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A noncircular face gear (NFG) conjugated with a pinion is a new type of face gear which can transmit
variable velocity ratio and in which two time-varying excitations exist, namely the meshing stiffness excitation
and instantaneous center excitation. Considering the tooth backlash, static transmission error and multifrequency
parametric excitation, a nonlinear dynamic model of the NFG pair is presented. Based on the harmonic balance
method and discrete Fourier transformation, a semi-analytic approach for the nonlinear dynamic model is given
to analyze the dynamic behaviors of the NFG. Results demonstrate that, with increase in the eccentric ratio,
input velocity and error amplitude, the NFG will undergo a non-rattle, unilateral rattle and bilateral rattle state
in succession, and a jump phenomenon will appear in the dynamic responses when the rattle state of the gears is

transformed from unilateral rattle to bilateral rattle.

Noncircular face gear (NFG) drive is a new type of variable
transmission ratio mechanism with the advantages of light
weight, high interchangeability and convenient installation
(Liu et al., 2017). It is widely applicable in agricultural ma-
chinery, robots, automobiles, automatic machines and so on.
Generally, irregular rattle vibration often appears in a gear
system in light load or no load conditions, which not only has
negative effects on the dynamic characteristics of the gears
but also causes an unpleasant rattling noise. Due to the vari-
able transmission ratio, the rattle vibration occurs in the non-
circular gear transmission system more easily, which is a key
problem to be solved urgently for noncircular face gears.
The rattle vibration of gears is a strongly nonlinear dy-
namic behavior caused by the tooth backlash. The vibra-
tion shock model, based on the lumped parameter method,
is generally applied in theoretical research. The gear pair is
a basic element in gear systems. Correspondingly, the tor-
sional vibration model is the fundamental form of the dy-
namic model of gears. Comparin et al. presented a single de-
gree of freedom nonlinear model for the purely torsional vi-
bration and found three rattle states of gears (Comparin and
Singh, 1989). By considering the stiffness of the bearings and
shafts, a coupled translation—rotation vibration model is pro-

posed by Kahraman and Singh (1991) to investigate the am-
plitude frequency features and chaotic vibration. On the basis
of the coupled dynamic model of a single stage gear, Zhang
et al. (2003a, b) introduced an impact equation to describe
the sudden change in the dynamic behaviors of the gear when
tooth impact occurs and indicated the influences of the speed
fluctuation and unbalanced mass on the rattle vibration. For
helical gears, a lateral-torsional—axial coupled nonlinear dy-
namic model was proposed to discuss the effects of system
parameters on the vibration and the bifurcation behaviors by
Wei et al. (2013).

Based on the dynamics of a single-stage gear drive, the dy-
namic characteristics of planetary gear systems were deeply
studied. In the works of Al-shyyab and Kahraman (2007),
a semi-analytical approach, based on the harmonic bal-
ance method, discrete Fourier transformation and Newton’s
method, is developed to solve the nonlinear torsional vi-
bration model of the planetary gears. Nikolic-Stanojevic et
al. (2013) presented a new fractional order model to describe
the planetary gears, with the fractional order mode analyzed.
The nonlinear dynamic behaviors and the effects of parame-
ters on the dynamic responses of planetary gears were stud-
ied by Bahk and Parker (2011), who found that teeth separa-
tion still occurs even if the planetary gears are under heavy
load. Wu et al. (2011) applied a harmonic balance method to



obtain the steady-state solution of nonlinear dynamic model
of the compound planetary gear train and analyzed the influ-
ences of the stiffness, clearance and errors on the dynamic
features. In addition, since the gear rattle severely influences
the NVH (noise, vibration and harshness) quality, the dynam-
ics of an automotive transmission gearbox attracted broad at-
tention all the time. Dong et al. (2004) proposed a rattle vi-
bration model of gears comprising both the teeth clearance
and the clutch clearance. Shangguan et al. (2018) studied the
influences of the clutch on the rattle vibration of the trans-
mission system and presented a method for reducing the gear
rattle by controlling the stiffness and damping of the clutch.
The works of Bozca (2018) on the dynamics of the gearbox
indicated that the transmission errors can be reduced by the
optimization of the module, number of teeth and backlash to
decrease the rattle noise.

