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Abstract. It is necessary to acquire the accurate information of vehicle driving states for the implementation
of automobile active safety control. To this end, this paper proposes an effective co-estimation method based on
an unscented Kalman filter (UKF) algorithm to accurately predict the sideslip angle, yaw rate, and longitudinal
speed of a ground vehicle. First, a 3 degrees-of-freedom (DOFs) nonlinear vehicle dynamics model is estab-
lished as the nominal control plant. Then, based on CarSim software, the simulation results of the front steer
angle and longitudinal and lateral acceleration are obtained under a variety of working conditions, which are
regarded as the pseudo-measured values. Finally, the joint simulation of vehicle state estimation is realized in the
MATLAB/Simulink environment by using the pseudo-measured values and UKF algorithm concurrently. The
results show that the proposed UKF-based vehicle driving state estimation method is effective and more accurate
in different working scenarios compared with the EKF-based estimation method.

1 Introduction

As we all know, a variety of vehicles has become a popular
and common device in people’s daily lives; meanwhile, an
active safety system (ASC) of a ground vehicle plays an im-
portant role in avoiding traffic accidents as a means of guar-
anteeing passenger safety. However, the effective operation
of ASC systems is inseparable from the accurate acquisi-
tion of vehicle driving states (Zhang et al., 2019). In gen-
eral, most vehicle state information is obtained by onboard
sensors. However, due to the limitation of cost and measure-
ment methods, it is difficult for some vehicle state signals to
be measured directly by sensors, which makes the estimation
of vehicle states a hot topic in the field of vehicle ASCs.

Among the vehicle state signals, the sideslip angle, yaw
rate, and longitudinal speed are important input variables for
the vehicle ASC systems, such as the Electronic Stabilization
Program (ESP), Adaptive Cruise Control (ACC), and Lane
Keeping Assist (LKA), as well as the state signals that often
need to be estimated (Li et al., 2020).

Currently, the common vehicle state estimation methods
are usually divided into kinematics methods and dynamics
methods (Selmanaj et al., 2017). Based on the relationship

between the known state and the unknown state, the kine-
matics model-based methods calculate the unknown states
by directly integrating the kinematics equation (Yamamoto
et al., 1995). Generally, these methods have good accuracy
for vehicle parameters, road adhesion coefficient, and driv-
ing operation. Under the condition of accurate sensor sig-
nals, these methods have high estimation accuracy for the
sideslip angle in both linear and nonlinear regions (Li et al.,
2014). However, the accuracy of these estimation methods
is heavily dependent on the measurement accuracy of sen-
sors, which will directly affect the estimation result of the
kinematics method. What is more, due to the error accumu-
lations in the integral process, the estimation error caused
by measurement noise will increase gradually, and this will
still result in the deviation of the estimated value of kinemat-
ics from its corresponding values (Piyabongkarn et al., 2009;
Kim et al., 2020).

Based on the vehicle dynamics model and tire model, the
dynamics methods use modern observation technology to es-
timate the unknown state, which can reduce the dependence
on the sensor precision. The Kalman filter (KF) algorithm
family are the common dynamics model-based methods, and
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lots of scholars have conducted extensive research on the
Kalman filter family-based state estimation method. Based
on an extended Kalman filter (EKF), Zong et al. (2009) es-
tablished an information fusion algorithm, which gave out
fusion results of vehicle state at minimum square error, and
an offline simulation with real vehicle site test data in the
MATLAB/Simulink environment was carried out. In Naets
et al. (2017)’s research, a nonlinear least square tire parame-
ter estimator was designed to estimate the sideslip angle and
the side force of the tire based on the EKF approach, and
the covariance caused by the model changes and the varia-
tion of driving conditions were also considered. Besides, Ka-
triniok and Abel (2016) proposed an EKF-based estimator
to estimate the dynamic parameters of electric vehicles, such
as the longitudinal and lateral speeds, along with the yaw
rate. Meanwhile, the effectiveness of this EKF-based estima-
tor was validated through MATLAB/Simulink. Moreover, a
model-based state observer (Reina et al., 2017) was devel-
oped to estimate the key motion states and the vehicle mass
online; based on this, a type of vehicle parameter estimation
approach was proposed by integrating with the EKF algo-
rithm, and a comparative study between the proposed method
and the KF approach was also conducted. Considering that
the steering torque signal has faster and more direct response
characteristics than the steering angle signal, Ma et al. (2018)
proposed an EKF estimation method for the sideslip angle
based on the steering torque and verified the accuracy of this
method by real vehicle tests.

