can be obtained by adding
the above two equations, i.e.,

M1 =M0+A0B1×F . (13)

If the initial compliant linkagesA0A1B1B0 in the motion po-
sition of φ = φ0 are subjected to a geometric transformation
which takesA0 as a base point, T as a translating factor, δ as a
rotating factor and λ as a scaling factor, and at the same time
the flexural rigidity EI remains unchanged, then the transfor-
mation will obtain a new compliant linkage A′0A

′

1B
′

1B
′

0. The
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relevant parameters are all shown in Fig. 6. After the trans-
formation, the new position of any point C in the linkages
is

C′ = A0+ T + λ (C−A0)eiδ. (14)

We assume that the compliant mechanismA′0A
′

1B
′

1B
′

0 shown
in Fig. 6 is in static equilibrium. According to Eq. (14), if
point C is on the flexural beam, then the deformation curve
of B ′0B

′

1 is B ′0C
′
= B0C · λe

iδ . Obviously, the deformation
curves of flexural beam B ′0B

′

1 and B0B1 have geometric sim-
ilarity. Using Eq. (11) and geometric relationship illustrated
by Fig. 6, we obtain

F ′
=

1
λ2 F eiδ

M ′0 =
1
λ
M0. (15)

Now we analyze the static balance of link A′1B
′

1. Using
Eq. (14), we have A′1B

′

1 =A1B1 · λe
iδ , and hence the mo-

ment of point A′1 can be calculated and written as A′1B
′

1×(
−F ′A

)
−M ′0 =

(
A1B1 · λe

iδ
)
×

(
−

1
λ2 F eiδ

)
−M ′0 =

1
λ
M0−

M ′0. SinceM ′0 =
1
λ
M0, the compliant mechanismA′0A

′

1B
′

1B
′

0
shown in Fig. 6 is in a state of static equilibrium.

Therefore, for the compliant mechanismA0A1B1B0 at any
position in the motion range, if φ′ = φ, then the transformed
mechanism A′0A

′

1B
′

1B
′

0 and the original mechanism always
have a geometric similarity relationship.

According to Eq. (13), the driving force of the transformed
mechanism can be calculated, i.e., M ′1 =M

′

0+A′0B
′

1×F ′.
Substituting Eq. (15) into the expression of M ′1 and simpli-
fying, we obtain

M1 = λM
′

1. (16)

It can be seen that if the driving force satisfies the relationship
of Eq. (16), the planar compliant mechanism has geometric
similarity before and after the transformation of translating,
rotation and scaling. The position coordinates of any point
on the mechanism satisfy the transformation formula given
by Eq. (14).

In the following, this paper will discuss the transfor-
mation rules of poles and pole maps during the geomet-
ric transformation of compliant mechanism. For any mech-
anism containing flexible component, which can be de-
noted by A0A1. . .An, the pole of two given motion posi-
tion Ej

(
Uj ,βj

)
and Ek (Uk,βk) of a link can be repre-

sented as Pjk
(
αjk

)
, and Eq. (1) is the formula for calcu-

lating the pole. If the initial compliant mechanism is sub-
jected to a geometric transformation which takes A0 as a
base point, T as a translating factor, δ as a rotating factor
and λ as a scaling factor, then we will obtain a new com-
pliant mechanism A′0A

′

1 . . .A
′
n. According to Eq. (14), two

motion positions after geometric transformation can be writ-
ten as E′j

(
U ′j ,βj + δ

)
and E′k

(
U ′k,βk + δ

)
, where U ′j,k =

A0+T +λ
(
Uj,k −A0

)
eiδ . The pole P ′jk of motion positions

E′j and E′k can be calculated by Eq. (1), and it can be written
as

P ′jk

(
α′jk

)
=
i

2

[
A0+ T + λ (Uk −A0)eiδ

]
e
−iα′jk

−
[
A0+ T + λ

(
Uj −A0

)
eiδ
]
e
iα′jk

sinα′jk

=
i

2
Uke
−iα′jk −Uj e

iα′jk

sinα′jk
λeiδ

+
i

2
A0+ T − λA0e

iδ

sinα′jk
(e−iα

′
jk − e

iα′jk ),

where α′jk = [(βk+ δ)− (βj + δ)]/2= αjk . The above equa-
tion can be simplified into the form