To date, plenty of studies have reported on the back-
lash nonlinear dynamics of different kinds of gear systems,
which state that many complex nonlinear dynamic phenom-
ena in gear systems exist, such as the multifrequency re-
sponse, jump phenomenon, multivalue response, bifurcation
and chaos. These results not only establish a theoretical basis
for the dynamic design of high quality gears but also provide
a useful reference for the dynamic research of noncircular
gears. A comparison of internal excitations between circular
and noncircular gears was made in the literature (Liu et al.,
2016), in which a torsional vibration model was presented to
investigate the parametric vibration characteristics of planar
noncircular gears. Through an experimental method, Liu et
al. (2012a, b) tested the vibrational performance of elliptical
gears under different rotational velocities and torques. Then
they proposed a multi-degree-of-freedom torsional vibration
model of the experimental prototype of elliptical gears, with
a consideration of the tooth clearance, and calculated the dy-
namic responses by the numerical method (Liu et al., 2013).
The curve face gear is a new kind of spatial gear mecha-
nism with a variable transmission ratio. Lin et al. (2015)
constructed the nonlinear torsional vibration model of the
gears and pointed out that multi-periodic, quasi-periodic and
chaotic vibration phenomena appear under different mesh
frequencies. Furthermore, they used the bond graph theory to
establish a coupled dynamic model of the spatial noncircular
gear system, with dynamic efficiency (Lin et al., 2016) and
nonlinear dynamic features (Cai and Lin, 2017) being ana-
lyzed. The dynamics of the noncircular planetary gear train
was studied in the literature (Yuan et al., 2018), including
the torsional vibration model and dynamic behaviors under
different loads and speeds.

It can be seen from the above studies on the dynamics of
noncircular gears that the time-varying instantaneous cen-
ter excitation is a particular internal excitation for noncir-
cular gears, which leads to more complex vibration behav-
iors. Compared with the existing noncircular gears, the non-
circular face gear drive has different time-varying instanta-
neous center excitation and dynamic characteristics. To re-
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veal its dynamic behaviors, the nonlinear dynamic model of
the noncircular face gear is presented, with the considera-
tion of the tooth backlash, the time-varying meshing stiffness
and the instantaneous center in this article. A semi-analytical
approach, based on the harmonic balance method, discrete
Fourier transformation and Newton’s method, is utilized to
obtain the periodic steady-state responses of the gear. The
effects of the input speed, static transmission error, eccentric
ratio, meshing stiffness and load torque of the gears on their
rattle vibration are analyzed in detailed. The experimental re-
sults verify the correctness of the theoretical analysis on the
dynamic behaviors of NFG.

Combining the transmission features of noncircular gears
and face gears, a new gear mechanism, comprising a pinion
and a noncircular face gear with orthogonal axes, is presented
as shown in Fig. 1.

In the engagement of the NFG pair, the pitch cylinder of
the pinion is tangent to the pitch surface of the NFG, as il-
lustrated in Fig. 2. On the pitch surface of NFG, there is a
noncircular closed curve called a pitch curve, which keeps
pure rolling on the surface of the pitch cylinder of pinion;
thus, the transmission ratio of the gear pair can be written as
follows:

w1 r(e2)

i1p=— , (D
w2 ri

where @ and w, represent rotational velocity of the pinion
and the NFG respectively, r| is referred to as the pitch circle
radius of the pinion, and r, and ¢, are specified as the vector
radius and the polar angle of the noncircular pitch curve of
the NFG.

In conventional machines, a serial mechanism composed
of a pair of cylinder gears and a pair of noncircular gears is
usually used to both reduce the rotational velocity of the mo-
tor and achieve a variable output speed, as shown in Fig. 3.
The NFG pair in Fig. 1 can implement the function of the
gear train set in Fig. 3. Using the NFG pair to replace the se-
rial gear mechanism in mechanical equipment could reduce
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half of the weight and space and improve the efficiency of
the transmission system (Liu et al., 2017).

The mathematical models of the pitch curve and the tooth
surface of the NFG were given in the literature (Liu et al.,
2019) and are not repeated here. The main topic of this paper
is the nonlinear dynamic behavior of the NFG under multi-
frequency periodic excitation.

The NFG is a special kind of noncircular gear. However, it
still transmits power by tooth meshing like circular gears.
So, there are three typical kinds of internal excitations in the
NFG, namely the meshing stiffness, the static transmission
error and the meshing shock excitation. In addition, the posi-
tion of the relative instantaneous center varies with the rota-
tion of the gears; hence, a special internal excitation appears
in gears with the changeable transmission ratio, which is
named the instantaneous center activation (Liu et al., 2019).
The NFG pair is simplified to the model shown in Fig. 4.
The pinion is modeled as a cylindrical rigid body, with con-
stant rotational radius ry1, which represents the base circle
radius of the pinion. The NFG is represented by a rigid body
with variable vector radius r, as shown in Fig. 4a. The con-
tacting teeth between the gears are represented by a linear
spring and damping element. For the convenience of analy-
sis, the damping is temporarily omitted in Fig. 4. At any point
in time, the direction of the meshing force between the teeth
is the same as that of the acting force of the spring. In Fig. 4a,
one end of the spring is tangent to the cylinder at point B. The
other end of the spring is attached to the equivalent rigid body
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Simplified model of NFG pair.