Like the study above, Liu et al. (2016) proposed a state es-
timation method for four-wheel drive vehicles based on the
minimum model error (MME) criterion by combing with the
EKF algorithm. It should be noticed that this method can ef-
fectively find out the dynamic tire force errors and then up-
date the system model parameters, which improves the esti-
mation accuracy of the vehicle state.

It is worth pointing out that the EKF algorithm is usu-
ally used to estimate the weak-nonlinear systems and sim-
ple systems. When the system is strongly nonlinear, the EKF
estimation results may lead to large errors or even diverge.
In addition, when the estimated system is too complex, the
computational load of the EKF algorithm will increase dra-
matically, which may cause no solution of the Jacobian ma-
trix (Zhou et al., 2019; Strano and Terzo, 2018). Fortunately,
compared with the EKF algorithm, the unscented Kalman fil-
ter (UKF) algorithm approximates linearization by sampling
instead of calculating the Jacobian matrix, which can avoid
the above-mentioned problems.

In recent years, some scholars have used the UKF algo-
rithm to estimate the driving states of vehicles. Heidfeld et
al. (2019) proposed a state estimation method for all-wheel
drive electric vehicles based on the UKF algorithm, which
realized the comprehensive estimation of longitudinal and
lateral speed, tire slip angle, and tire friction coefficient on
each wheel. Based on the UKF algorithm, Song et al. (2020)
designed a state observer to realize the joint estimation of

Figure 1. 3-DOFs vehicle dynamics model.

vehicle states and parameters and carried out the simulation
verification on the Simulink/Carsim platform. The results
showed that the joint observer could effectively estimate and
identify the relevant vehicle states and parameters and had a
good convergence effect.

Inspired by these studies, in this paper, an effective esti-
mation method is conducted based on the UKF algorithm in
order to accurately estimate the driving states of vehicles.

This paper is organized as follows: 3 degrees-of-freedom
(DOFs) vehicle dynamics modeling and problem formula-
tion of vehicle state estimation are provided in Sect. 2, and
Sect. 3 synthesizes the proposed UKF-based vehicle driving
state estimation method. Besides, in Sect. 4, the validity of
this UKF-based vehicle state estimation is verified by the
joint simulation of CarSim and MATLAB/Simulink. Finally,
Sect. 5 summarizes the conclusions and future works along
this research direction.

2 3-DOFs vehicle dynamics modeling

In this paper, the 3-DOFs nonlinear vehicle dynamics model
is selected as the nominal model for vehicle state estimation.
Based on the 2-DOFs linear vehicle dynamics model (Li et
al., 2017), a dynamic model including longitudinal, lateral,
and yaw motion is established, as demonstrated in Fig. 1.

The 3-DOFs vehicle dynamics model can be described as
follows:

β̇ =
k1+ k2
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r −
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where a and b are the distances between the vehicle center of
mass and the front axle and rear axle, respectively; k1 and k2
are equivalent cornering stiffness of the front and rear axles,
respectively; m and Iz are the mass and the rotational inertia
of the vehicle, respectively; vx is the longitudinal velocity; r
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is the vehicle yaw rate; β is the vehicle sideslip angle; δ is
the front steer angle; ay is the lateral acceleration.

It is noted that we aim to estimate β, r , and vx in real
time by using the measured ax and ay as well as δ (obtained
indirectly by measuring the steering wheel angle).

The system state vector x is defined as

x = [β r vx]
T , (5)

the system input vector u is defined as

u= [δ ax], (6)

and the system output vector z (the measurement vector) is
defined as

z= [ay]. (7)

Combining Eqs. (1)–(7), the vehicle dynamics model is ex-
pressed in the form of a state-space equation as{
ẋ = Ax+Bu
z= Cx+Du, (8)

where the state matrices A, B, C, and D are described in Ap-
pendix A.

3 State estimation of vehicles based on UKF

Based on the 3-DOFs vehicle dynamics model established
above in Eq. (8), the UKF algorithm is applied to estimate
the key driving states with the measured inputs acquired by
the vehicle onboard sensors.

