Mechanical

Open Access

Juan Ignacio Valderrama-Rodriguez, José M. Rico, and J. Jesiis Cervantes-Sanchez

Mechanical Engineering Department, Engineering Division, Campus Irapuato-Salamanca,
Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5+1.8,
36885 Salamanca, Gto., México

José M. Rico (jrico@ugto.mx)

Received: 15 December 2019 — Revised: 26 February 2020 — Accepted: 28 February 2020 — Published: 1 April 2020

This contribution shows that a method proposed previously, for the determination of the instantaneous
centers of rotation of planar closed chains, can be generalized for the determination of the instantaneous screw
axes of general one-degree-of-freedom spatial mechanisms. Hence, the approach presented in this paper can be
applied to any of the closed chains that belong to any of the subgroups of the Euclidean group, SE(3), namely
planar, spherical or chains associated with the Schonflies subgroups, among others. Furthermore it can be also
applied to multi-loop mechanisms and even to closed chains that are exceptional o paradoxical, as indicated by

Hervé.

In 2016, Kim et al. (2016) presented a method for the de-
termination of the instantaneous centers of velocity of pla-
nar mechanisms. The basis of their approach is to set up
the equations for the solution of the velocity analysis of
the mechanism, whose instantaneous centers are to be deter-
mined. From these equations they obtain the position of the
instantaneous centers of planar mechanisms, without explic-
itly employing the theorem of three instantaneous centers,
also known as Aronhold-Kennedy theorem. This important
theorem was independently discovered by Aronhold (1872),
and Kennedy (1886), in the second part of the XIX century.
The instantaneous centers of velocity or rotation are de-
fined as a pair of coincident points that belong to different
links of the mechanism such that one link rotates with re-
spect to the other around an axis perpendicular to the plane
of motion and passes through the pair of coincident points.
Instantaneous centers that can be determined by the applica-
tion of the very same definition are denoted as primary. If
the instantaneous center of rotation requires the application
of the Aronhold-Kennedy theorem or other techniques such

as the one proposed by Kim et al. (2016) and generalized in
this contribution are denoted as secondary.

Since the first decades of the XX century, it was well
known, see Klein (1917), that there were planar mecha-
nisms for which it was impossible to obtain all the secondary
instantaneous centers by resorting only to the Aronhold-
Kennedy theorem. These mechanisms were known as com-
plex or indeterminate. Klein (1917) himself presented a trial
and error graphical method to determine all the secondary
centers of these indeterminate mechanisms.

It is important to note that despite the references cited by
Kim et al. (2016) all the mechanisms presented in their paper
are determined; i.e. all their secondary centers can be ob-
tained by using only the Aronhold-Kennedy theorem. In ad-
dition, it is necessary to point out several misrepresentations
of the theory of kinematic analyses.

— In the last paragraph of the second column of page 1,
Kim et al. (2016) state “This method! is very intuitive
from the geometry, but it has disadvantages of complex-
ity in calculation and difficulty in determining the direc-

'Here, Kim et al. (2016) is referring to the application of the
Aronhold-Kennedy theorem.



tion of the linkage movement.”. However, properly ap-
plied the application of the instantaneous centers of ve-
locity can determine the direction of the linkage move-
ment in an easy and straightforward way.

— In the fourth paragraph of the first column of page 2,
Kim et al. (2016) state “The method has three advan-
tages in machine analysis. First, it can calculate the IC
with a single representation for an arbitrary choice of
fixed link. The IC calculation in previous methods for
different fixed links needs totally different calculation
setups.”. However, it should be stressed that the location
of the instantaneous centers of velocity — and the loca-
tion of the instantaneous screw axes, in the more general
case of spatial linkages — depends only on the position
of the linkage and it is independent on the selection of
either the fixed or the input link.

— In several parts, Kim et al. (2016) refer to “the angular
velocity of IC”. It should be noted that an instantaneous
velocity center, since it is a pair of coincident points, can
not have angular velocity. Notwithstanding, it is possi-
ble to reference the angular velocity of one of link of the
mechanism with respect to the other link, both of them
associated with the instantaneous velocity center.