P ′jk

(
α′jk

)
= A0+ T + λ

(
Pjk −A0

)
eiδ. (17)

Eq. (17) shows that before and after the geometric transfor-
mation of any compliant mechanism, the poles are also sub-
jected to the same geometric transformation, and obviously
the pole maps of original mechanism and transformed mech-
anism always have a geometric similarity relationship. It can
be concluded that if the flexural rigidity EI maintains un-
changed, then the finitely separated motion positions, poles
and pole maps are similar before and after the geometric
transformation. This similarity law of compliant mechanisms
is the same as that of rigid-body mechanisms shown in Fig.
3.

3.3 Geometric approach to compliant mechanism
synthesis

In Sect. 3.2, the geometric similarity of the pole map during
the geometric similarity transformation of compliant mecha-
nisms is demonstrated. Based on this theory, a novel geomet-
ric approach for compliant mechanism synthesis is proposed.
Next, this paper will expound the new synthesis method in
detail, which can be divided into three main contents as
shown in Fig. 7.

1. According to the mechanism type or topological struc-
ture characteristics specified by design requirements, a
certain type of nondimensional compliant mechanism is
chosen. Then the dimension parameters of this mecha-
nism are adjusted and determined so that the mechanism
can satisfy the functional characteristics of design re-
quirements, such as the trajectory shape of the guidance
point, the rotation angle range of the guidance link, the
workspace and the mounting position of the fixed frame,
etc. This chosen nondimensional mechanism is defined
as a function module, whose establishment will be dis-
cussed in Sect. 4.

2. Analyzing the motion generation task specified by the
design requirement, the given finitely separated posi-
tions of the final solution mechanism can be obtained so
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that the pole map P and its corresponding angles of the
solution mechanism can be calculated. Next, the pole
curve of the function module is calculated, and some
poles on the curve are selected so as to form a pole map
Q geometric similar to the pole map P while ensuring
that the angles corresponding to each pole in Q and P
are respectively equal. The formula for calculating the
pole map is presented by Eq. (1).

3. By geometric similarity transforming Q, namely trans-
lating, rotating and scaling, the transformed pole map
can be identical to P . According to the conclusion of
Sect. 3.2, during the geometric similarity transformation
of the compliant mechanism, the pole map is subjected
to the same transformation. Therefore, if the function
module is transformed by following the method of mak-
ingQ identical to P , then the pole map of the new trans-
formed mechanism is exactly P . According to the the-
ory that the same pole map represents the same finitely
separated positions, as illustrated by Fig. 2, this new
compliant mechanism can satisfy the functional char-
acteristics of design requirements and achieve the task
of motion generation.

For three-position synthesis, the proposed method can ob-
tain multiple exact solutions. In engineering practice, most
of design tasks require that the guidance link must achieve
exactly at the start position and the end position while pass-
ing through the intermediate positions with given tolerances,
which is named as fuzzy positions. Therefore, for four-
position motion generation, we can usually allow one of the
positions to become a fuzzy position. Relative to the exact
position Ek (Uk,βk), the fuzzy position Ẽk

(
Ũk,βk

)
is re-

stricted to a tiny translation, and the design task can give the
tolerance

∣∣∣Ũk −Uk∣∣∣<1U .
The pole map of four-position motion generation is a tri-

angle, as shown in Fig. 8, and the tolerance of the pole corre-
sponding to the fuzzy position can be calculated by Eq. (1),
i.e.,

1P =

∣∣∣∣∣ i2 Ũke−iα1k −Uke
−iα1k

sinα1k

∣∣∣∣∣
max

=
1U

2 |sinα1k|
. (18)

Assuming that given positions of the design task are E1, Ẽ2,
E3 and E4, we can adjust the initial rotation angle φ1 of the
driving link to obtain the appropriate pole map Q12Q13Q14,
which is quasi-similar to the pole map P12P13P14. As shown
in Fig. 8, after similarity transformation,Q′12Q

′

13Q
′

14 should
be quasi-congruent to P12P13P14 while satisfying the condi-
tion

∣∣P 12−Q′12

∣∣<1P .

