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Abstract. Based on the lumped parameter theory, a nonlinear bending torsion coupling dynamic model of plan-
etary gear transmission system was established by considering the backlash, support clearance, time-varying
meshing stiffness, meshing damping, transmission error and external periodic excitation. The model was solved
by the Runge–Kutta method, the dynamic response was analyzed by a time domain diagram and phase diagram,
and the nonlinear vibration characteristics were studied by the response curve of the speed vibration displace-
ment. The vibration test of the planetary gearbox was carried out to verify the correctness of frequency domain
response characteristics. The results show that the vibration response in the planetary gear system changes from
a multiple periodic response to a single periodic response with the increase in input speed. Under the action of
the backlash, time-varying meshing stiffness and meshing damping, the speed vibration displacement response
curves of internal and external meshing pairs appear to form a nonlinear jump phenomenon and have a unilat-
eral impact area, and the system presents nonlinear characteristics. The nonlinear vibration of the system can
be effectively suppressed by decreasing the mesh stiffness or increasing the mesh resistance, while the vibra-
tion response displacement of the system increases by increasing the external exciting force, and the nonlinear
characteristics of the system remain basically unchanged. The backlash is the main factor affecting the nonlinear
frequency response of the system, but it can restrain the resonance of the system in a certain range. The spectrum
characteristics of the vibration displacement signal of the planetary gearbox at different speeds are similar to the
simulation results, which proves the validity of the simulation analysis model and the simulation results. It can
provide a theoretical basis for the system vibration and noise reduction and a dynamic structural stability design
optimization.

1 Introduction

Planetary gear transmission has been widely used in aircraft
and vehicles because of its high load and large transmis-
sion ratio. However, due to its prominent nonlinear vibration
problem, it is very prone to failure phenomena such as tooth
fatigue pitting, tooth root crack and tooth or shaft fracture,
which affects the operation accuracy, transmission efficiency
and service life of the equipment.

Many scholars have done a lot of research on the nonlin-
ear vibration of the planetary transmission system. Sun and
Hu (2003) solved the bending and torsion model of plane-
tary gear, considering the transverse support of solar shaft
by the harmonic balance method, and verified the analysis
results with a numerical simulation using the Runge–Kutta

method. Tang et al. (2020) used the numerical integration
method to analyze the effects of input speed, backlash, sup-
port clearance and damping ratio on the nonlinear dynamic
characteristics of a planetary transmission system. Bahk and
Parker (2011) solved and analyzed the vibration response
and variation law of the system through perturbation analysis
within the meaningful meshing frequency range and found
that the external torque cannot inhibit the occurrence of the
tooth falling off. Li et al. (2014) solved the multi-stage plan-
etary dynamics model, based on the variable step size Gill
numerical integration method, and analyzed the bifurcation
characteristics of the system using the dynamic graphics tool.
Li et al. (2016) considered the dynamic and static clearance
and the frequency response characteristics of the gear sys-
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tem, and the influence of dynamic internal and external exci-
tation parameters on the dynamic characteristics of the gear
system were analyzed by using the analytical method. Li et
al. (2015), in the study of the gear transmission system in a
shearer, expressed and estimated the tooth clearance in the
system by fractal expression, and the vibration characteris-
tics of the system are studied theoretically and experimen-
tally. Li et al. (2020) analyzed the theoretical fault character-
istic frequency, combined the fault characteristic frequency
of each component and diagnosed each combined fault based
on Fourier spectrum analysis. Xiao et al. (2020) used the im-
proved energy method to calculate the time-varying meshing
stiffness of normal and cracked gears. Zhou et al. (2016) es-
tablished a translational torsional coupling dynamic model,
considering the time-varying meshing stiffness, comprehen-
sive meshing error and backlash. Xiang et al. (2020a) ana-
lyzed the vibration response and bifurcation characteristics
of the two-stage planetary gear train transmission system of
a wind turbine gearbox. Jian et al. (2021) comprehensively
considered the influence of the modification coefficient and
time-varying meshing stiffness; based on the dynamic the-
ory, the dynamic model of planetary gear system was es-
tablished, and the thermal electrohydrodynamic lubrication
characteristics of the modified gear system under vibration
were analyzed. Chen et al. (2021) established the dynamic
model of the planetary gearbox, considering the clearance
of the planetary gear, sun gear and carrier bearing. Liu et
al. (2020) studied and analyzed the influence of the flexi-
bility of the ring gear and the support stiffness of the ring
gear and the sun gear on the vibration characteristics of the
planetary gear train. Wang et al. (2020) proposed a method
to analyze the vibration and stress characteristics of the ring
gear and analyzed the vibration and stress characteristics of
the thin-walled ring gear. Li et al. (2020) established a multi-
body dynamic model of the ring gear elastic support plane-
tary gear system and discussed the influence of ring gear ra-
dial support stiffness on system vibration. Wang et al. (2021)
proposed a vibration data analysis method based on the time
synchronization average of enhanced planetary gears. Zhang
et al. (2021) carried out a free modal test on the planetary
transmission mechanism with the free modal test method and
carried out a modal analysis with the finite element method.
Xiang et al. (2020b) established a nonlinear model of a multi-
stage gear transmission system, considering meshing stiff-
ness, gear comprehensive error and backlash, and analyzed
the nonlinear dynamic response of the system with excita-
tion frequency and support stiffness as bifurcation param-
eters. Saghafi and Farshidianfar (2016) used the Melnikov
method to give an analytical method to eliminate the chaos
of the gear system under external control excitation. Yang et
al. (2019) established a 3 degrees of freedom spur gear pair
model, considering the nonlinearity of the backlash and bear-
ing clearance, and studied the influence of tooth crack on the
vibration characteristics of nonlinear spur gear system. Liu
et al. (2017) studied the dynamic response of spur gear pair