In 1992, Yan and Hsu (1992) presented a method for pla-
nar mechanisms similar to that of Kim et al. (2016) The first
two decades of this century have seen a renewed interest in
the determination of the instantaneous centers of velocity for
indeterminate planar mechanisms, see Foster and Pennock
(2003, 2005), Di Gregorio (2008a, b) and Kung and Wang
(2009), and indeterminate spherical mechanisms, see Di Gre-
gorio (2011), and Zarkandi (2010, 2013).

In the rest of this paper the method presented by Kim et
al. (2016) will be generalized to arbitrary linkages with a
correct kinematic formulation. In particular, it will be shown
that once the velocity analysis of an arbitrary linkage — pla-
nar, spherical, spatial or associated to any other subgroup of
the Euclidean group, SE(3), determinate or indeterminate —
is solved, there is an easy process to determine the instanta-
neous screw axes, ISA, for its initials in English, or the cor-
responding simplification; i.e. the instantaneous rotation pole
for spherical linkages or the instantaneous velocity center for
planar linkages. Moreover, it can handle, single or multi-loop
kinematic chains regardless if they are determined or un-
determined, even exceptional and paradoxical linkages, see
Hervé (1978). Some applications of the instantaneous screw
axes, or their counterparts, in the case of planar and spherical
linkages, can be found in Zhao and Zhou (2004), Di Gregorio
(2007) and Zarkandi (2011).

In this section, the fundamentals of the velocity analysis of
single-loop and multi-loop linkages, using screw theory, will
be briefly reviewed, see Hunt (1978) and Rico et al. (1999)

The velocity state of a rigid body B, as seen from the ref-
erence frame A, with respect to a point O fixed in body B is
given by

Wh=[ hat sl

where 4@? is the angular velocity of body B as observed
from the body, or reference frame, A, and A vg is the velocity
of the point O, fixed in body B, as observed from body A. In
terms of infinitesimal screws, the velocity state of rigid body
B, as seen from the reference frame A, can be written as

AVE — ywp 438, (1

where A$g is the instantaneous screw axis, ISA, which rep-
resents the motion of body B with respect to body A. Fur-
thermore,

T
A8 =[ A58, rpjo x AsP] )

where 455 is a unit vector along the angular velocity 4w?
and r p,o is the position vector of an arbitrary point P along
the rotation axis with respect to point O. If the angular veloc-
ity is zero, using projective geometry concepts, the instanta-
neous screw axis, ISA lies at the infinity in a direction per-

pendicular to the translational velocity. Then
T

sh=[ 0 s

where 4s? is a unit vector along the translational velocity

of body B with respect to body A. The instantaneous screw

axis, ISA, is the geometrical entity that is at the core of the

contribution of Kim et al. (2016) and the present study.
It can be proved that for 3 arbitrary bodies A, B and C

AvG =4vE +Bv§ 3)
If the bodies C and A are the same, it follows that
0="V4=2VE+BVS hence “VE=-8vi (4
In terms of infinitesimal screws, the Eq. (4) can be written as
Ay B A¢B A¢B By A

V0=ACUB $0=_BwA $o=— Vo
This result indicates that the infinitesimal screw 4$5 asso-
ciated with the velocity states of V5 and ZV% can be re-
garded as the same, the only difference will be the sign of
Awp. Once the links of a mechanism have been chosen, the
instantaneous screw axis — or its equivalents; namely, the in-
stantaneous rotation axis or the instantaneous rotation center
— will be always indicated as gk , with j > k, the sign of
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Single-loop closed chain.

the corresponding velocity will determine the corresponding
velocity state; i.e. jor /$% =%V’ and —jwp I8k =7VE.
This notation is at odds with the notation of Eq. (1), but it is
necessary to preserve the classical notation of instantaneous
centers of velocity. The resulting approach is equivalent to
the one employed by Wolhart (2004).

