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Abstract. Planetary gear trains (PGTs) are widely used in machinery such as vehicles, pulley blocks, wrist
watches, machine tools, and robots. During the process of structural synthesis of PGTs using graph theory, iso-
morphism identification of graphs is an important and complicated problem. The reliability of the isomorphism
detection method directly determines the accuracy of the synthesis result. In this paper, a novel isomorphism
identification method for PGTs is proposed. First, a new weighted adjacent matrix is presented to describe the
topological graph of PGTs, which has is unique in describing the structure of PGTs. Then, the weighted dis-
tance matrix is proposed and the sum of the matrix is obtained, which can determine whether the planetary gear
trains is isomorphic or not. Eventually, the examples demonstrate that this new method can be accurately and
effectively performed.

1 Introduction

Planetary gear trains (PGTs) include central gears and plane-
tary gears rotating around them. A gear train mechanism has
the advantages of high transmission efficiency, large trans-
mission power range, accurate transmission ratio, and strong
working reliability. It is the most widely used transmission
mechanism at present. In particular, the planetary gear trains
also take into account the advantages of small space, low
weight, and high rotation efficiency. PGTs are widely used
in machine transmissions, robot reducers, vehicle transmis-
sions, gantry cranes, electric tools, and other transmissions.
In the past 50 years, the concept of graph theory has been
applied to synthesize PGTs (del Castillo, 2002; Hsu and
Hsu, 1997; Ravisankar and Mruthyunjaya, 1985; Yan et al.,
2006; Shanmukhasundaram et al., 2019b; Tsai, 1987; Tsai
and Lin, 1989; Xie et al., 2015a, b; Yang and Ding, 2019),
and the synthesis and analysis of planetary gear trains have
become a hot topic in mechanism research. At present, the re-
search on mechanism type synthesis mainly focuses on pla-
nar kinematic chains (Ding et al., 2010, 2011, 2012, 2013,

2016; Yang et al., 2018). The geometric axis of at least
one gear in the planetary gear trains is rotated around the
fixed axis of the other gear during transmission. Hsu and
Lam (1992) proposed a new graph representation to repre-
sent the kinematic structure of a planetary spur gear train ef-
ficiently. Yang et al. (2018) proposed a novel displacement
graph and a canonical displacement graph model to represent
the structure of planetary gear trains. Shanmukhasundaram
et al. (2019a, 2021) presented graph-theory-based methods
for the detection of degenerate epicyclic gear trains (EGTs)
graphs among the enumerated collection. Isomorphism iden-
tification of planetary gear trains is an essential step in type
synthesis. Graph theory is often used to judge the isomor-
phism of simple joint and multiple joints kinematic chains,
which are also used in planetary gear trains. The accuracy of
the isomorphism determination method directly affects the
accuracy of the structural synthesis result of planetary gear
trains. The establishment of an efficient and accurate isomor-
phism determination method has always been a hot topic in
the field of mechanism.
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In the last few decades, a lot of research has been done
on the isomorphism identification of planetary gear trains.
Ravisankar and Mruthyunjaya (R and S, 1985) proposed the
characteristic coefficients of the adjacency matrix method
for isomorphism identification of planetary gear trains. Kim
and Kwak (1990) introduced a mapping functions method
to identify nonisomorphic graphs of epicyclic gear trains,
which showed that the edge permutations are from the sym-
metric group of vertex permutations. Hsu (1994) proposed a
structural code method for the identification of the displace-
ment isomorphism of planetary gear trains which can rep-
resent the topological structure of planetary gear trains. del
Castillo (2002) introduced a method for checking for isomor-
phisms based on the evaluation of a determinant. Rao (2003)
proposed isomorphism identification methods for epicyclic
gear trains based on hamming string and a genetic algorithm.
Liu et al. (2004) proposed an novel kinematic fractionation
concept for the determination of epicyclic gear trains. Yang
et al. (2007) presented an algorithm for the identification of
the isomorphisms of epicyclic gear mechanism, which im-
proved the efficiency and reliability of the isomorphism iden-
tification method. Kamesh et al. (2017) proposed a novel and
simple algorithm to eliminate isomorphism chains based on
the graph theory. It has been tested on examples from pla-
nar kinematic chains with eight links and 1 DOF (degree of
freedom), 10 links and 1 DOF, 12 links and 1 DOF, and 15
links and 4 DOF. Yang and Ding (2018a, b, 2019) proposed
a fully automatic algorithm to detect and eliminate degener-
ate planetary gear trains. And the previous perimeter-loop-
based isomorphism detection method has been improved to
detect isomorphic planetary gear trains. It is applicable for
linkage kinematic chains and has been proved to be reliable
and efficient. Rai and Punjabi (2019) presented a simple al-
gorithm of links labeling, which was used to find out a bi-
nary sequence that provides a maximum binary code. The
maxi codes are generated, including binary sequence and bi-
nary code, to compare the isomorphisms of planetary gear
trains. Xu et al. (2020) proposed a novel isomorphism de-
tection method for the planetary gear transmission structure
based on a matrix operation. The various components of the
transmission structure and isomorphic structures of the nu-
merous structures are classified.