of the NFG at the relative instantaneous center M, which is
on the pitch curve of the NFG. Since the profile of the pinion
is straight involute, the direction of the contact force between
the teeth or the acting force of the spring is the same as that
of the common normal line between the teeth, which is per-
pendicular to the axis of rotation of the pinion, i.e., axis z7.
The three-dimensional model in Fig. 4a can be simplified to
the two-dimensional in Fig. 4b, where the angle o between
the spring and the pitch surface is the pressure angle of the
pinion.

We define the rotational angle of the NFG pair yielding to
the theoretical transmission ratio as the rigid angle. The rota-
tional angle caused by the elastic formation of teeth is speci-
fied as the elastic angle. In the engagement, the real rotational
angle of the gears is the sum of the rigid and the elastic angle.
When the NFG pair rotates in the theoretical transmission ra-
tio 712, the equivalent spring in Fig. 4a will move along the
direction parallel to axis z; with invariant length. The rigid
angles do not change the deformation of the spring, which
only depends on the elastic angles.

Then, the relative displacement of the spring in Fig. 4 can
be written as follows:

X =r1p191 —1r2()q2cos 2

where ¢ and ¢ represent the elastic angles of the pinion and
the NFG. The elastic meshing force F between the teeth of
the gears is represented as follows:

F = kin(1)x = km(t) [ro191 — r2(t)ga cosa], 3)

where ky, is the meshing stiffness of the gears. It can be seen
from Eq. (3) that time-varying r, will lead to the change in
the meshing force, even if ky, is constant. That is the so-
called instantaneous center excitation, which is a parametric
one like the time-varying meshing stiffness. The frequency of
the instantaneous center activation is fi = w1/(2mi;), while
the frequency of the meshing stiffness is f>» = w1Z1/(2x7),
where i; = Z3/Z, Z1 and Z; are the number of teeth of the
pinion and the NFG. For a common NFG pair, the frequency
of the meshing stiffness is 40—100 times than that of the in-
stantaneous center. Thereby, a special compound parametric
excitation with multiple frequencies arises in the NFG pair.



Dynamic model of the NFG pair.

Consider a lumped parameter model consisting of the mesh-
ing stiffness, the meshing damping, the static transmission
error and the tooth backlash of the NFG pair in Fig. 5. ry is
the radius of the equivalent base circle of the NFG, which is
expressed by rpp = 2 cosa. kpy and ¢, represent the meshing
stiffness and damping, e(?) represents the static transmission
error, 77 and T3 are the torques acting on the pinion and the
NFG, and b is the half of the backlash between teeth.

Using Newton’s second law of motion, the differential
equations of motion of the NFG pair are deduced as follows:

LiGi + roremlroiqr — roaga — e(t)] .

+rotkm(1) flro191 — ro2(t)q2 — e(®)] = Ty — 116 )
DGa — re2()emlrp1g1 — ro2(t)g2 — é(1)] L
—ro2(Dkm (1) fro191 — ro2(t)g2 — e(O)] = =12 — 26,

where /1 and I, are the moments of inertia of the pinion and
the NFG, and 6; and 6, represent the rigid angles of the pin-
ion and NFG.

Let the pinion rotate at a given speed. The deformations of
the contacting teeth of the two gears only generate the elastic
rotational angle of the NFG. Substituting g; = 0 into Eq. (4)
results in a differential equation of torsional vibration of the
NFG with a single-degree-of-freedom as follows:

Do + rop(t)emlrva(H)gz + é(1)]
+ 12Ok f[r02(t)q2 + e(t)] = —T> — L6 o)

The meshing stiffness of the gears, kp,, can be represented in
Fourier series form as the following equation:

N
km = ko + Z [kzn_l cos (nwet) + ko, sin (na)et)] s 6)

n=1

where ko represents the constant of the meshing stiffness,
kon—1 and kp, are the amplitudes of the variables of the mesh-
ing stiffness, and we is called the angular frequency of the
meshing stiffness excitation. The static transmission error is
given by the following:

)4
e=eg+ Y [eap-1c0s(pwet) + €2y sin(paet)]. @)
p=1

where eq represents the constant of the error, e2,_1 and ez,
are the amplitudes of the variables of the error. The radius
of the equivalent base circle of the NFG can be simplified as
follows:

ro2 = L1+ Bcos(wet)], (¥

where L and B are specified as the mean and the change
rate of the base circle radius of the NFG, and w, is the an-
gular frequency of the instantaneous center excitation. Set
q=q>+e/ryy and T = wyt and assume that the meshing
damping cy, is time invariant. Then the dimensionless expres-
sion of Eq. (5) can be written as the following equation:

d%q

dg _
@+2§E+F(T)f(6])——

T, d%, d%*
heo? dt?  dr?’