Consider the single-loop closed chain shown in Fig. 1, us-
ing recursively Eq. (3), it can be shown, see Hunt (1978), or
Rico et al. (1999), that the corresponding velocity equation
is given by

201 2$10 +3w2 3$%) 4. mOm—1 '”$”01—1 =0.

where ;yjw; are the articular velocities and j +1$6 are the
corresponding screws representing the kinematic pairs. The
kinematic pairs are all considered screw pairs, since revo-
lute and prismatic pairs can be regarded as special cases of a
screw pair.

If link 2 is regarded as the input link, the articular velocity
2w1 1s known and the equation can be rewritten as

302 385 + oo mom—1 "S5 = —0r 28, (5)

This is the equation employed in the solution of the velocity
analysis of RCCC spatial linkages, see Sect. 3.3

If the mechanism is multi-loop, it is necessary to resort to
some basics of graph theory, see Wolhart (2004), or Miiller
(2018). As an example, Fig. 2 shows the directed graph as-
sociated with the single flyer planar mechanism shown in
Fig. 3. The nodes of the graph correspond to the links, while
the edges correspond to the kinematic pairs, indicated by the
instantaneous center of velocity of the revolute.

The multi-loop mechanism has three independent loops.
However, there are other selections besides those shown in
Fig. 2. In this case, the direction of loop I is clockwise, and
the directions of the kinematic pairs in this loop are such that
coincide with the direction of the loop. For the remaining

/ 5) S/ 8 ;‘ \
Oy
0;;
/ 03;_7 N / ~
(2) 3) LI 7)
/
0», I 013 /0
/ 74
A 7
(1r 4r
Oy

Directed graph of the single flyer planar mechanism.
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Single flyer planar mechanism.

loops, it is impossible to choose the direction of the kine-
matic pairs in such a way that all of them coincide with the
direction of the loop, see Wolhart (2004). Basically, if the di-
rection loop’s edge coincide with the direction of the loop,
the sign of the term in the equation is positive, otherwise the
sign is negative. Therefore, the velocity equations for the sin-
gle flyer planar mechanism shown in Fig. 3 are given by

201 280 + 302 8y +aw3 183 +a01 8, =0

sw2 785 +3ws 887 +sws U$% + 63 83 — 302 285 =0
g7 8$70 + 704 7$§; —4w3 4$30 — 6w3 6$30 —gweg 8$60 =0 (6)
This is the equation used in the velocity analysis of the
indeterminate planar mechanism dealt with in Sect. 3.1 and

it is the basic equation for solving the velocity analysis of
any multi-loop mechanism.



This section illustrates the computation of the instantaneous
screw axes, or their corresponding simplifications, of three
representative linkages. In all these examples, the velocity
analysis, for an arbitrary velocity of the driver link will be
solved, and from the results, the velocity state of an arbitrary
link k& with respect to another arbitrary link j will be ob-
tained. From these results, the corresponding instantaneous
screw axis, or the instantaneous pole center, if the mechanism
is an spherical one, or the instantaneous center of velocity, if
the mechanism is a planar one, will be easily obtained.

Consider the mechanism shown in Fig. 3, proposed by Klein
(1917), and known as eight-bar single flyer linkage. Klein
(1917) himself determined all the secondary centers using
his trial and error method. Foster and Pennock (2005), and
Di Gregorio (2008b), also solved all the secondary centers.
The mechanism has 4 ternary links and 4 binary links, and
10 revolute pairs. The mechanism is a trivial one, and its mo-
bility, F', can be computed using the Griibler criterion as

F=3(N—-1)—2P; =3(8—1)—2(10) = 1.

where N is the number of links, and P; is the number of
kinematic pairs of class 1, revolute pairs are precisely of class
1. The 28 instantaneous centers of velocity are shown in Ta-
ble 1, where the number (—1) indicates that the instantaneous
center is a primary one, while (—2) indicates that the instan-
taneous center is a secondary one. It should be noted that the
instantaneous centers of velocity O3 and O4; can be easily
determined using the Aronhold-Kennedy theorem. However,
the remaining secondary centers can not be obtained using
the theorem. Furthermore, it should be noted that, for this
planar mechanism, the usual convention of denoting an in-
stantaneous center as Oj;, where j > i has been used. This
convention was also extrapolated to the infinitesimal screws.
In order to carry out the velocity analysis, it is necessary
to determine the screws associated with the kinematic pairs,
all of them revolute pairs, with respect to the origin of the
coordinate system, O. For that purpose, it is necessary to find
a unit vector along the direction of the rotation axes?, the
Z axis, given by u = [ 0 0 l]T and the position vectors
of points located along the revolute axes, with respect to the
origin of the coordinate system, O, those position vectors are
given in terms of an unspecified arbitrary unit of length