In this paper, a distance matrix method for isomorphism
identification of planetary gear trains is developed. First, a
weighted adjacent matrix is proposed to represent the topo-
logical structure of planetary gear trains, which can uniquely
represent the gear trains, including all information about
them. Then, the weighted distance matrix is proposed by an
iterative algorithm, and it can determine whether the plane-
tary gear trains are isomorphic or not by sum of this matrix.
This isomorphism identification method is simple and reli-
able and does not require complex computation. Finally, this
new isomorphism identification method for PGTs proved to
be accurately and effectively performed through a large num-
ber of examples.

Figure 1. (a) A 3D model of the Simpson gear train, (b) a schematic
diagram, (c) a graphic representation, and (d) bicolor topologi-
cal graph a1.

2 Representation of the weighted adjacent matrix

A 3D model of the famous Simpson gear drive system is
shown in Fig. 1a. The gear drive system is a 6 bar 1 DOF
planetary gear train. Figure 1b is the schematic diagram of a
Simpson gear system. Its links and kinematic pairs (revolute
pairs and higher pairs) are numbered, respectively. In this pa-
per, the traditional representation of imaginary and real line
topology (Hsu and Lam, 1992) is improved. Solid nodes are
used to represent links. The real edges represent all the rev-
olute pairs. The gear pairs are indicated by dotted lines. The
corresponding topological graph can be obtained from the
schematic diagram using the traditional dotted and solid line
representation, as shown in Fig. 1c. Considering the plan-
etary gear trains with multiple bars and multiple kinematic
pairs, there are many imaginary and real lines represented.
In order to simplify the graph, the lines with the same serial
number of kinematic pairs in the topological graph are repre-
sented by a hollow node, as shown in Fig. 1d. Therefore, all
solid nodes connected with the hollow node mean that their
corresponding members have the same revolute pair.

A gear train kinematic chain is a collection of links con-
nected by joints, and this link and joint assemblage can be
represented by the weighted adjacent matrix. The serial num-
ber of the links and kinematic pairs is not limited, and it only
needs to be labeled in sequence. The size of the matrix is
n× n, and n represents the number of links. The weighted
adjacent matrix is expressed as follows:

ai,j =


0, if i = j
∞, if link i is not connected to link j,
(100dmax+ dmin)/1000, if link i is connected
to linkj by geared pair
1+ (100dmax+ dmin)/1000, if link i is connected
to linkj by revolute pair

, (1)
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where, dmax =max
{
di,dj

}
, and dmin =min

{
di,dj

}
. The

symbol di is the degree of link i.

di =


d ′k +

(
10nr+ ng

)
/10− 1, if link i is connected

to multiple jointk(
10nr+ ng

)
/10, if link i is not connected

to multiple jointk

, (2)

where, nr represents the number of revolute pairs in this link.
ng is the number of gear pairs in this link. For instance, the
link 6 is connected multiple joint 1, and the degree of multi-
ple joint 1 is 4, i.e., d ′1 = 4. The numbers of revolute pairs and
gear pairs are 0 and 1, respectively, i.e., nr = 0 and ng = 1.
Thus, d6 = 3.1.