4 Establishment of function module

This paper establishes the function module of compliant
mechanisms and takes it as the basic object of geometric sim-

Figure 7. Main contents of the geometric approach.

ilarity transformation. At the beginning, we need to choose a
compliant mechanism as a normalized function module that
is likely to achieve the functional characteristics required by
the design. Then we will analyze the normalized function
module and obtain its kinematic equations expressed by vari-
ables. Finally, by using the kinematic equation, dimension
parameters of the mechanism are adjusted and determined so
that the function module can satisfy the functional character-
istics of design requirements.

4.1 Modeling of the flexural beam

This paper uses 3R PRBM to analyze the deformation of the
flexural beam, as shown in Fig. 9. Su (2009) presents the
optimized parameters, i.e., k21 = 3.51, k22 = 2.99, k23 =

2.58, γ0 = 0.1, γ1 = 0.35, γ2 = 0.40, γ3 = 0.15.
The nondimensional forward kinematic equations are

Qx

L
= γ0+ γ1c1+ γ2c12+ γ3c123

Qy

L
= γ1s1+ γ2s12+ γ3s123

θ0 =21+22+23, (19)

where L is the actual length of the flexural beam, c1 =

cos(21), c12 = cos(21+22), c123 = cos(21+22+23), and
s1, s12, s123 are also similar abbreviations.

The nondimensional statics equations are(
fxL

2

EI
fyL

2

EI
ML

EI

)
= (k2121 k2222 k2323) [J ]−1, (20)
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Figure 8. Geometric transformation of pole map.

Figure 9. 3R pseudo-rigid-body model.

where [J ]−1 is written as (Su, 2009)

[J ]−1
=

1
γ1γ2s2

·

[
γ2c12 γ2s12 γ2r3s3

−γ1c1− γ2c12 −γ1s1− γ2s12 −γ3 (γ2s3+ γ1s23)
γ1c1 γ1s1 γ1 (γ2s2+ γ3s23)

]
.

4.2 Function module of compliant geared linkage

This paper will take the compliant geared linkage as an ex-
ample to illustrate the establishment method of the function
module. In the compliant four-bar mechanism A0ABB0, a
pair of gears are mounted on the driving link A0A, as shown
in Fig. 10. The rigid-body coupler AB is fixedly connected
to the initially straight flexural beam BB0, and there is a con-
stant angle π/2−β0 between these two links. Gear GR is
fixedly connected to AB, and gear Gr is connected to the
guidance link CU . All absolute dimensions should be con-
verted into relative dimensions that are ratios of component
dimensions to the frame length L0, so as to obtain the nor-
malized function module. For example, x3 = L3/L0, where
L3 denotes the length of flexible beam BB0. All other pa-
rameters are labeled in Fig. 10.

Figure 10. Compliant geared linkage.

Closed-loop equation of compliant four-bar mechanism
can be decomposed into

x1 cosφ+ x2 cos(β0+ θ0)+ x3
Qy

L3
− 1= 0

x1 sinφ+ x2 sin(β0+ θ0)− x3
Qx

L3
= 0, (21)

where θ0, Qx
L3

and Qy
L3

can be calculated by Eq. (19)
The force and moment that link AB applies to link BB0

are denoted as Fx , Fy and M , as shown in Fig. 10. The com-
pliant mechanism is usually applied to products with small
external load or uses rigid parts as working component such
as multistable compliant mechanisms, so the external load
applied by the link CU can be set equal to 0. Then the mo-
ment balance equation is

−AB ×
(
Fx i+Fyj

)
−M = 0, (22)

where the magnitude of AB is the actual length of link AB,
namely L2. According to the angles and positions shown in
Fig. 10, we can decompose vectors of Eq. (22) and obtain

−L2 cos(β0+ θ0)Fy +L2 sin(β0+ θ0)Fx −M = 0. (23)
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According to the direction of forces in Figs. 9 and 10, we
have Fx =−fy and Fy = fx , so Eq. (23) can be rewritten
into the nondimensional form

x2

x3
cos(β0+ θ0)

fxL
2
3

EI
+
x2

x3
sin(β0+ θ0)

fyL
2
3

EI

+
ML3

EI
= 0. (24)

Substituting the results of Eq. (20) into the Eq. (24) and
then combining with Eq. (21), we can get three equations
of unknown variables 21, 22 and 23, which represent the
three angles in PRBM. Given the crank angle φ, we can use
Newton–Raphson method to calculate the numerical solution
of 21, 22 and 23 and obtain the value of θ0 by substituting
the calculated numerical solution into Eq. (19).