2In this contribution all vectors are column vectors; however due
to space considerations they are written as the transpose of row vec-
tors.

rm=[0 0 0], rp=[70 184 0],

rs=[ 160 120 0]', ry=[ 180 0 0],

ro=[10 176 0], rgs=[ =52 240 0]

res=[ 32 260 0], re=[ 172 260 0],

T T
rg7 = [ 140 420 0] , rua= [ 252 168 0] .
where the subscripts indicate the kinematic pair associated
with the position vectors.

The screws associated with the kinematic pairs, with re-
spect to the origin, O, — again, due to space restrictions only
the non-zero elements, the z component of the angular ve-
locity, and the x and y components of the origin traslational
velocity are indicated — are given by
;o o ;184 —70]",

)

;120 —160]", 4s! ;o —180]",

240 52]",

;260 -32]", 6$3 =

|
[
176 —10]", 83 =[ L;
[ 1 260 —172]",
[

;420 —140]", 7$4 =[ 1. 168 -252]".
The semicolon indicates that the units of the first component
is different from the remaining components. It will be as-
sumed that the input link is link 2, and rw; = Srad sl is
in counterclockwise sense. Solving the system of equations
given by Eq. (6), the solutions are given by

1350 2070 1315
3(‘)2:_1197 403 = 119 ° 4(1)1:_119,

w — — 31361850 e — 21380700 e = — 11515170
SW2 = T75430341 0 8W5 = 3420341 > 8W6 = — 3540217 °
s — 28331370 wr — — 116131140 __ 246507750
603 = 16042387 8WT7 = —76942387 ° 7?4 = 6942387 °

All the results are given in rad s~ if the sign is positive the
angular velocity is counterclockwise and if the sign is nega-
tive the angular velocity is clockwise.

Once the velocity analysis has been completed the velocity
states between two arbitrary links can be computed and the
corresponding instantaneous screw axes can be determined.
Due to space considerations, only a few instantaneous veloc-
ity centers will be computed; for example:

— First Case. Instantaneous center of velocity Og;, deter-
mine the velocity state 1V% as

W=V VL +VE 48V

2¢l 5¢2 8¢5 846
201 “$¢ +s5w2 % +sws °$Y +swe °$)



Instantaneous centers of velocity associated with the single flyer linkage.

021(=1)  031(=2) O4(—1) O0s51(=2) O61(=2) O071(=2) O0gi1(—2)
O3(—1)  O4(=2) Os(—1) 0Oga(=2) O72(=2) Ogr(-2)
Og43(—1)  0s53(=2) Og3(—1) 073(=2) 0Og3(-2)
054(=2)  Op4(=2) O74(=1) 0Og4(=2)
Og5(=2)  O75(=2) Ogs(—1)
076(=2)  Oge(—1)
Og7(—1)
1; 1;
’ 31361850 ’
=5 0f——m— 176
0 2420341 —10
1; 1;
27380700 17515170 260
2420341 5 1540217 _32
_ 135822985.
16942387 °
— | _ 42731609400
= 16942387
426214980
394009
I;
8546321880
_ 135822985 27163597 | — 1 '$0° gy
16942387
_ 3665448 828 Indeterminate spherical mechanism.
27164597
Theref
eretore From these results, the location of the instantaneous ve-
Ig 6_[ . 8546321880 _3665448828]T locity center Og4 is given by
o =1L b 27164597 27164597

Comparing this result with that of Eq. (2), and resorting
to the triple vector identity of
AsB x <rp/0 X AsB> = rp/O(AsB-AsB)
~AsB(AsB.rp0)=rp0, @)
since rp/o and AsB are perpendicular, the location of
the instantaneous velocity center Og; is given by