3.1 Unscented transformation (UT)

UT is the key of the UKF algorithm, which is a method to ap-
proximate Gaussian distribution by using a fixed number of
parameter branches (Kim and Park, 2010). The UT approach
can realize the linearization process of a nonlinear system by
the sampling method, and it can also avoid the complicated
calculation of the Jacobian matrix. The flowchart of UT is
demonstrated in Fig. 2.

The detailed procedure of the UT is illustrated as follows.

1. Constructing the Sigma points

According to a certain sampling strategy, a series of
sampling points χ i (i = 0,1, . . .,2n) are sampled from
the vehicle state variables at the previous moment,
which are called Sigma points. 2n is the number of sam-
pling points, and the weights of the mean and covari-
ance are W (m)

i and W (c)
i , which represent the weighted

coefficients of the first-order and second-order statisti-
cal properties, respectively.

2. Nonlinear transformation

After the nonlinear transformation of χ i , χ
−

i can be ob-
tained, which can approximately represent the distribu-
tion of the prediction function ẋ = Ax+Bu or measure-
ment function z= Cx+Du in Eq. (8).

3. Calculating the weighted sample mean and covariance

By calculating the weighted sum of χ−i , the prior dis-
tribution of vehicle states can be approximated; that is,
the mean value and covariance of the state vector x in
Eq. (5) can be calculated. The crucial issue of UT is to
determine the sampling strategy of Sigma points, that
is, to determine the number, position, and correspond-
ing weight of each Sigma point (Kim and Park, 2010).

3.2 UKF algorithm

When the one-step prediction equation of the standard KF
algorithm uses UT to realize the nonlinear transformation of
the mean and covariance matrix, the UKF algorithm is then
constructed. The steps of the UKF algorithm are as follows.

1. Setting the initial values:{
x̂(0)= E [x(0)]

P (0)= E
{[
x(0)− x̂(0)

][
x(0)− x̂(0)

]T} , (9)

wherein x(0) is the initial state value in Eq. (5).

2. Update the timescale states.

a. Sampling the Sigma points
Based on the symmetric sampling strategy, the
Sigma points and the weights of Sigma points, to-
gether with the corresponding covariance, are cal-
culated by using the estimated state x̂(k− 1) and
the corresponding covariance P x(k− 1) of Eq. (5)
at k−1 sampling time. The Sigma points ξ i are con-
structed as

ξ i (k)=


x̂(k− 1), i = 0,
x̂(k− 1)
+(
√

(n+ λ)P x (k− 1))j i = 1,2, . . .,n,
x̂(k− 1)
−(
√

(n+ λ)P x (k− 1))j i = n+ 1, . . .,2n,

(10)

where n is the dimension of the state vector to be
estimated; λ= α2(n+ kp)− n is the proportional-
ity coefficient, which is used to adjust the distance
between x̂(k−1) and Sigma points. The constant α
determines the degree of dispersion of Sigma points
which usually takes a small positive value. The con-
stant kp is the second scale parameter, which is usu-
ally set as 0 or 3− n. (

√
(n+ λ)Px(k− 1))j is the

j th column of the covariance matrix square root
where j = 1,2, . . .,n.
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Figure 2. The flowchart of UT.

Figure 3. The estimation flowchart of vehicle states based on the UKF approach.

The weights of each Sigma point and the covariance
matrix, i.e., W (m)

i and W (c)
i , are determined by

W
(m)
i =

{
λ
n+λ

, i = 0,
1

2(n+λ) , i = 1,2, . . .,2n,
(11)

W
(c)
i =

{
W

(c)
0 + (1−α2

+ γ ), i = 0,
1

2(n+λ) , i = 1,2, . . .,2n,
(12)

where γ is the state distribution parameter, which
is used to describe the distribution information of
x̂(k− 1). In the case of Gaussian distribution, the
optimal value is 2.
When k > 1, a Sigma point set containing 2n+ 1
sample points is constructed according to Eq. (10),
which can be represented by

ξ i (k)=
{
x̂(k− 1), x̂(k− 1)+

(√
(n+ λ)P x (k− 1)