system and the interaction between the bearing clearance and
backlash. Wang et al. (2018) obtained the bifurcation dia-
gram and a Lyapunov exponent curve of the spur gear trans-
mission system with the numerical method and analyzed the
mechanism of the chaotic evolution of the gear transmission
system. Fan et al. (2020) established a rigid flexible coupling
dynamic model of the planetary gear transmission system,
considering the flexibility of the inner ring gear and sun shaft,
and calculated the dynamic response of the system with a nu-
merical algorithm. Wang (2019) simulated the wear failure
of the gear transmission system through the change of gear
backlash and studied the bifurcation diagram of the system
when the backlash increased.

To sum up, at present, the research on the nonlinear char-
acteristics of the planetary transmission system mainly fo-
cuses on the bifurcation characteristics and fault analysis,
while the research on the nonlinear frequency response char-
acteristics of planetary gear system is less. In order to study
the frequency response characteristics of the nonlinear sys-
tem of the planetary gearbox under the action of multiple
clearances, based on the lumped parameter theory and com-
prehensively considering the backlash, a nonlinear dynamic
model of the bending torsion coupling of the planetary gear
transmission system is established, including time-varying
meshing stiffness, meshing synthesis error, external periodic
excitation and other nonlinear factors. The model is solved
by a numerical method, and the nonlinear dynamic charac-
teristics and frequency response characteristics of the system
are analyzed by the time domain diagram and phase diagram.

2 Establishment of nonlinear frequency response
model

Using the lumped parameter method, the bending torsion
coupling nonlinear vibration model of planetary gear trans-
mission system, as shown in Fig. 1, is established.

When establishing the dynamic model, three coordinate
systems, namely OXYZ, Oxyz and Onxnynzn, are defined
based on the sun gear, planet carrier and central axis of the
planet gear. OXYZ is the fixed coordinate system, and Oxyz
and Onxnynzn are the rotational speed. ωc is a moving coor-
dinate system rotating around the axis O, and their coordi-
nate axes are parallel to each other. The tooth surface friction
is not considered in the bending torsion coupling nonlinear
vibration model of the system. The inner ring gear is kept
fixed. The influence of the input shaft of the sun gear and the
output shaft of the planet carrier will temporarily not be con-
sidered. kbjx , cbjx and bbjx represent support stiffness, sup-
port damping and the half-support clearance of the x axis.
kbjy , cbjy and bbjy represent the support stiffness, support
damping and half-support clearance of the y axis. j = s, p
and c represent the sun gear, planet gear and planet carrier, re-
spectively. kspi , cspi , bspi and espi represent the meshing stiff-
ness, meshing damping, backlash and comprehensive trans-
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Figure 1. Bending torsion coupling the nonlinear vibration model
of the planetary gear transmission system.

mission error of the meshing direction of the planet gear and
the sun gear. krpi , crpi , brpi and erpi indicate the meshing stiff-
ness, meshing damping, backlash and comprehensive trans-
mission error of the meshing direction of planet gear and in-
ner ring gear. Here, i = 1, 2 and 3 denote the ith meshing
pair.

3 Establishment of nonlinear frequency response
differential equation

The model has 3N + 6 degrees of freedom, where N is the
number of the planet gear. The generalized displacement ar-
ray X can be expressed as follows:

X =
[
xs,ys,θs,xpi,ypi,θpi,xc,yc,θc

]T
. (1)

Here, xj , yj and θj are the vibration displacement, where j
is s, pi and c.