€))

where ¢ represents the meshing damping ratio, w, represents
the natural frequency of the single-degree-of-freedom model,
e is the dimensionless static transmission error, F(t) is a di-
mensionless function with respect to t, and f(g) is the di-
mensionless describing function of the relative displacement
between the contacting teeth.

wy, € and f(g) have the following expressions:

on = koL (1+2/2) /1> (10)

e=¢e/rn (11)
g+b q<-—b

f@={0  —b<g<bh, (12)
g—b q>b

whf_:re b is the dimensionless tooth backlash, which is given
by b =b/rp.

Assume that Eq. (9) has a periodic solution g, which con-
tains the harmonics with the frequencies of the internal and
external excitations. It can easily be seen from Eq. (9) that
the angular frequency of the static transmission error is p@e,
the angular frequency of the second derivative of rigid an-
gle is w., and the function F(t) contains the following an-
gular frequencies: @¢, 2w¢, NWe, NWe = @ and nwe £ 2w,
where we = we/wy and W, = w/wy. Then, take the solution
of Eq. (9) in the following form:

q =20+ 21C08SW:T + 22 SINWT + 23 €082 T + 24 SINW T
R

+ Z[Zl()r—s COSTWeT + Z10r—4 SINFWe T
r=1

+ 210r—3 COS(r@e + @c)T + 210r—2 SIN(rwe + wc)T

4+ 210r—1 COS(r@e — Wc)T + 2107 SIN(FrWe — W)T

+ 210741 COS(r@e + 20c)T + 210742 SIN(F De + 20¢)T

+210r+3 COS(r@we — 2wc)T + 2107 +4 SIN(r®e — 20¢)7], (13)

where zo and z;...z10,+4 represent the constant coefficients
of the harmonics in the periodic response g. Since @we /@ =



ij-Z1 = Z», where Z; is a positive integer, the period of dy-
namic response g can be expressed by T = 2m/w.; hence,
the deformation of the equivalent spring between the gears
satisfies the equation f[g(t)] = f[g(tr + T)]. The periodic
function f(gq) could be expressed by a Fourier series. Con-
sidering that the left and right side of Eq. (9) should keep
harmonic balance, we give the description of f(q) with the
same frequency components as ¢ in the following:

f(q@)= fo+ ficosw.T + f2sinw,T
R
+ f3c0820.7 + fasinwct + Z [ f10r—5 cosrmeT

r=1
+ fior—48inr@et + f1or—3 COS(rwe + @c)T
+ fior—28in(r@e + @c)T + f1or—1 COS(rwe — Wc)T
+ fior sin(roe — wc)T + fior+1c08(roe + 2wc)T
+ f1or42 8In(rwe + 20c)T + f1or43 COSF®e — 20¢)T

+ fior448in(roe — 20)7 ], (14)

where fo, f1...f1or+4 represent the constant coefficients of
the harmonics in the periodic function f(g).

Substituting Egs. (11)—(12) into Eq. (9), we can obtain a
algebraic equation set, s;, =0 (where i =1,2,...10R +5),
based on the harmonic balance method.

In the algebraic equation set s;, the coefficient of the expres-
sion of the steady-state response ¢q, z;, is the unknown. In
addition, the coefficient of the harmonics of f(q), fi, is the
function of the unknown z;, which should be described be-
fore solving the equations s;.

First, discretize the Eq. (13) by taking the following:

m 2w 15
TMw (1>
where m and M are both positive integers, with m € [0, M —
1]. Substituting Eq. (15) and @./w. =i; - Z; into Eq. (13)
leads to g,,; that is the discrete time series of the steady-state
response of the gear system. Substituting g, into Eq. (12)
results in the discrete time series of the backlash nonlinearity
function f(q) as follows:

gmn=f@Gn) mel0O,M—1], (16)

Then, g, is processed by a discrete Fourier transformation to
obtain the expression of f; as follows:

1 M—1
Jfo= M 8m
m=0
L M 2
mm
J1=173; 2 &mcos -
m=0
L M 2
s 2my
fa= i &m S ==
m=0
. a7
rel[l, R]
M—-1 .
1 2mn(ri; Zy
fior—s =37 2 gmcos%
m=0
M—1 .
1 . 2mu(riiZ;
Jior+4 = i D &m Sm+)
m=0

Finally, substituting Eq. (17) into the equation set s; =0
could lead to a nonlinear algebraic equation set with respect
to the unknown z;. Using a quasi-Newton method to solve
the nonlinear equations has the advantage that the inversion
calculation of their Jacobian matrix can be canceled in each
iteration, which will improve the computational efficiency
greatly. Based on Broyden’s method, the nonlinear equation
set s; = 0 is solved to obtain the periodic response g of the
NFG pair under a set of given initial value of z;.