)
j
,

x̂(k− 1)− (
√

(n+ λ)P x (k− 1))j
}
, (13)

where i = 1,2, . . .,2n+ 1; j = 1,2, . . .,n.

b. Calculating the sample points of the predicted val-
ues
The prediction function ẋ = Ax+Bu in Eq. (8)
is used to perform the nonlinear transformation on
each Sigma point to obtain the predicted value of
each point, as shown in Eq. (14):

ξ−i (k)= f (ξ i(k), u(k))= Aiξ i(k)+Biu(k),

i = 1,2, . . .,2n+ 1. (14)
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c. Calculating the prior state estimate and covariance

By using the weight of Sigma points and corre-
sponding covariance obtained from Eqs. (11) and
(12), the weighted sum of the predicted sample
points and covariance can be calculated; that is, the
prior state and covariance can be given by

x̂−(k)=
2n∑
i=0

W
(m)
i ξ−i (k), (15)

P−x (k)=
2n∑
i=0

W
(c)
i [ξ

−

i (k)− x̂−(k)]

· [ξ−i (k)− x̂−(k)]T+Qk, (16)

wherein Qk is the covariance matrix of system
noise.

In fact, the essence of steps (a) to (c) is to perform a
UT on x̂(k− 1) and P x(k− 1) using the prediction
function ẋ = Ax+Bu in Eq. (8).

d. Calculating the prior measurement

Return to step (a) and use the measurement func-
tion z= Cx+Du in Eq. (8) to carry out the second
UT on x̂−(k) and P−x (k) to obtain the prior mea-
surement values ẑ−(k), where the weight of each
Sigma point is the same as step (a). The recon-
structed Sigma point and the corresponding sam-
pling points of prior measurement values are repre-
sented by χ i(k) and χ−i (k), respectively. Simulta-
neously, the self-covariance Pz(k) of ẑ−(k) and the
cross-covariance of x̂−(k) and ẑ−(k) can be calcu-
lated. The relevant calculation formulas are as fol-
lows:

χ i(k)=

{
x̂−(k), x̂−(k)+

(√
(n+ λ)P−x (k)

)
j

,

x̂−(k)−
(√

(n+ λ)P−x (k)
)
j

}
, (17)

where i = 1,2, . . .,2n+ 1; j = 1,2, . . .,n, χ−i (k)
and ẑ−(k) are as follows:

χ−i (k)= h(χ i(k),u(k))= Ciχi(k)+Diu(k), (18)

ẑ−(k)=
2n∑
i=0

W
(m)
i χ−i (k), (19)

P z(k)=
2n∑
i=0

W
(m)
i [χ

−

i (k)− ẑ−(k)]

· [χ−i (k)− ẑ−(k)]T+Rk, (20)

Table 1. The related vehicle parameters.

Symbols (unit) Value Symbols (unit) Value

m (kg) 1274 Iz (kg m2) 1523
a (m) 1.016 b (m) 1.562
k1 (N rad−1) 3× 104 k2 (N rad−1) 6× 104

wherein Rk is the covariance matrix of measured
noise.

P xz(k)=
2n∑
i=0

W
(m)
i [χ i(k)− x̂−(k)]

· [χ−i (k)− ẑ−(k)]T (21)

3. Update the posterior estimation with measured values.

By comparing the actual measured value and the esti-
mated measured value in Eq. (19), the Kalman gain is
used to update the prior state and covariance, and we
can obtain the updated value of the posterior state x̂(k)
and covariance P̂ x(k) by using Eq. (22).
K(k)= P xz(k)P−1

z (k)
x̂(k)= x̂−(k)+K [z(k)− ẑ−(k)]
P̂ x(k)= P−x (k)−K(k)P z(k)K(k)T

(22)

By synthesizing the above derivations, the estimation
flowchart of vehicle states based on the UKF approach
is provided in Fig. 3.

4 Co-estimation and validation based on CarSim
and MATLAB/Simulink

In order to validate the accuracy and feasibility of the
proposed UKF-based vehicle states estimation approach,
a co-simulation and verification in CarSim and MAT-
LAB/Simulink is performed. First, the response curves of δ,
β, r , and vx as well as ax and ay are obtained in the Car-
Sim environment under sine and fishhook maneuvers. Then,
based on MATLAB/Simulink, the UKF and EKF algorithms
are used to estimate β, r , and vx , wherein δ and ax are re-
garded as the input values and ay is regarded as the measure-
ment. Finally, the estimation results of UKF and EKF are
compared with those of CarSim to judge the accuracy of the
estimation of vehicle driving states by the UKF algorithm.