The differential equations of the sun gear, the planet gear,
and the planet carrier can be expressed as follows:



msẍs =
3∑
i=1
[kspif (δspi)+ cspi δ̇spi]sin(ϕspi)

−[kbsxf (xs)+ cbsx ẋs]

msÿs =
3∑
i=1
[kspif (δspi)+ cspi δ̇spi]cos(ϕspi)

−[kbsyf (ys)+ cbsy ẏs]

Isθ̈s =−
3∑
i=1
[kspif (δspi)+ cspi δ̇spi]rbs+ T1

(2)



mpẍpi =−
[
(kspif (δspi)+ cspi δ̇spi) sin(ϕspi)

+ (krpif (δrpi)+ crpi δ̇rpi) sin(ϕrpi)
]

−
[
kbpxf (δcpix)+ cbpx δ̇cpix

]
mpÿpi =−

[
(kspif (δspi)+ cspi δ̇spi)cos(ϕspi)

+(krpif (δrpi)+ crpi δ̇rpi)cos(ϕrpi)
]

−
[
kbpyf (δcpiy)+ cbpy δ̇cpiy

]
Ipθ̈pi =

[
kspif (δspi)+ cspi δ̇spi − krpif (δrpi)

−crpi δ̇rpi
]
rbp

(3)



mcẍc =
3∑
i=1

[
kbpxf (δcpix)+ cbpx δ̇cpix

]
−
[
kbcxxc+ cbcx ẋc

]
mcÿc =

3∑
i=1

[
kbpyf (δcpiy)+ cbpy δ̇cpiy

]
−
[
kbcyxc+ cbcy ẋc

]
Icθ̈c =−

3∑
i=1

[
kbpxf (δcpix)+ cbpx δ̇cpix

]
rbc sin(ϕpi)

+
[
kbpyf (δcpiy)+ cbpy δ̇cpiy

]
rbc cos(ϕpi)+ T2.

(4)

Here, T1 is the input torque. T2 is the output torque. ϕpi is
the position angle of the ith planet gear.mj is the component
mass. Ij is the moment of inertia of the component. rbj is the
radius of the base circle. j is s, p and c. ϕspi and ϕrpi are the
angles between the y axis of the ith planet gear and its outer
meshing plane and inner meshing plane, respectively. δspi
and δrpi are the vibration displacement on the outer mesh-
ing line and the inner meshing line, respectively. δcpix and
δcpiy are the vibration displacement of the ith planet gear rel-
ative to the planet carrier in each axis. i = 1, 2, 3. f (δ) is the
backlash nonlinear function.

The relative displacement in the direction of external
meshing pair is defined as follows:

δspi =
[
xs sin(ϕspi)− xpi sin(ϕpi)+ ys cos(ϕspi)

− ypi cos(ϕpi)+ (rsθs+ rpiθpi)
]
− espi . (5)

The relative displacement in the direction of internal meshing
pair is defined as follows:

δrpi = (xpi sin(ϕpi)− ypi cos(ϕpi)− rpiθpi)− erpi . (6)

The ith planet gear is on the x and y axis, relative to the
planet carrier, as follows:

δcpix = xpi − xc− rcθc sin(ϕpi) (7)
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δcpiy = ypi − yc− rcθc sin(ϕpi). (8)

The system dynamics equation is dimensionless, and the
nominal scale of bc = 10×10−6 and τ = ωnt , of the order of
�= fm/ωn. ωn is the excitation frequency. When the input
speed n is given, the following expression can be obtained:

fm = fcZr = (f (r)
s − fc)Zs. (9)

Here, Zs and Zr are the number of sun gear teeth and inner
ring gear teeth, respectively, f (r)

s is the absolute rotation fre-
quency of the sun gear, and fc is the rotation frequency of
planet carrier. The calculation formula is as follows:

f (r)
s = n/60 (10)

fc = f
(r)
s /(1− (−Zr/Zs)). (11)

The formula of ωn is as follows:

ωn =
√
kspi/(1/mes+ 1/mep+ 1/ms+ 1/mp). (12)

Here, mes and mep are the equivalent masses of the sun
gear and planet gear, respectively, mes = Is/rbs, and mep =

Ipi/rbp.
Other dimensionless physical quantities are defined as fol-

lows:

X(τ )=X/bc,
˙X(τ )= Ẋ/(bcωn), ¨X(τ )= Ẍ/(bcω

2
n),

e(τ )= e/bc, ė(τ )= e/(bcωn), ë(τ )= e/(bcω
2
n),

c = c/ωn, k = k/ω
2
n, T 1 = T1/bcω

2
n, T 2 = T2/bcω

2
n,

b = b/bc, F1 = T /mesrs, F2 = T 2/mecrc.