Set the transmission ratio of the NFG pair as follows:

. 14 2scos(wet) + &2
i =1ij o2

; (18)

where & represents the eccentric ratio for determining the
variation range of the transmission ratio.

Since the tooth shapes of the NFG are complicated and dif-
ferent from each other, the finite element method is applied
to compute the mesh stiffness of the gears. Figure 6a shows
a single-tooth model of the NFG in a finite element software,
which is constructed based on the meshing theory in the lit-
erature (Liu et al., 2019). The teeth of the NFG and the pin-
ion contact at a point. A unit normal force is added at the
meshing point of the two tooth surfaces. Correspondingly,
the tooth deformation is calculated by the finite element soft-
ware, as shown in Fig. 6b. We extract the deformation data, s,
at the meshing point. The stiffness of the gear tooth at this po-
sition can be computed by k = 1/s. Then, the stiffness curve
of a single tooth of the NFG can be fitted by stiffness val-
ues at different meshing points. In a similar way, the stiffness
curve of a single tooth of the pinion can be obtained.

Dealing with the contacting teeth of the NFG and the pin-
ion as serial springs, we can obtain the meshing stiffness
curves of a pair of teeth of the gears. In an engagement, two
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pairs of the meshing teeth can be represented by two par-
allel springs. According to the alternation rule of one and
two pairs of teeth, the synthesizing meshing stiffness curves
of the gears are obtained, as shown in Fig. 7, where the ro-
tational speed of the pinion is 1rad per second. Due to the
asymmetry of the teeth of the NFG, the stiffness curve in ev-
ery meshing period is various.

In most cases, the harmonic of the fundamental frequency
of excitations plays a leading role in the steady-state response
of the dynamic system, which is also given special atten-
tion in practice. With the consideration of the convenience
of the calculation and actual requirement in engineering, the
expressions of the meshing stiffness and static transmission
error are rewritten on the basis of Egs. (6)—(7) as follows:

{ km = ko + kr sin(wet + ¢m) (19)
e=ep+e sin(we+¢.)

where k, and e, are specified as the amplitudes of the fun-
damental frequency component of the meshing stiffness and
transmission error, and ¢n, and ¢, are the phase angles of the
meshing stiffness and error. ky and &, can be calculated by a
discrete Fourier transformation of the synthesizing meshing
stiffness in Fig. 7. Without a consideration of the effect of the
two-phase angles on the vibration of the NFG, we take them
as being ¢y, = /2 and @, = 0; then, the second derivatives
on the right-hand side of Eq. (9) can be deduced as follows:

d%0,  2wce (1 —&?)sin(@c7)

= 20

dr2 1 +2ecos(wet) + &2 (20)
d%e

S = @sin(@er). @1)

dr2 "

Parameters of the NFG pair.

Parameters Symbol/unit Value
Module of the pinion m/mm 2.5
Number of teeth of the pinion Z 18
Reduction ratio ij 35
Eccentric ratio e 0.2
Pressure angle o 20°
Load torque T»/(N m) 30
Moment of inertia of the NFG I/(kg mz) 0.014
Mean of the meshing stiffness ko/(N/m) 3.1x 108
Amplitude of the meshing stiffness ky/(N/m) 0.9 x 108
Damping ratio & 0.01
Mean of the static transmission error ep/m 0
Amplitude of the static transmission error  e,/m 1x1073
Half of tooth backlash bim 5x1073
Rotational velocity of the pinion w1 /(rad/s) 160

Let the load torque acting on the NFG be constant. Expand
Eq. (20) with a Fourier series, and substitute its first two
terms into the right-hand side of the Eq. (9) to derive the
following expression:

fr = —Bo— By sin(w.1)— By sin Qw.t)+ B3 sin(wt), (22)

where By =T/ (Iga)rzl), B3 = erag/rbz, and Bj and B; rep-
resent the amplitudes of the first two terms in the Fourier
series of Eq. (20). The parameters of the NFG pair are given
in Table 1.