The weighted adjacent matrix Aa1 of the Simpson gear
train a1 is as follows:

Aa1 =


0 1.4012 1.4032 1.4140 ∞ 1.4031

1.4012 0 0.3212 0.4112 ∞ ∞

1.4032 0.3212 0 1.4132 0.3212 1.3231
1.4140 0.4112 1.4132 0 1.4112 1.4131
∞ ∞ 0.3212 1.4112 0 0.3112

1.4031 ∞ 1.3231 1.4131 0.3112 0

 . (3)

3 The shortest distance matrix

The shortest distance matrix corresponding to the topolog-
ical diagram is denoted by the symbol E. The length of
the shortest path among all the paths from joint to joint is
represented by E (i,j ). The iterative algorithm is utilized
to obtain the shortest distance matrix. And the matrices

E(0),E(1),E(2). . .E(n), and
(

E(0)
=

(
e

(0)
ij

)
n×n
= A

)
are con-

structed.

E(n)
=

(
e

(n)
ij

)
n×n

, e
(n)
ij =min

{
e

(n−1)
ij ,e

(n−1)
in + e

(n−1)
nj

}
, (4)

where, e
(n)
ij represents the length of the shortest path from

joint i to joint j . So, the final matrix E(n) is the shortest dis-
tance matrix. The updating algorithm of the shortest distance
matrix is as follows:

Step 1. Initialization, in which the improved adjacency ma-
trix A is assigned to the initial improved shortest distance
matrix E.

Step 2. The shortest distance matrix is up-
dated as E (i,j ). If E (i,k)+E (k,j ) < E (i,j ), then
E (i,j )= E (i,k)+E (k,j ).

Step 3. If k = n, stop. Otherwise, if k = k+1, go to Step 2.
Through the corresponding operation, the shortest distance

matrix Ea1 of the gear train a1 can be achieved as follows:

Ea1 =


0 1.4012 1.4032 1.4140 1.7143 1.4031

1.4012 0 0.3212 0.4112 0.6424 0.9536
1.4032 0.3212 0 0.7324 0.3212 0.6324
1.4140 0.4112 0.7324 0 1.0536 1.3648
1.7143 0.6424 0.3212 1.0536 0 0.3112
1.4031 0.9536 0.6324 1.3648 0.3112 0

 ,


7.3358
3.7296
3.4104
4.9760
4.0427
4.6651

 . (5)

Figure 2. (a) Bicolor topological graph a2 and (b) bicolor topolog-
ical graph a3.

The array of columns on the right-hand side of Eq. (5),
which is the sum of the shortest distances from any joint to
all other joints in the gear train, is denoted as the sum array.
The sum of the shortest distance matrix is Sa1 = 28.1596.

4 Isomorphism identification

The process of isomorphism identification is as follows: first,
the weighted adjacent matrixes of the planetary gear trains
are obtained. If the size of the matrixes is not same, then
the planetary gear trains are not isomorphic. Then, the sum
array of the planetary gear trains are obtained by shortest
distance matrix. If the information is different, the planetary
gear trains are not isomorphic. If the information is same,
then the planetary gear trains are isomorphic. A total of two
6 bar planetary gear trains are shown in Fig. 2. According to
the description of the weighted adjacent matrix in Sect. 2,
the expression of the 6 bar planetary gear trains a2 and a3 is
carried out.

The weighted adjacent matrix of the 6 bar planetary gear
trains a2 and a3 are as follows:

Aa2 =


0 1.4012 1.4032 1.4140 ∞ 1.4031

1.4012 0 0.3212 0.4112 ∞ ∞

1.4032 0.3212 0 1.4132 0.3212 1.3231
1.4140 0.4112 1.4132 0 1.4112 1.4131
∞ ∞ 0.3212 1.4112 0 0.3112

1.4031 ∞ 1.3231 1.4131 0.3112 0

 , (6)

Aa3 =


0 0.3212 1.5032 0.3212 1.3231 1.3231

0.3212 0 1.5012 ∞ ∞ 0.3112
1.5032 1.5012 0 1.5012 1.5031 1.5031
0.3212 ∞ 1.5012 0 0.3112 ∞

1.3231 ∞ 1.5031 0.3112 0 1.3131
1.3231 0.3112 1.5031 ∞ 1.3131 0

 . (7)
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The shortest distance matrix of the 6 bar planetary gear
trains a2 and a3 are as follows:

Ea2 =


0 1.4012 1.4032 1.4140 1.7143 1.4031

1.4012 0 0.3212 0.4112 0.6424 0.9536
1.4032 0.3212 0 0.7324 0.3212 0.6324
1.4140 0.4112 0.7324 0 1.0536 1.3648
1.7143 0.6424 0.3212 1.0536 0 0.3112
1.4031 0.9536 0.6324 1.3648 0.3112 0

 ,


7.3358
3.7296
3.4104
4.9760
4.0427
4.6651

 , (8)

Ea3 =


0 0.3212 1.5032 0.3212 0.6324 0.6324

0.3212 0 1.5012 0.6424 0.9536 0.3112
1.5032 1.5012 0 1.5012 1.5031 1.5031
0.3212 0.6424 1.5012 0 0.3112 0.9536
0.6324 0.9536 1.5031 0.3112 0 1.2648
0.6324 0.3112 1.5031 0.9536 1.2648 0

 ,


3.4104
3.7296
7.5118
3.7296
4.6651
4.6651

 . (9)

From Eqs. (5), (8), and (9), the sums of shortest distance
matrixes are ST

a1
= ST

a2
= 28.1596 and ST

a3
= 27.7116. So,

we can confirm the PGT a1 and the PGT a2 are isomorphic.
The sum array of PGT a3 is different. Therefore, PGT a3 is
not isomorphic.

The greatest advantage of this method is that it is more ef-
ficient than other methods without much additional computa-
tion. The time complexity of shortest distance matrix method
is O

(
n2). The method implements a number to represent a

numerical value of a planetary gear train.

5 Case analysis

Case 1. Figure 3 shows the topological graph of two 8 bar
planetary gear trains. They all contain six gear pairs.

The weighted adjacent matrix of the 8 bar planetary gear
trains b1 and b2 are as follows:

Ab1 =



0 1.6124 0.4212 1.5042 0.4213 1.4241 1.4241 ∞

1.6142 0 0.6112 1.6150 1.6113 1.6141 1.6141 1.6112
0.4212 0.6112 0 1.5012 ∞ ∞ ∞ ∞

1.5042 1.6150 1.5012 0 ∞ 1.5041 1.5041 ∞

0.4213 1.6113 ∞ ∞ 0 0.4113 ∞ 0.1312
1.4241 1.6141 ∞ 1.5041 0.4113 0 1.4141 ∞

1.4241 1.6141 ∞ 1.5041 ∞ 1.4141 0 0.4112
∞ 1.6112 ∞ ∞ 0.1312 ∞ 0.4112 0


, (10)

Ab2 =



0 1.6142 0.4212 1.5042 0.4212 1.4212 1.4241 ∞

1.6142 0 0.6112 1.6150 1.6112 1.6141 1.6141 1.6113
0.4212 0.6112 0 1.5012 ∞ ∞ ∞ ∞

1.5042 1.6150 1.5012 0 ∞ 1.5041 1.5041 ∞

0.4212 1.6112 ∞ ∞ 0 ∞ ∞ 0.1312
1.4241 1.6141 ∞ 1.5041 ∞ 0 1.4141 0.4113
1.4241 1.6141 ∞ 1.5041 ∞ 1.4141 0 0.4113
∞ 1.6113 ∞ ∞ 0.1312 0.4113 0.4113 0


. (11)

The shortest distance matrix of the 8 bar planetary gear
trains b1 and b2 are as follows:

Eb1 =



0 1.0324 0.4212 1.5042 0.4213 0.8326 0.9637 0.5525
1.0324 0 0.6112 1.6150 1.4537 1.6141 1.6141 1.5849
0.4212 0.6112 0 1.5012 0.8425 1.2538 1.3849 0.9737
1.5042 1.6150 1.5012 0 1.9154 1.5041 1.5041 1.9153
0.4213 1.4537 0.8425 1.9154 0 0.4113 0.5424 0.1312
0.8326 1.6141 1.2538 1.5041 0.4113 0 0.5937 0.5425
0.9637 1.6141 1.3849 1.5041 0.5424 0.5937 0 0.4112
0.5525 1.5849 0.9737 1.9153 0.1312 0.5425 0.4112 0


,



5.7279
9.5254
6.9885
11.4593
5.7178
7.1121
7.3741
6.1113


, (12)

Figure 3. (a) Bicolor topological graph b1 and (b) bicolor topolog-
ical graph b2.