(13)

The external exciting force F1 is expanded by Fourier series,
and the order is the same as the stiffness, which can be ex-
pressed as follows:

Fm(t)= F1+
∑L

l=1
fl cos(l�t). (14)

Here, fl is the lth harmonic coefficient of the input dynamic
excitation T 1 expanded by Fourier series.

By introducing the relative displacement and dimension-
less physical quantity defined above into the differential
equation, the dimensionless differential equation with X(τ )
as the variable is obtained as follows:

X(τ )=
[
xs, ys, xpi, ypi,δspi, δrpi

]T
. (15)

The dimensionless differential equations of the sun gear and
the planet gear are expressed as follows:

ẍs =
3∑
i=1

[
kspif (δspi )
ω2

nms
+
cspi
˙δspi

ωnms

]
sin(ϕspi)

−

[
kbsxf (xs)
ω2

nms
+
cbsx ẋs
ωnms

]
ÿs =

3∑
i=1

[
kspif (δspi )
ω2

nms
+
cspi
˙δspi

ωnms

]
cos(ϕspi)

−

[
kbsyf (ys)
ω2

nms
+
cbsy ẏs
ωnms

]
(16)



ẍpi =−

[(
kspif

(
δspi

)
ω2

nmpi
+
cspi
˙δspi

ωnmpi

)
sin(ϕspi)

+

(
krpif (δrpi )
ω2

nmpi
+
crpi
˙δrpi

ωnmpi

)
sin(ϕrpi)

]
−

[
kbpxf (δcpix )
ω2

nmpi
+
cbpx
˙δcpix

ωnmpi

]
ÿpi =−

[(
kspif (δspi )
ω2

nmpi
+
cspi
˙δspi

ωnmpi

)
cos(ϕspi)

+

(
krpif (δrpi )
ω2

nmpi
+
crpi
˙δrpi

ωnmpi

)
cos(ϕrpi)

]
−

[
kbpyf (δcpiy )
ω2

nmpi
+
cbpy
˙δcpiy

ωnmpi

]
.

(17)

The dimensionless differential equation of the internal and
external meshing pair can be expressed as follows:

¨δrpi =

([(
kspif (δspi )
ω2

nmpi
+

cspi
˙δspi

ωnmpi

)
sin(ϕspi)

−

(
krpif (δrpi )
ω2

nmpi
+

crpi
˙δrpi

ωnmpi

)
sin(ϕrpi)

]
+

[
kbpxf (δcpix )
ω2

nmpi
+

cbpx
˙δcpix

ωnmpi

])
sin(ϕpi)

−

([(
kspif (δspi )
ω2

nmpi
+

cspi
˙δspi

ωnmpi

)
cos(ϕspi )

−

(
krpif (δrpi )
ω2

nmpi
+

crpi
˙δrpi

ωnmpi

)
cos(ϕrpi )

]
+

[
kbpyf (δcpiy )
ω2

nmpi
+

cbpy
˙δcpiy

ωnmpi

])
cos(ϕpi )

−

[
kspif (δspi )
ω2

nmep
+

cspi
˙δspi

ωnmep
−

krpif (δrpi )
ω2

nmep
−

crpi
˙δrpi

ωnmep

]
− ërpi

(18)

¨δspi =

( 3∑
i=1

[
kspif (δspi )
ω2

nms
+

cspi
˙δspi

ωnms

]
sin(ϕspi )

−

[
kbsxf (xs)
ω2

nms
+

cbsx ẋs
ωnms

])
sin(ϕspi)

+

([(
kspif (δspi )
ω2

nmpi
+

cspi
˙δspi

ωnmpi

)
sin(ϕspi )

+

(
krpif (δrpi )
ω2

nmpi
+

crpi
˙δrpi

ωnmpi

)
sin(ϕrpi)

]
+

[
kbpxf (δcpix )
ω2

nmpi
+

cbpx
˙δcpix

ωnmpi

])
sin(ϕpi)

+

( 3∑
i=1

[
kspif (δspi )
ω2

nms
+

cspi
˙δspi

ωnms

]
cos(ϕspi )

−

[
kbsyf (ys)
ω2

nms
+

cbsy ẏs
ωnms

])
cos(ϕspi )

−

((
kspif (δspi )
ω2

nmpi
+

cspi
˙δspi

ωnmpi

)
cos(ϕspi)

+

(
krpif (δrpi )
ω2

nmpi
+

crpi
˙δrpi

ωnmpi

)
cos(ϕrpi )

+

[
kbpyf (δcpiy )
ω2

nmpi
+

cbpy
˙δcpiy

ωnmpi

])
cos(ϕpi )

−

( 3∑
i=1

[
kspif (δspi )

ω2
n
+

cspi
˙δspi
ωn

]
−

T1
2rbsmesω2

nbc

)
+

[
kspif (δspi )
ω2

nmep
+

cspi
˙δspi

ωnmep
−

krpif (δrpi )
ω2

nmep
−

crpi
˙δrpi

ωnmep

]
− ëspi .