The dynamic equation in Sect. 3 is utilized for the analy-
sis of the nonlinear rattle behavior of the NFG. Since the
expressions of the meshing stiffness and the transmission
error take the first-order harmonic alone, the variable R in
Egs. (13)-(14) is equal to 1, resulting in 15 unknown vari-
ables in the equation set s; = 0. According to the solution
method in Sect. 4.2, the dynamic responses of a NFG pair,
with the parameters given in Table 1, are obtained.

Figure 8 illustrates the time domain diagram, phase dia-
gram and the frequency—amplitude diagram of the relative
displacement between gears. It can be seen from Fig. 8a that
the values of the relative displacement are negative or zero.
At the same time, there exits a sudden change in relative ve-
locity at f(g) =0 in the phase diagram of Fig. 8b, which
means that the rattle behavior occurs between teeth. Since
the relative displacement does not exceed zero, the rattle phe-
nomenon only occurs on the driving side of the tooth surface,
which is called a unilateral rattle. Figure 8c shows the ampli-
tudes of each excitation frequency in which the amplitudes
corresponding to the instantaneous center excitation and the
meshing stiffness excitation are relatively large. It indicates
that they play a major role in the rattle vibration of the NFG.
As the frequency of the instantaneous center excitation is far
less than the frequency of the meshing stiffness, the time do-
main response curve in Fig. 8a presents the characteristics
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Figure 8. Dynamic response with w1 = 160 rad per second.

of the superposition of low-frequency vibration and high-
frequency vibration.

Reduce the input velocity w; to 140rad per second and
keep the other parameter unchanged in Table 1. The dynamic
responses are obtained, as shown in Fig. 9. From Fig. 9a and
b, it can be seen that the values of the relative replacements
are all less than zero, which means the gear system vibrates
periodically without rattling. At the same time, the ampli-
tudes corresponding to each frequency all reduce slightly in
Fig. 9c, which leads to the vibration of the NFG weakening,
as shown in Fig. 9a.

https://doi.org/10.5194/ms-12-361-2021
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Figure 9. Dynamic response with w; = 140rad per second.

When the input speed w; increases to 180 rad per second,
there are positive and negative values in the relative displace-
ments, as shown in Fig. 10a, and sudden changes occur at
f(g)=0 in Fig. 10b. It indicates that the gears will con-
tact on the non-driving side of the tooth surfaces after sep-
aration from the driving side. The bilateral rattle appears in
the engagement of the NFG pair. The amplitude correspond-
ing to each excitation frequency increases greatly, as seen in
Fig. 10c, which shows that the bilateral rattle would result in
a serious deterioration of the dynamical performance of the
NFG.

Mech. Sci., 12, 361-373, 2021
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From the above analysis, it can be seen that, under the
combined excitation of the time-varying instantaneous cen-
ter and meshing stiffness, the vibration behavior of a non-
circular face gear is more complex than that of a circular
gear. The change in velocity will lead to different rattle vi-
bration behaviors. In order to further reveal the evolution law
of the rattle vibration behavior of non-circular face gear, the
influences of parameters such as the input speed, eccentric-
ity, static transmission error, meshing stiffness and load on
the rattle behavior are studied by the control variable method
below. The parameter rsv is introduced to describe the rat-
tle state. When rsv is 0, 1 or 2, it represents the no-rattle,
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unilateral rattle and bilateral rattle of gears respectively. In
addition, ppv is referred to as the peak-to-peak value of the
steady-state response that is used to reflect the degree of gear
vibration. By calculating the rsv and ppv of NFG drive under
different system parameters, the evolution characteristics of
the rattle vibration behavior of the gear were analyzed.

Let the rotational velocity of the pinion increase from 100 to
250rad per second, and let the values of the other parame-
ters in Table 1 be invariable. Figure 11a shows the change
in the rattle state along with w;. It can be observed that
the NFG runs without rattle at the low-input velocity, where
rsv is equal to 0. As w; increases to 150rad per second,
the unilateral rattle behavior appears, which continues un-
til w; = 170rad per second. Then the NFG will change to a
bilateral rattle state with a higher input velocity. The results
indicate that the NFG undergoes the non-rattle, unilateral rat-
tle and bilateral rattle state in succession as the input speed
w1 increases.

The peak-to-peak value of the vibration of the NFG vary-
ing with e is illustrated in Fig. 11b. In the non-rattle and
unilateral rattle vibration, ppv grows gradually with the in-
crease of the input speed. However, at the start of the bilateral
rattle, a sudden increase occurs in the curve of ppv. Then it
continues to grow along with the input velocity. The results
show that, at the outset of the bilateral rattle, the vibrational
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amplitude of the NFG jumps suddenly, and in the bilateral
rattle state, the vibrational amplitude increases more quickly.