Figure 4. (a) Bicolor topological graph c1 and (b) bicolor topolog-
ical graph c2.

Eb2 =



0 1.0324 0.4212 1.5042 0.4212 0.9637 0.9637 0.5524
1.0324 0 0.6112 1.6150 1.4536 1.6141 1.6141 1.5848
0.4212 0.6112 0 1.5012 0.8424 1.3849 1.3849 0.9736
1.5042 1.6150 1.5012 0 1.9254 1.5041 1.5041 1.9154
0.4212 1.4536 0.8424 1.9254 0 0.5425 0.5425 0.1312
0.9637 1.6141 1.3849 1.5041 0.5425 0 0.8226 0.4113
0.9637 1.6141 1.3849 1.5041 0.5425 0.8226 0 0.4113
0.5524 1.5848 0.9736 1.9154 0.1312 0.4113 0.4113 0


,



5.8588
9.5252
7.1194
11.4694
5.8588
7.2432
7.2432

5.98


. (13)

From Eqs. (12) and (13), the sums of the shortest distance
matrixes are ST

b1
= 60.0164 and ST

b2
= 60.298. Therefore, the

two 8 bar planetary gear trains are non-isomorphic.
Case 2. There are a total of two 10 bar planetary gear trains

as shown in Fig. 4. They all contain eight gear pairs.
The weighted adjacent matrix of the 10 bar planetary gear

trains c1 and c2 are as follows:

Ac1 =



0 ∞ ∞ ∞ ∞ ∞ ∞ 1.6112 0.5112 0.6312
∞ 0 ∞ 0.5112 1.7051 1.5251 ∞ 1.6151 1.5151 1.6351
∞ ∞ 0 ∞ 1.7012 1.5212 ∞ ∞ ∞ 0.6312
∞ 0.5112 ∞ 0 1.7012 ∞ ∞ ∞ ∞ 0.6312
∞ 1.7051 1.7012 1.7012 0 1.7052 ∞ 1.7061 1.7051 1.7063
∞ 1.5251 0.5212 ∞ 1.7052 0 0.5212 1.6152 1.5251 1.6352
∞ ∞ ∞ ∞ ∞ 0.5212 0 0.6112 ∞ 1.6312

1.6112 1.6151 ∞ ∞ 1.7061 1.6152 0.6112 0 1.6151 1.6361
0.5112 1.5151 ∞ ∞ 1.7051 1.5251 ∞ 1.6151 0 1.6351
0.6312 1.6351 0.6312 0.6312 1.7063 1.6352 1.6312 1.6361 1.6351 0


, (14)
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Table 1. Isomorphism determination method of PGTs.

Method name Intuitiveness Example

Rao (Rao, 2003) Half-adjacency string 160− [22− 3(6),5,3(3)] − 3[20− 6,3(3),2(2),1]
−3[18− 4(3),3(2)] − [14− 5,3(2),3(1)]

Yang (Yang et al., 2018) Characteristic code 4101011− 020100− 02001
−0200− 020− 00− 0

Kamesh (Kamesh et al., 2017) Net distance and string 20 and 20–2(6)–2(4)

Rai (Rai and Punjabi, 2019) Maxi code 897+ 32ee+ 18eI

This method A number 28.1596

Ac2 =



0 1.5151 1.7051 ∞ 1.6151 ∞ 1.6351 ∞ 1.5251 0.5112
1.5151 0 1.7051 0.5112 1.6151 ∞ 1.6351 ∞ 1.5251 ∞

1.7051 1.7051 0 1.7012 ∞ 1.7012 1.7063 ∞ 1.7052 ∞

∞ 0.5112 1.7012 0 ∞ ∞ 0.6312 ∞ ∞ ∞

1.6151 1.6151 1.7061 ∞ 0 ∞ 1.6361 0.6112 1.6152 1.6112
∞ ∞ 1.7012 ∞ 1.6361 0 0.6312 ∞ 0.5212 ∞