(19)
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4 Example of system frequency response
characteristics and parameter influence analysis

4.1 Frequency response characteristics analysis

The basic parameters are shown in Table 1.
The time-varying meshing stiffness krpi and kspi can be

expressed with the following equations:

krpi(t)= krm

(
1+

L∑
b=1

kb cos(bfmt + λb)

)

kspi(t)= ksm

(
1+

L∑
a=1

ka cos(afmt + λa)

)
. (20)

Here, ksm and krm are the average meshing stiffness. ka and
kb are the harmonic coefficients of the meshing stiffness. λa
and λb are the phase angles of the meshing stiffness.

The comprehensive transmission errors erpi and espi can
be expressed with the following equations:

erpi (t)= er

(
1+

L∑
b=1

eb sin(bfmt +ϕb)

)

espi (t)= es

(
1+

L∑
a=1

ea sin(afmt +ϕa)

)
. (21)

Here, es and er are the fluctuating mean values of the meshing
comprehensive errors. ea and eb are harmonic coefficients of
the meshing comprehensive errors. ϕa and ϕb are the phase
angles of the meshing comprehensive errors.

The nonlinear function of the meshing backlash and sup-
port clearance can be defined as follows:

f (δspi)=


δspi − bspi δspi > bspi
0

∣∣δspi
∣∣≤ bspi

δspi + bspi δspi <−bspi;

f (δrpi)=


δrpi − brpi δrpi > brpi
0

∣∣δrpi
∣∣≤ brpi

δrpi + brpi δrpi <−brpi .

(22)

The damping coefficients can be expressed as follows:

cspi = 2ξspi

√
kspi

1/mes+ 1/mep
;

crpi = 2ξrpi

√
krpi

1/mer+ 1/mep
. (23)

Here, ξrpi and ξspi are the meshing damping ratios of the ith
internal and external meshing pairs.

The harmonic parameters of each excitation term in the
external meshing pair can be expressed as follows: L= 3,
N = 3, F1 = 1, f1 = 0.05, f2 = 0.02, f3 = 0.01, e1 = 0.05,
e2 = 0.02, e3 = 0.01, k1 = 0.1, k2 = 0.04, and k3 = 0.05.

Figure 2. Time-varying meshing stiffness of the planetary system.

The harmonic parameters of each excitation term in the in-
ternal meshing pair can be expressed as follows: L= 3,
N = 3, F1 = 1, f1 = 0.05, f2 = 0.02, f3 = 0.01, e1 = 0.05,
e2 = 0.02, e3 = 0.01, k1 = 0.05, k2 = 0.02, and k3 = 0.01.

The average meshing stiffness of the internal and external
gear pairs is calculated according to the China national prod-
uct standard (GB/T 3480-2019). The calculation results are
shown in Table 2 and are verified by the Ishikawa method
(Mao et al., 2021). The calculated meshing stiffness is ex-
panded by a Fourier series to obtain the internal and external
time-varying meshing stiffness curve, as shown in Fig. 2.

The Runge–Kutta method is used to solve the differential
equation to obtain the vibration response of the internal and
external meshing pairs of the planetary system at different
speeds, as shown in Figs. 3 and 4.

The time history diagram and phase plane diagram of
the external meshing pair at n= 2000, n= 4000 and n=
8000 rpm (revolutions per minute) is shown in Fig. 3. The
vibration response of the system at each speed shows the pe-
riod responses of 3 times, 2 times and 1 time, respectively.
Similarly, at three input speeds, the time history diagram and
phase plane diagram of the internal meshing pair in Fig. 4
show similar vibration response laws, and the vibration re-
sponse tends, from multiple periods, to form a single period
vibration.

Figure 5 shows the vibration displacement frequency re-
sponse curve of the external and internal meshing pairs with
the change in speed. The vertical axis, Xmax and Xmin, are
the maximum and minimum vibration displacement, respec-
tively, and the horizontal axis, n, is the input speed.