Figure 12a depicts the change in the rattle state, along with
the amplitude of the transmission error. As e, increases, the
NFG undergoes non-rattle, unilateral rattle and bilateral rattle
vibration in succession and maintains the bilateral vibration
state in the end. These results indicate that low machining
accuracy will cause rattle vibration easily for the NFG. Fig-
ure 12b gives the curve of ppv, varying it with e,. First, in
the process of non-rattle and unilateral rattle vibration, the
ppv of the NFG grows slightly with the increase in e,. As the
bilateral rattle arises, ppv increases suddenly, which means
that an amplitude jump occurs in the dynamic response of the
NFG. Then, as the amplitude of transmission error continues
to increase, the ppv slowly rises. It can be concluded from
the above results that improving the processing accuracy is
an effective way of eliminating the rattle and reducing the
vibration of the NFG.

The variation in the rattle state with the eccentricity of the
NFG is investigated. Figure 13a shows that the NFG also un-
dergoes the three rattle states with the increase in eccentric

Rattle state value rsv
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Change in vibration with eccentric ratio.

ratio. The eccentric ratio is the essential difference between
noncircular and circular face gear. When ¢ = 0, the noncir-
cular face gear becomes circular. The dynamic response is
illustrated in Fig. 13b. Comparing it to Fig. 8a, we can see
that the vibration amplitude of the circular face gear is much
less than that of the NFG. Correspondingly, the rattle vibra-
tion appears more easily in the noncircular face gear than in
the circular gear, and the greater the eccentricity is, the easier
the NFG is to rattle.

The peak-to-peak value of the NFG grows with the in-
crease in & when it undergoes non-rattle and unilateral rat-
tle vibration, as shown in Fig. 13c and suddenly increases
when the bilateral rattle appears. Then, as the eccentric ratio
increases, the ppv of the NFG drops significantly. However,
it is still in the bilateral rattle state. For a NFG with a large
eccentric ratio, we could decrease the input speed or increase
the machining accuracy to prevent the tooth rattle.

We define the ratio of k, to kg in Eq. (19) as the amplitude co-
efficient of the mesh stiffness, ai. Figure 14a shows that the
NFG maintains a unilateral rattle state with the increase in ay
from 0.1 to 0.8. We take the rotational velocity of the pinion
as w1 = 140rad per second. The NFG keeps a non-rattle state
all the time as ay increases, as shown in Fig. 14a. Through
further calculation, we find that, under some critical condi-
tions such as w; = 145 rad per second, the variation in the ai
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could lead to a change in the rattle state of the NFG. This
demonstrates that the fluctuation of the meshing stiffness has
less of an effect on the transformation of the rattle state of
the NFG than the three preceding parameters do. However,
ppv curves in Fig. 14b show that the vibrational amplitudes
of the NFG will rise, obviously, as the amplitude coefficient
of the mesh stiffness increases at different input velocities.

Let the load torque, 7>, increase from O to 40 N per meter
and keep the other parameters invariant, as in Table 1. The
rattle state of the NFG with the increase in the load torque is
shown in Fig. 15a. When T3 is less than 12 N per meter, there
is a bilateral rattle in the engagement of the NFG. As T rises
from 12 to 20N per meter, the gear is in a unilateral rattle
state. When 7> increases to 20 N per meter, there is no rattle.
In the case of light or no load, the rattle vibration appears
in the transmission of the NFG, which is the same as that
of ordinary circular gears. However, due to the instantaneous
center excitation, the rattle vibration happens more easily in
the NFG than in the circular gears.

Figure 15b shows the ppv curve of the dynamic response
of the NFG as the load torque increases. In the bilateral rat-
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tle state, the ppv grows slowly with the increase in 7>. When
the vibration state changes from the bilateral to the unilateral
rattle, the amplitude of ppv drops sharply. Then, ppv gradu-
ally raises with the increase in 7. The results indicate that a
small load torque is prone to generating a bilateral rattle in
the drive of the NFG, which will lead to excessive vibration.
We could increase the load torque appropriately to prevent
the rattle phenomenon.

A NFG is manufactured by a three axis CNC milling ma-
chine, according to the design parameters in Table 1, whose
vibration test platform is shown in Fig. 16. A variable fre-
quency motor connects to the pinion with a pair of syn-
chronous pulleys. The NFG is connected to a magnetic pow-
der brake by a couple. Considering that the torsional vibra-
tion of the gears would propagate along the supporting bear-
ings, we apply the rectilinear vibration of the bearings to re-
flect the torsional vibration of the NFG. There are two three-
axis acceleration sensors fixed on the bearings of the pin-
ion and the NFG. The one measures the radial vibration of
the pinion, while the other measures the radial and axial vi-
bration of the NFG. The vibration signals of the NFG under
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Figure 16. Vibration test platform of the NFG.

different working conditions can be tested by adjusting the
motor velocity and brake torque.