1.6351 1.6351 1.7063 0.6312 0.6112 0.6312 0 1.6312 1.6352 0.6312
∞ ∞ ∞ ∞ 1.6152 ∞ 1.6312 0 0.5212 ∞

1.5251 1.5251 1.7052 ∞ 1.6112 0.5212 1.6352 0.5212 0 ∞

0.5112 ∞ ∞ ∞ ∞ ∞ 0.6312 ∞ ∞ 0


. (15)

The shortest distance matrix of the 10 bar planetary gear
trains c1 and c2 are as follows:

Ec1 =



0 1.7736 1.2624 1.2624 2.2163 1.7836 2.2224 1.6112 0.5112 0.6312
1.7736 0 1.7736 0.5112 1.7051 1.5251 2.0463 1.6151 1.5151 1.1424
1.2624 1.7736 0 1.2624 1.7012 0.5212 1.0424 1.6536 1.7736 0.6312
1.2624 0.5112 1.2624 0 1.7012 1.7836 2.2624 2.1263 1.7736 0.6312
2.2163 1.7051 1.7012 1.7012 0 1.7052 2.2264 1.7061 1.7051 1.7063
1.7836 1.5251 0.5212 1.7836 1.7052 0 0.5212 1.1324 1.5251 1.1524
2.2224 2.0463 1.0424 2.2624 2.2264 0.5212 0 0.6112 2.0463 1.6312
1.6112 1.6151 1.6536 2.1263 1.7061 1.1324 0.6112 0 1.6151 1.6361
0.5112 1.5151 1.7736 1.7736 1.7051 1.5251 2.0463 1.6151 0 1.1424
0.6312 1.1424 0.6312 0.6312 1.7063 1.1524 1.6312 1.6361 1.1424 0


,



13.2743
13.6075
11.6216
13.3143
16.3729
11.6498
14.6098
13.7071
13.6075
10.3044


, (16)

Ec2 =



0 1.5151 1.7051 1.7736 1.6151 1.7736 1.1424 2.0463 1.5251 0.5112
1.5151 0 1.7051 0.5112 1.6151 1.7736 1.1424 2.0463 1.5251 1.7736
1.7051 1.7051 0 1.7012 1.7061 1.7012 1.7063 2.2264 1.7052 2.2163
1.7736 0.5112 1.7012 0 2.1263 1.2624 0.6312 2.2624 1.7836 1.2624
1.6151 1.6151 1.7061 2.1263 0 1.6536 1.6361 0.6112 1.1324 1.6112
1.7736 1.7736 1.7012 1.2624 1.6536 0 0.6312 1.0424 0.5212 1.2624
1.1424 1.1424 1.7063 0.6312 1.6361 0.6312 0 1.6312 1.1524 0.6312
2.0463 2.0463 2.2264 2.2624 0.6112 1.0424 1.6312 0 0.5212 2.2224
1.5251 1.5251 1.7052 1.7836 1.1324 0.5212 1.1524 0.5212 0 1.7836
0.5112 1.7736 2.2163 1.2624 1.6112 1.2624 0.6312 2.2224 1.7836 0


,



13.6075
13.6075
16.3729
13.3143
13.7071
11.6216
10.3044
14.6098
11.6498
13.2743


. (17)

From Eqs. (16) and (17), the sums of shortest distance ma-
trixes are ST

c1
= ST

c2
= 132.0692. So, we can confirm the PGT

c1 and the PGT c2 are isomorphic.

6 Conclusions

In this paper, the weighted adjacent matrix is introduced to
describe the planetary gear train, which can uniquely rep-
resent the structure of the gear train. Then, a novel isomor-
phism identification method was proposed. This method is
both reliable and simple. The time complexity of the short-
est distance matrix method is O

(
n2). The greatest advantage

of this method is that it is more efficient than other meth-
ods without much additional computation. The experimental
results provided show the high performance.
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Appendix A

Figure A1.
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Figure A1. A total of 81 displacement graphs of 6 bar 1 DOF planetary gear trains.
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Figure A2. A total of four displacement graphs of 7 bar 2 DOF planetary gear trains.

Figure A3. A total of four displacement graphs of 8 bar 3 DOF planetary gear trains.
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Data availability. The data are available online at https://cloud.
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