The formula of guidance angle β (φ) can be derived, that
is

β (φ)=
1+ ρ
ρ

φ−
β0+ θ0

ρ
+βr , (25)

where βr is a constant related to the initial position of the
link CU , and ρ = r/R.

The trajectory equation of guidance pointU can be written
as

Ux = x4 cos(φ+ δ)+ x5 cosβ

Uy = x4 sin(φ+ δ)+ x5 sinβ. (26)

The deformation of the function module should be within the
possible deformation range of the flexural beam, otherwise
the final solution will not meet the practical requirements.

4.3 Adjustment of function module

In order to obtain the final function module of the compli-
ant mechanism, we need to find the appropriate mechanism
dimension according to the functional requirements of mo-
tion generation task. The general functional requirement is
the guidance characteristic of the mechanism, such as the tra-
jectory shape of the guidance point, the rotation angle range
of the guidance link, the functional relationship between the
input angle and the output angle, etc. Because the guidance
characteristic changes with the dimension, it is necessary to
analyze the effect of the dimension on the output motion of
the guidance component. If the output motion is not sensitive
to the dimensional changes of some components, then the di-
mensional constraints of these components can be appropri-
ately reduced. On the contrary, if the output motion is sen-
sitive to the dimensional changes of some components, the
effect of these dimensions on guidance characteristics needs
to be analyzed in detail. If the design task is too special or
the functional requirements is too strict, we cannot find an
appropriate function module that satisfies the functional re-
quirements specified by the design task.

Through computer mathematical software or interactive
geometry software, we can easily adjust dimension param-
eters of the function module and analyze the kinematics vi-
sually in real time so that we can intuitively understand the
effect of different dimensions on the functional characteris-
tics. Taking the compliant mechanism shown in Fig. 10 as an
example, this paper will present the process of analyzing the
effect of dimensions on the guidance characteristic. Now we
set all dimensions of this mechanism as x1 = 0.6, x2 = 1.2,
x3 = 1.4, x4 = 0.4, x5 = 0.4, β0 = 45◦, δ = 90◦, ρ = 1 and
βr = 0◦ and then adjust the parameters respectively while
keeping other parameters unchanged. The functional rela-
tionship between the guidance rotation angle and the input
angle can be calculated by Eq. (25), and the trajectory of
guidance point U can be obtained from Eq. (26), whose re-
sults are shown in Figs. 11 and 12.

Obviously, the compliant geared linkage has the charac-
teristic of a large range of guidance angle that is primarily
linear with the input angle, and the change of main parame-
ters does not affect the basic type of guidance characteristic.
It can be seen from Fig. 11 that x1 and x3 have little effect
on β, x4 does not affect β, and ρ has a large effect on β.
It can be seen from Fig. 12 that x1 and x3 have little effect
on the trajectory of the guidance point, x4 can scale the tra-
jectory curve, and δ can rotate the trajectory. Therefore, the
dimension of the basic compliant four-bar linkage has less ef-
fect on guidance characteristic. When selecting dimensions
of the function module, it is necessary to preferentially ad-
just parameters of the gear part according to the given design
requirements, so as to obtain a suitable mechanism. In ad-
dition, we should determine the appropriate initial position
of the function module so that range of guidance angle must
meet the condition

1β ≥ βkmax−βkmin, (27)

where βkmax and βkmin denote the maximum and minimum
angle of the design requirement, and1β is the range of guid-
ance angle.

5 Examples

In this section, two applications of exact three-position syn-
thesis and fuzzy four-position synthesis are presented to il-
lustrate how the proposed approach is applied.

5.1 Three-position synthesis of compliant geared
linkage

The task is to design a three-station transfer device, which is
used to detect some light-weight products on the production
line. These three stations are three fixed planar positions, and
the device should make the product reach these positions ac-
curately. At position E1, the product on the production line is
automatically placed in the pallet of device. At position E2,
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Figure 11. The effect of parameters on rotation angle of the guidance link. (a) ρ. (b) x1. (c) x3. (d) x4.