Figure 5a shows that under the action of various kinds of
excitation, including clearance, the vibration displacement
frequency response of the external meshing pair jumps at
n= 9100 rpm, the system transits from a non-impact state to
unilateral impact state, and the system is in unilateral impact
state in the speed range of n= 9100–9700 rpm. Figure 5b
shows that the vibration displacement frequency response of
the internal meshing pair jumps at n= 7100 rpm, and the
range of unilateral impact speed is n= 7100–7700 rpm. At
the same time, in addition to the main resonance peak, the
frequency response curves of the internal and external mesh-
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Table 1. Basic parameters of planetary system.

Parameter Sun gear Planet gear Inner ring gear Planet carrier

Modulus (mm) 2 2 2 –
Number of teeth 18 27 72 –
Pressure angle α (◦) 20 20 20 –
Quality (kg) 0.122 0.143 – 1.26
Moment of inertia I (kg m2) 0.2217 0.2209 – 1.3425

Table 2. Dynamic parameters of planetary system.

Item Value Item Value

ksm 1.16× 109 N m−1 ξsp1 0.025
krm 1.03× 109 N m−1 ξrp1 0.025
kbsx , kbsy , kbpx , kbpy 0.5× 109 N m−1 cbsx , cbsy , cbpx , cbpy 1× 104 N m−1 s
es, er 10 µm bspi , brpi 10 µm
bbsx , bbsy 10 µm bbpx , bbpy 10 µm

ing pairs also form the resonance sub-peak, which leads to
the super harmonic vibration response of the system.

4.2 Influence of excitation parameters on frequency
response characteristics

4.2.1 Meshing stiffness influence

Based on the basic and dynamic parameters in Tables 1 and
2, taking ξsp1 = ξrp1 = 0.035, the other excitation parameters
are L= 3, N = 3, F1 = 1, f1 = 0.05, f2 = 0.02, f3 = 0.01,
e1 = 0.05, e2 = 0.02, and e3 = 0.01. The vibration displace-
ment response curves under the three kinds of time-varying
meshing stiffness are obtained and shown in Fig. 6. The har-
monic components of the time-varying meshing stiffness are
k1 = 0, k2 = 0, k3 = 0, k1 = 0.05, k2 = 0.02, k3 = 0.01 and
k1 = 0.1, k2 = 0.04, and k3 = 0.05.

Figure 6 shows that the harmonic component of the vari-
able meshing stiffness decreases, the jumping phenomenon
of the vibration response curves of the external and internal
meshing pairs decreases, the speed range of the system with
unilateral impact decreases, and the nonlinear vibration of
the system is significantly suppressed.

4.2.2 Meshing damping influence

Given that the meshing damping ratio ξsp1 is equal to 0.025,
0.04 and 0.1, respectively, we define ξrp1 = ξsp1. In addition,
the harmonic component of external meshing is k1 = 0.1,
k2 = 0.04, and k3 = 0.02. The internal harmonic component
is k1 = 0.05, k2 = 0.02, and k3 =0.01. The other excitation
parameters are L= 3, N = 3, F1 = 1, f1 = 0.05, f2 = 0.02,
f3 = 0.01, e1 = 0.05, e2 = 0.02, and e3 = 0.01. Based on the
above parameters, the solution result of the vibration dis-
placement response curve of the system is shown in Fig. 7.

Figure 7 shows that the nonlinear jump phenomenon in the
vibration displacement response curves of the external and
internal meshing pairs decreases with the increase in mesh-
ing damping and, finally, disappears. There is no unilateral
impact, and the system vibration presents linear characteris-
tics.

4.2.3 External exciting force influence

When the external exciting force F1 is equal to 1, 1.25 and
1.5, respectively, the vibration displacement response curve
of the external and internal meshing pairs is as shown in
Fig. 8. The other parameters are L= 3, N = 3, f1 = 0.05,
f2 = 0.02, f3 = 0.01, ξsp1 = 0.025, ξrp1 = 0.025, e1 = 0.05,
e2 = 0.02, e3 = 0.01, k1 = 0.1, k2 = 0.04, and k3 = 0.02.

Figure 8 shows that the amplitude of the vibration dis-
placement response curve of the external and internal mesh-
ing pairs increases obviously with the increase in the external
exciting force, while the nonlinear jump phenomenon and
unilateral impact area remain basically unchanged, and the
nonlinear characteristics of the system are less affected by an
external exciting force.

4.2.4 Backlash influence

Figure 9 shows the speed vibration displacement response
curves of the internal and external meshing pairs under differ-
ent backlash and taking bsp1 = brp1 = 10 µm, bsp1 = brp1 =

5 µm, and bsp1 = brp1 = 0 µm. The other excitation parame-
ters can be expressed as L= 3, N = 3, F1 = 1, f1 = 0.05,
f2 = 0.02, f3 = 0.01, ξsp1 = 0.025, ξrp1 = 0.025, e1 = 0.05,
e2 = 0.02, e3 = 0.01, k1 = 0.1, k2 = 0.04, and k3 = 0.02.