Since the experimental results are the linear vibration data
on the bearing seat in Fig. 16, and the theoretical results are
the dimensionless torsional vibration data of the NFG, they
cannot be compared with each other in the time domain. Fig-
ure 17 gives a comparison between the experiment and sim-
ulation results in frequency domain in which the rotational
velocity of the motor is 864 rpm (revolutions per minute), the
reduction ratio of the synchronous belt drive is 1.3, and the
load torque is 3 N per meter. It can be seen from Fig. 17 that
the theoretical frequency values of instantaneous center exci-
tation and mesh stiffness excitation are 3 and 192 Hz, respec-
tively, while the measured values are 3.2 and 194 Hz, respec-
tively. In addition, the double frequency of the time-varying
instantaneous center, the sum and difference frequency of
time-varying instantaneous center and the meshing stiffness
in Fig. 17a are close to those in Fig. 17b. The frequency com-
ponents of the theoretical results are in good agreement with
those of the experimental results.

To compare the amplitude of the spectrum of the theoret-
ical and experimental vibration responses, a dimensionless
parameter, called the ratio of amplitude, is introduced. Con-
sidering that the fundamental frequency plays an important
role in the vibration of the system, the ratio of amplitude is
expressed by the following:

g=25, 23)

where A, and A, represent the amplitude of meshing fre-
quency f, and that of instantaneous center frequency f,
in the frequency—amplitude diagram. Increasing the motor
speed from 280 to 1176 rpm, the theoretical and experimental
vibration data of NFG under different excitation frequencies
are shown in Table 2. It can be seen that the theoretical val-
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Figure 17. Frequency—amplitude diagrams.

ues of the instantaneous center and meshing frequency agree
with their experimental values.

Furthermore, the theoretical and experimental amplitude
ratio data are illustrated in Fig. 18. With the increase in the
motor speed, the two curves gradually match. The main rea-
son for the larger error at low speed is that the excitation at
low speed is relative small. The meshing vibration of the gear
attenuates after it is transmitted along the bearing, which re-
sults in a larger error of the measurement data on the bearing
seat. When the motor velocity exceeds 616 rpm, the experi-
mental results are found to be in agreement with the calcu-
lated ones, which could verify the correctness and validity of
the presented theoretical model and solution.

4 Conclusions

The internal excitations of a new gear pair comprised of a
pinion and a noncircular face gear are investigated. Consid-
ering the multifrequency parametric excitation and backlash
nonlinearity, the dynamic model of the NFG pair is estab-
lished, which is solved by harmonic balance method and dis-
crete Fourier transformation. The effects of the main system
parameters on the vibrational state of the gears are analyzed
in detail. The results show the following:
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Comparison of theoretical and experimental results.

n Theoretical results ‘ Experimental results

(pm)  f/Hz A, f./Hz Ac £ | foMz  Adm/s?)  folHz —Acl(m/s?) £
280.0 1.0 053 64.0 2591 48.6 1.0 0.016 65.4 0.547 342
392.0 1.4 075 89.6 3643 4838 1.5 0.027 91.7 1.073  39.7
504.0 1.8 096 1152 47.18 49.1 1.9 0.031 116.2 2364 763
616.0 22 1.18 1408 5838 497 23 0.045 1412 2431 54.0
728.0 26 139 1664 7033 50.5 2.7 0.02 170.1 1.005 50.3
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. The instantaneous center excitation in the NFG pair is
low frequency and time varying, which belongs to a
parametric type of excitation. It compounds with the
time-varying meshing stiffness of the gears to form a
complex multifrequency parametric activation.

. The eccentric ratio, input speed and error amplitude
have a great influence on the rattle state of the NFG
pair. As the three parameters increase, the NFG under-
goes non-rattle, unilateral rattle and bilateral rattle vi-
bration in succession. The effect of the fluctuation of
the meshing stiffness on the rattle state is smaller. Under
some critical condition, the rattle state of the gear will
change with the increase in the amplitude coefficient of
the mesh stiffness.

. In the state of non-rattle and unilateral rattle, the peak-
to-peak values of the dynamic response of the NFG
grow gradually with the increase in the eccentric ratio,
input speed and error amplitude. At the start of bilat-
eral rattle vibration, a jump phenomenon occurs on the
ppv curve, which means that the vibration of the gears is
suddenly enhanced at this instant. In addition, ppv rises
greatly with the increase in the amplitude coefficient of
the mesh stiffness, which has a big influence on the vi-
bration amplitude of the gears.
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