Table 1. Parameters of the design.

Ei Ui (mm) βi (deg)

E1 (87, 130)
E2 (−40, 100) 90
E3 (−45, −27) 180

the product is detected, scanned and recorded by other equip-
ment. At position E3, the product is taken out. In order to
avoid interference with the workspace of the detection, load-
ing and unloading equipment, the design task requires that
the mounting position of the transfer device should be far
away from the three stations. The three given positions are
shown in Table 1.

Considering that the overall size of the transfer device is
small, in order to reduce the weight of the structure and the
friction caused by some revolute joints, we will use compli-
ant mechanism as the basis of this device. According to the
design requirements, we can choose a compliant geared link-
age to achieve three-position motion generation. The mecha-
nism type is shown in Fig. 13:A0B0 is the driving link,CU is
the guidance link installed with the pallet, and the gear ratio
is 1. We will use aluminum alloy to make the flexible beam

B0B, and the angle between flexible beam and the rigid-body
coupler AB is 45◦. The three given positions E1, E2 and E3
are labeled in Fig. 13. The synthesis procedure can be divided
into the following steps.

1. The compliant geared linkage is chosen as normalized
function module. Its basic kinematic formulas are given
by Eqs. (25) and (26), and relevant dimensional param-
eters are marked in Fig. 10. Following the method pre-
sented in Sect. 4.3, we can adjust the dimension pa-
rameters so that the function module will satisfy the
functional requirement. Since the three guidance posi-
tions are required to be away from the flexural beam,
we can adjust some parameters to change the position
of the guidance trajectory, as shown in Fig. 12. The
appropriate dimension can be determined as x0 = 100,
x1 = 60, x2 = 120, x3 = 140, x4 = 40, x5 = 40, δ = 60◦

and βr = 0◦. According to Eq. (27), the initial rotation
angle φ1 of the driving link can be set to φ = 90◦.

2. The pole map of the given separated position of
the design task can be calculated by substituting the
data of Table 1 into Eq. (1). Taking E1 as the ini-
tial position, the poles and corresponding angles are
P12 = (38.82, 51.53), α12 = 45◦, P13 = (20.97, 51.52)
and α13 = 90◦. Next, we will establish the pole map of
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Figure 12. The effect of parameters on trajectory of the guidance point. (a) x1. (b) x3. (c) x4. (d) δ.

the function module. If the position of A0 is set to the
origin of the coordinate frame, then the guidance point
and the guidance rotation angle of the initial position
are U (φ1)= (−64.65, 46.45) and β (φ1)= 138.60◦ by
using Eqs. (25) and (26). Since the angle corresponding
to the pole of U (φ1) and U (φ2) must be equal to α12,
according to αjk =

(βk−βj )
2 shown in Eq. (1), we have

β (φ2)= β (φ1)+ 2α12. (28)

The result is β (φ2)= 228.60◦, and it can be substi-
tuted into Eqs. (25) and (26) so as to calculate and ob-
tain φ2 = 135.82◦ and U (φ2)= (−64.94,−40.91). In
the same way we can obtain φ3 = 187.08◦, U (φ3)=
(14.43,−63.29), and β (φ3)= 318.60◦. Substituting the
values of U and β into Eq. (1), the poles of the function
module can be obtained, i.e., Q12 (−21.11, 2.63) and
Q13 (−25.11, −8.42). All relevant parameters and re-
sults are marked in Fig. 13, and we use curves to repre-
sent different deformations of flexural beam in Fig. 13.

3. Through geometric transformation, pole map Q12Q13
can be identical to pole map P 12P 13. Separately substi-
tuting P12, Q12 and P13, Q13 into Eq. (17) and simpli-

fying, we obtain

P 12 =Q12 · λe
iδ
+ T

P 13−P 12 =
(
Q13−Q12

)
· λeiδ. (29)

Then the factors of geometric transformation can be
calculated, i.e., translating factor T = (46, 20), rotating
factor δ =−70.08◦ and scaling factor λ= 1.52. Finally,
the solution mechanism can be obtained by geometric
transformation with A0 as the base point and T , δ and λ
as factors, as shown in Fig. 14.