Figure 9 shows that when the backlash is zero, the vibra-
tion response curve of the system is linear. When the back-
lash is not zero, the vibration displacement response curves
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Figure 3. Vibration response of the external meshing pair at differ-
ent speeds.

of the external and internal meshing pairs appear to have a
jumping phenomenon and a unilateral impact area. At the
same time, with the increase in the backlash, the nonlinear
characteristics of the system are enhanced, and compared
with zero backlash, the main resonance peak of the vibration
response curve of the system is suppressed.

5 Frequency response vibration test

The vibration test bench is shown in Fig. 10. The main com-
ponents include the electric control cabinet, data acquisition
instrument, drive motor, planetary gearbox, acceleration sen-
sor, torque sensor and magnetic particle brake. The basic pa-
rameters of the planetary gearbox are shown in Table 1.

The characteristic frequency is calculated with Eqs. (9),
(10) and (11) and is shown in Table 3.

Figures 11, 12 and 13 are the time domain and frequency
domain diagrams of the vibration acceleration signal of the

Figure 4. Vibration response of the internal meshing pair at differ-
ent speeds.

planetary gearbox when the motor selects the uniform speed
mode of 1500, 2000 and 2500 rpm, respectively.

Table 3. Characteristic frequency of the planetary gearbox.

Input speed n (rpm) f
(r)
s (Hz) fc (Hz) fm (Hz)

1500 5 25 360
2000 6.67 33.33 479.88
2500 8.334 41.67 600.12

Figures 11b, 12b and 13b show that, under three input
speeds, the frequency domain signal of vibration acceler-
ation of planetary gearbox has obvious vibration peaks at
three characteristic frequencies of the gearbox, which indi-
cates that the vibration acceleration signal measured in the
experiment has a good level of reliability.

The time domain signals of the vibration displacement of
the planetary gearbox can be obtained by processing the time
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Figure 5. Vibration response curve of the planetary gear system.

Figure 6. Effect of stiffness on the vibration response curve.

domain signals of the three groups of the gearbox vibration
acceleration signals measured by the analysis software, as
shown in Fig. 14. At the same time, based on the system
parameters of the planetary gearbox, the theoretical spectrum
diagram of the system under three input speeds is obtained
through theoretical analysis.

Figure 7. Effect of damping on the vibration response curve.

Figure 8. Effect of the external exciting force on the vibration re-
sponse curve.

Figure 15 shows the spectrum of the theoretical and ex-
perimental displacement of the system when the input speed
n= 1500 rpm. The calculated meshing frequency of the sys-
tem is 360 Hz at this speed. Figure 15a is the result of theo-
retical analysis; the black solid line is the spectrum curve of
the external meshing pair under the input speed in the theo-
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Figure 9. Effect of backlash on the vibration response curve.

Figure 10. Vibration test bench.

retical analysis, and the red solid line is the spectrum curve
of the internal meshing pair. The analysis of the test results
is shown in Fig. 15b.

Compared with Fig. 15a and b, the results show that, in
the theoretical analysis, both the internal and external mesh-
ing pairs of the system produce four resonance peaks, and
the peak frequency points are the same, which are, respec-
tively, close to the system one-quarter frequency multipli-
cation, one-half frequency multiplication, three-quarters fre-
quency multiplication and the meshing frequency points. In
addition to the above four points, the spectrum curve of the
system is smooth without side frequency resonance. In the
experimental analysis, the planetary gearbox also resonates
near the frequency point of the period doubling, and there is
also side frequency resonance near the frequency point. In
addition to the resonance caused by the motor input speed,
there are other forms of vibration signals in the system.

When n= 1500 rpm, the corresponding frequency values
of frequency multiplication response of the planetary gear-

Figure 11. Vibration acceleration signal of the gearbox at n=
1500 rpm.

Figure 12. Vibration acceleration signal of the gearbox at n=
2000 rpm.

box in the theoretical analysis and experimental analysis are
shown in Table 4.

Figure 16 shows the spectrum of the theoretical and ex-
perimental displacement of the system at the input speed of
n= 2000 rpm. The calculated meshing frequency of the sys-
tem at this speed is 480 Hz. Compared with Fig. 16a and b,
the results show that the theoretical analysis spectrum pro-
duces a resonance response at four frequency points dur-
ing the frequency multiplication period, while the experi-
mental analysis spectrum only forms resonance peak at the
one-quarter frequency multiplication point and one-half fre-
quency multiplication point.