In this work, the initial value of the state covariance matrix
of the UKF algorithm is set as P 0 = I4×4, and the system
process noise Qk and the measured noise Rk are given as
Qk = 0.001×I4×4 andRk = 0.005, respectively. The related
vehicle parameters used in the simulation model are shown
in Table 1 (Li et al., 2017), and the structure of the simulator
based on the UKF algorithm is shown in Fig. 4.
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Figure 4. The structure of the simulator based on the UKF algo-
rithm.

Figure 5. The results of δ and ax under the sine manoeuver test.

4.1 Sine manoeuver test

The sine manoeuver test is first carried out in the CarSim en-
vironment, and the simulation results of δ and ax are shown
in Fig. 5. Taking these estimates as pseudo-measured values
and input values, we use the proposed UKF-based estimation
method to estimate the required states. Simultaneously, the
comparison curves of β, r , vx , and ay , along with their cor-
responding absolute and relative error curves, are provided in
Figs. 6, 7, and 8, respectively.

In terms of the results in Figs. 6, 7, and 8, the estimated
values of UKF on β, r , vx , and ay are basically consistent
with the measured values gotten by CarSim software and
have smaller absolute errors than EKF. Among them, the rel-
ative errors of UKF on β, r , vx , and ay are basically kept
below 3 %; only when the steering wheel angle reaches its
maximum will the fluctuation of the relative errors be a little
larger. In general, the relative errors of UKF are lower than
EKF. Obviously, UKF has better estimation ability than EKF.

4.2 Fishhook manoeuver test

4.2.1 Case I

The similar simulations are conducted under the fishhook
manoeuver test I scenario using CarSim software, and the ob-
tained δ and ax are shown in Fig. 9. Meanwhile, the compari-
son curves of β, r , vx , and ay , along with their corresponding

Figure 6. The estimated results of β, r , vx , and ay under the sine
manoeuver test.

Figure 7. The absolute error curves of β, r , vx , and ay under the
sine manoeuver test.

absolute and relative error curves, are provided Figs. 10, 11,
and 12, respectively.

In terms of Figs. 10, 11, and 12, there is also a high consis-
tency in UKF between the estimated and measured values of
β, r , vx , and ay under fishhook manoeuver test I. Especially
the absolute error of vx with UKF is far lower than that with
EKF. Under the circumstance that the absolute error of EKF
presents an increasing trend, the error curve of UKF is still
relatively flat. Meanwhile, the relative errors of UKF on vx
and ay are always kept below 3 %; only the relative errors
of β and r are relatively high at 0 and 2 s, respectively, and
later they also decrease to below 3 %, which indicates that the
estimation results of the proposed UKF-based driving states
estimation method have higher accuracy.

4.2.2 Case II

Similar to the simulation in Case I, the related simulations are
carried out under fishhook manoeuver test II. The obtained
results of δ and ax are displayed in Fig. 13, which are used
as the inputs to the UKF-based simulation model in the MAT-
LAB/Simulink environment. Thus, the comparison curves of
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Table 2. The MAPE of UKF on β, r , vx , and ay .

β (%) r (%) vx (%) ay (%)

Sine manoeuver test UKF 0.8250 (↓) 0.2243 (↓) 1.4333 (↓) 4.9941× 10−5 (↓)
EKF 19.626 16.259 2.3794 0.0026

Case I UKF 0.0281 (↓) 1.2163 (↓) 0.1387 (↓) 8.4610× 10−5 (↓)
EKF 4.6619 8.0195 0.6387 5.8710× 10−4

Case II UKF 0.6537 (↓) 1.1260 (↓) 0.4069 (↓) 8.1368× 10−5 (↓)
EKF 3.0758 8.6126 2.9138 3.2102× 10−4

Figure 8. The relative error curves of β, r , vx , and ay under the
sine manoeuver test.

Figure 9. The obtained δ and ax under fishhook manoeuver test I.

β, r , vx , and ay , along with their corresponding error curves,
are displayed in Figs. 14, 15, and 16, respectively.