The flexure beam is made of aluminum alloy, with Young’s
modulusE = 6.9×104 MPa, and the size of the cross section
is 1.1 mm× 12 mm. We conduct finite element analysis of
the flexure beam by Abaqus, as shown in Fig. 15, and defor-
mations are the same as calculated curves shown in Fig. 14.

5.2 Four-position synthesis of compliant four-bar linkage

The design task is four-position synthesis of compliant four-
bar linkage. The four positions are demonstrated in Table 2,
and these positions are marked in Fig. 16. The tolerance of
fuzzy position Ẽ2 is given as 1U = 0.01.
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Figure 13. Function module and pole map.

Table 2. Parameters of the design.

Ei Ui βi (deg)

E1 (1.3, 0) 15
Ẽ2 (1.8, 0)
E3 (1.4, 1.2) 30
E4 (1, 1) 45

The synthesis procedure can be divided into the following
steps.

1. According to the mechanism type specified by design
requirements, a compliant four-bar linkage shown in
Fig. 16 is chosen as normalized function module, and
coupler AB is the guidance link. x3 represents the
length of initially straight flexural beam, x2 = x3, β0 =

45◦. Given rotation angle φ, we can calculate the de-
flection angle θ0 of the flexural beam by following the
method presented in Sect. 4.2, and hence we can get
the guidance angle β = β0+ θ0. Setting point B as the
guidance point, its position is Bx = x1 cosφ+ x2 cosβ
and By = x1 sinφ+ x2 sinβ.

Then we adjust the dimension parameters so that the
function module will satisfy the angle range required
by design task. The appropriate dimension can be deter-
mined as x0 = 1, x1 = 0.4, x2 =

√
2, x3 = 1.4.

2. The pole map of the given separated position of
the design task can be calculated by substituting
the data of Table 2 into Eq. (1). Taking E1 as
the initial position, the poles and corresponding an-
gles are P12 = (1.55, −1.90), α12 =−7.5◦, P13 =

(−3.21, 0.98), α13 = 7.5◦, P14 = (−0.72, −0.06) and
α14 = 15◦. P12 is the pole corresponding to the fuzzy
position Ẽ2, and we can obtain 1P = 0.038 from
Eq. (18). If φ1 is given a numerical value, following
the procedure presented in Sect. 5.1, we can calcu-
late and obtain the pole map Q12Q13Q14. According
to Eq. (29) and the geometric transformation method
shown in Fig. 8, pole map Q′12Q

′

13Q
′

14 can be ob-
tained, and then the error between two pole maps is
ε =

∣∣P 12−Q′12

∣∣. If the value of φ1 changes, then ε will
change. Therefore, taking φ1 as a variable, we can con-
struct the numerical function relationship ε = f (φ1).
By using a computer to calculate the minimum value
of ε, the initial rotation angle φ1 can be determined.
The result is that when φ1 = 22.83◦, ε gets the min-
imum value ε = 0.005, which satisfies the condition
ε < 1P . Following the steps presented in Sect. 5.1,
we can calculate and obtain B (φ1)= (1.08, 1.34), φ2 =

89.00◦, B (φ2)= (1.01, 1.40), φ3 = 236.59◦, B (φ3)=
(0.18, 0.96), φ4 = 293.45◦ and B (φ4)= (0.15, 1.05),
and the guidance angle β can also be calculated. Substi-
tuting the values of B and β into Eq. (1), the poles of the
function module can be obtained, i.e.,Q12 (1.12, 1.65 ),
Q13 (1.93, −2.33), Q14 (1.24, −0.50). The deforma-
tions of flexural beam in φ1, φ2, φ3, φ4 are all shown
in Fig. 16.

3. Through geometric transformation, pole map
Q12Q13Q14 can be quasi-congruent to pole map
P12P13P14. Using Eq. (29), the factors of geometric
transformation can be calculated, i.e., T = (0.96, 0.71),
δ =−133.41◦, λ= 1.38. Finally, the solution mech-
anism can be obtained by geometric transformation
with A0 as the base point and T , δ and λ as factors, as
shown in Fig. 17. We conduct finite element analysis of
the flexure beam by Abaqus, as shown in Fig. 18, and
deformations are the same as calculated curves shown
in Fig. 17.