When n= 2000 rpm, the corresponding frequency values
of the frequency multiplication response of the planetary
gearbox in theoretical and experimental analysis are shown
in Table 5.

Figure 17 shows the spectrum of the theoretical and ex-
perimental displacement of the system at an input speed of
n= 2500 rpm. The calculated meshing frequency of the sys-
tem is 600.12 Hz at this speed. Compared with Fig. 17a and
b, the results show that the theoretical spectrum produces a
resonance response at four frequency points during the fre-
quency multiplication period, while the experimental spec-
trum only forms a resonance peak at the one-quarter fre-
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Figure 13. Vibration acceleration signal of the gearbox at n=
2500 rpm.

Figure 14. Time domain vibration displacement signals of the gear-
box at different speeds.

quency multiplication point, one-half frequency multiplica-
tion point and the meshing frequency.

When n= 2500 rpm, the corresponding frequency values
of the frequency multiplication response of the planetary
gearbox in the theoretical analysis and experimental analy-
sis are shown in Table 6.

By analyzing the spectrum diagrams under three input
speeds, it can be determined that the amplitude of the test
spectrum diagram is larger than that of the theoretical spec-
trum diagram, and the vibration signal of the test gearbox
itself is more complex. Therefore, the difference in ampli-
tude can be regarded as reasonable. At the same time, the
response points of each frequency multiple of the theoreti-
cal and experimental spectrum diagram are similar, and the
characteristics of vibration spectrum are the same and have

Figure 15. Frequency domain diagram of the vibration displace-
ment at n= 1500 rpm.

Figure 16. Frequency domain diagram of the vibration displace-
ment at n= 2000 rpm.

Figure 17. Frequency domain diagram of the vibration displace-
ment at n= 2500 rpm.

similar vibration response laws. Therefore, the correctness
of the analytical model established by the lumped parame-
ter method and the effectiveness of the theoretical analysis
results can be confirmed.

6 Conclusion

In order to solve the problem of the nonlinear frequency re-
sponse of planetary gear transmission system, based on the
lumped parameter theory, a nonlinear frequency response
model of the bending torsion coupling of a planetary gear

Mech. Sci., 12, 1093–1104, 2021 https://doi.org/10.5194/ms-12-1093-2021



H. Dong et al.: Establishment and analysis of nonlinear frequency response model 1103

Table 4. Frequency multiplication response of the gearbox at n=
1500 rpm.

fm (Hz) 0.75 fm (Hz) 0.5 fm (Hz) 0.25 fm (Hz)

Theory 360.03 271.53 181.75 89.96
Test 359.96 275 179.98 90.04

Table 5. Frequency multiplication response of the gearbox at n=
2000 rpm.

fm (Hz) 0.75 fm (Hz) 0.5 fm (Hz) 0.25 fm (Hz)

Theory 481.20 361.49 241.60 121.89
Test – – 238.83 119.53

Table 6. Frequency multiplication response of the gearbox at n=
2500 rpm.

fm (Hz) 0.75 fm (Hz) 0.5 fm (Hz) 0.25 fm (Hz)

Theory 600.91 449.45 301.45 150
Test 600 – 300 150.78

system is established by comprehensively considering the
backlash, support clearance, time-varying meshing stiffness,
transmission error, external periodic excitation and other fac-
tors. The Runge–Kutta numerical method is used to solve the
model, and the nonlinear frequency response characteristics
of the system are analyzed. Finally, the vibration test of the
planetary gearbox is carried out. The conclusions are as fol-
lows:

1. With the increase in input speed, the vibration response
of the planetary gear system transits from a multiple-
period response to a single-period response. Under the
joint action of backlash, time-varying meshing stiffness
and meshing damping, the speed vibration displacement
response curve of the internal and external meshing pair
appears to have a nonlinear jump phenomenon and uni-
lateral impact area, and the system presents strong non-
linear characteristics.

2. The nonlinear vibration can be effectively suppressed
by decreasing the time-varying meshing stiffness or in-
creasing the meshing damping. However, by increas-
ing the external excitation force, the vibration response
displacement of the system increases, and the nonlin-
ear characteristics of the system remain basically un-
changed. The existence of backlash is an important in-
ducement to the nonlinear vibration of the system, but it
can inhibit the vibration of the system in a certain range.

3. In the vibration test, the vibration spectrum character-
istics of the vibration displacement frequency domain
signal of the planetary gearbox at different speeds are

similar to the simulation results, which proves the va-
lidity of the simulation analysis model and simulation
results.
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