Like the situations in Case I, the proposed UKF-based
vehicle estimation method still maintains a higher accuracy
than EKF in Case II, and only the error of β and r at 2 and
10 s is relatively large. It is noted that the vehicle will be un-
stable at these two moments when steering quickly at a high
speed. In other words, the working area of the tire is shifted,
which weakens the axle cornering characteristic and changes
the steering characteristic of the vehicle (Zhang et al., 2014),
resulting in a larger error.

To further demonstrate the accuracy of the proposed UKF-
based vehicle states estimation method, the mean absolute
percentage error (MAPE) (Ma et al., 2016), a statistical index
which can express the estimation error as a percentage, is

Figure 10. The estimated results of β, r , vx , and ay under fishhook
manoeuver test I.

Figure 11. The absolute error curve of β, r , vx , and ay under fish-
hook manoeuver test I.

given as below:

xMAPE =
1
N

N∑
k=1

∣∣∣∣x∗(k)− x̂(k)
x∗(k)

∣∣∣∣ , k = 1,2, . . .,N, (23)

where x∗(k) is the exact value of the vehicle state at moment
k, which is the state value estimated by CarSim software in
this paper; x̂(k) is the estimated value of UKF at moment k,
that is, the posterior state value obtained by Eq. (22); N is
the number of state values of the vehicle.
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Figure 12. The relative error curve of β, r , vx , and ay under fish-
hook manoeuver test I.

Figure 13. The obtained δ and ax under fishhook manoeuver test II.

The MAPE of UKF and EKF on β, r , vx , and ay under
the sine manoeuver test, Case I, and Case II are shown in
Table 2, and the average errors of the proposed UKF-based
method and traditional EKF are displayed in Fig. 17.

As shown in Table 2, the MAPEs of UKF on β, r , and
vx are all around 1 % and lower than that of EKF under the
three kinds of conditions, while the MAPE of ay is so small
that it can be ignored. In addition, the average error of the
proposed UKF-based estimation method displayed in Fig. 17
was lower far from these of the EKF, which implies that the
proposed UKF-based estimation method can keep a better
overall accuracy than EKF when estimating the driving states
of vehicles.

5 Conclusions and future work

In this paper, we proposed a type of UKF-based vehicle driv-
ing state estimation method with higher accuracy. First, a
3-DOFs vehicle dynamics model is established, and then a
vehicle driving state estimation method is designed based
on the UKF algorithm. Finally, by using CarSim and MAT-
LAB/Simulink software, the co-simulation and validation are
carried out to validate the accuracy of the proposed estima-
tion method under the sinusoidal and fishhook conditions.
Several highlights of this work are given below.

1. A complete UKF-based co-estimation method is pro-
posed to predict the values of β, r , vx , and ay for
a ground vehicle by combining CarSim and MAT-
LAB/Simulink software.

Figure 14. The estimated results of β, r , vx , and ay under fishhook
manoeuver test II.

Figure 15. The absolute error curve of β, r , vx , and ay under fish-
hook manoeuver test II.

Figure 16. The relative error curve of β, r , vx , and ay under fish-
hook manoeuver test II.

Figure 17. The average error of the proposed UKF-based estima-
tion method and traditional EKF.
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2. Through the co-simulation and validation, we obtain
that the average errors of β, r , vx , and ay with our
proposed UKF-based estimation approach are, respec-
tively, reduced by about 94 %, 92 %, 67 %, and 97 % in
comparison with those with the EKF-based approach.
The simulation results validate that the proposed co-
estimation method can well predict the driving states of
vehicles with higher accuracy.

In the future works, we would like to focus on the research of
the adaptive UKF-based estimation method and try to use the
adaptive algorithm to reduce the impacts of noise covariance
on the accuracy of the desirable estimation method.
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Appendix A

The state matrices of state-space Eq. (8):

A=


k1+k2
mvx

ak1−bk2−mv
2
x

mv2
x

0
ak1−bk2

Iz

a2k1+b
2k2

Izvx
0

0 0 βr

 ,

B=

 −
k1
mvx

0
−
ak1
Iz

0
0 1

 ,
C=

[
k1+k2
m

ak1−bk2
mvx

0
]
,

D=
[
−
k1
m

0
]
.
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