6 Discussion

Pole maps are a geometric tool that can accurately describe
multiple planar positions, and it can reveal the relationship
between guidance mechanisms and given design tasks. Based
on similarity transformation of pole maps, Lin et al. (2018)
proposed a new approach to rigid-body mechanism synthesis
and used geometric way to find the approximate solution of
multi-position motion generation. Also based on similarity
transformation of pole maps, this paper expands its applica-
tion field and proposes a novel synthesis method for com-
pliant mechanisms. In addition, this paper illustrates the es-
tablishment and adjustment method of the function module
of compliant mechanisms and presents a practical calcula-
tion procedure for four-position synthesis through numerical
example.
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Figure 14. Solution mechanism.

Figure 15. Deformation of the flexure beam. (a) E1. (b) E2. (c) E3.

The first example is a practical design task of three-
position motion generation, and the second example is four-
position synthesis. As shown in Sect. 5.1, this method can be
used to solve some practical engineering problems, such as
using compliant mechanisms to replace rigid-body mecha-
nisms for avoiding disadvantages of rigid-body mechanisms
or achieving the guidance task of some light-weight prod-
ucts.

Compared with other methods, the synthesis method pro-
posed in this paper is based on similarity transformation of
pole map, so it is unique and has the following features.

1. Function module is introduced at the beginning of the
design process, and hence this method can ensure that
the final solution mechanism will satisfy the functional
characteristics and transmission characteristics of de-
sign requirements. As long as we can complete kine-
matic and static analysis of a certain type of compliant
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Figure 16. Function module and pole map.

Figure 17. Solution mechanism.

mechanism, this type of mechanism can be chosen as a
function module. Therefore, this method is not limited
to the design of a specific type of compliant mechanism,
and it can be applied to compliant mechanisms with var-
ious topological structure.

2. This method is based on similarity transformation of
pole map, so it can avoid defects by traditional synthesis
methods based on Burmester kinematic geometry the-
ory, such as order defect. The following is the detailed
discussion.

Suppose there are four motion positions: E1, Ei , Ej and
En. The guidance order requires the coupler to pass through
given positions in the desired order, which is relevant to the
input angle order of driving link. As shown in Fig. 19, the
guidance dyad A0AB passes through four given positions in
the order ofE1–Ei–Ej–En; then the input angle should meet
the condition as φ1i < φ1j < φ1n. The relationship between
motion positions and pole point is illustrated in Fig. 1, and
thus it can be obtained that the poles Q1i , Q1j and Q1n lie
on the perpendicular bisectors of A1Ai , A1Aj and A1An re-
spectively, and the angles between each perpendicular bisec-
tor are determined as

ωij =
φ1j −φ1i

2
, ωjn =

φ1n−φ1j

2
. (30)

As shown in Fig. 19, the pole is the intersection of the per-
pendicular bisector and the pole curve 5, so the guidance
order is finally transformed to the pole order Q1i–Q1j–Q1n
according to Eq. (30).

If there are two guidance tasks which have the same given
positions and different guidance order, as shown in Fig. 20,
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Figure 18. Deformation of the flexure beam. (a) E1. (b) E2. (c) E3. (d) E4.

Figure 19. Relationship between input angle and pole order.

obviously the shapes of the two pole maps are the same, but
the pole order is different. Usually, we label motion posi-
tions and poles in the guidance order, and these two pole
maps P12P13P14 in Fig. 20 are different. Because of differ-
ent guidance order leading to different pole map, mechanism
modules obtained by different guidance order are also differ-
ent. Therefore, this method can avoid order defect.

7 Conclusion

This paper proposes a novel geometrical approach to com-
pliant mechanism synthesis based on similarity transforma-
tion of pole maps. The study demonstrates the feasibility
of applying the geometric similarity transformation to the
compliant mechanism, and it is proved that the pole map of
compliant mechanisms has the same characteristic as rigid-
body mechanisms during similarity transformation. Then this
paper proposes the procedure of synthesis method and ex-
pounds the establishment method of function module. In ad-
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Figure 20. Relationship between guidance order and pole order.

dition, this work illustrates the synthesis approach with two
examples.
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