3665448 828

8546321 880 T
27 164597 0] . ®)

27164597

ro1 =

Second Case. Instantaneous center of velocity Og4, de-
termine the velocity state SV‘(‘) as

Vo= Vo +7Vh =sw *8p +104 85

1; 1;
=_116131140 420 +246507750 168
16942387 | _140

16942387 | _ps»
18625230, |-
2420341 > ;

1051682400 | _ 18625230 | 11685360

= 2420381 | = 2420341 206047

6551656200 72796180

2420341 206947

72796 180
206947

_ 11685360 O]T
206947

res=|

The locations of the instantaneous velocity centers Og
and Ogy are also shown in Fig. 3.

Consider the multi-loop spherical mechanism proposed by
Zarkandi (2013), and denoted as a double butterfly spheri-
cal mechanism with a sliding pair, shown in Fig. 4. This is a
completely indeterminate mechanism and its mobility can be
easily computed using the Kutzbach-Griibler criterion so that
F = 1. The 28 instantaneous axes of velocity of the spherical
mechanism are shown in Table 2, where the number (—1) in-
dicates that the axis is primary — there are 10 primary centers
— while the number (—2) indicates that the axis is secondary.

It should be noted that, unlike the planar mechanism, here
the subscripts associated with the primary instantaneous axes
of velocity are chosen in the way that makes simpler to un-
derstand the required velocity analysis equations.

Figure 5 shows the directed graph of the spherical mecha-
nism. The Figure also shows three independent loops that can
be obtained from the mechanism, in these cases all the loops
are positive in counterclockwise. Furthermore, the directions



Instantaneous axes of velocity associated with the indeterminate spherical mechanism.

up1(=0  u31(=2) w4 (=2) wus1(=2) we1(=2) wuyp (=1 wug(=1)
up(—=1)  ugp(=1) wusp(=2) we(=2) wup(=2) wug(-2)
ug3(=2) us3(—1) wue3(=2) wup(=2) wug3(=2)
usa(=2)  wuea(—1) wu74(=2) wuga(=2)
ues(—1) wu7s(=2) ugs(=1)
u76(—1) uge(—2)
ugi(—2)
oy ugs 5 Uss 6 Assuming that w; = 10rad s~! is counterclockwise, the
) ¥ results for the articular velocities involved in Eq. (9) are — the
results where obtained in Maple®© in an exact form, however
Uss - Hos the radical expressions are too unwieldy to be shown here —
/A instead only decimal approximations are shown.
ug) I 3) ~— (4)\ Y
T 3wy = —10.79933rads ™!, sw3 = —2.06279rads™!,
s gws = 6.53041rads™!, gw| = —3.40871rads™ !,
Lo, kT e 6ws =3.86346rads™!,  gw4 = —6.21473rads™",
D=2 Vi 701 = —0.77268rads™!, w6 =2.162413rads ™!,
o 4wy = 13.97708 rads .
uy; ~7‘

Directed graph of the single flyer spherical mechanism.

of the kinematic pairs can be established so that the equa-
tions necessary to solve the velocity analysis of the mech-
anism shown in Fig. 4 are given by Eq. (9). It should be
noted that if the origin, O, of the coordinate system is lo-
cated in the common center of all the spheres, the velocity
of the origin and the translational velocity components are
always zero and do not need to be considered. Therefore, the
velocity equations that involve the corresponding screws are
reduced to the equations involving only the unit vectors as-
sociated with the corresponding angular velocities.

201 U1 + 3w U3 + 503 U35+ gws ugs +gwi g =0
—3W2 U3 — 5W3 US3 — W5 Ue5 — 6W4 Ues — 42 U4 =0
T W71 + 706 U6 + 604 Ues + 402 U42 — 201 U2 =0 (9)

where the unit vectors associated with the primary instanta-
neous axes of velocity are given by

w=[3 4 e[ 4]

o —

From these results it is straightforward to compute the
velocity state between two arbitrary links of the spherical
mechanisms and eventually determine the corresponding in-
stantaneous axis of velocity. For example:

— First Case. Instantaneous axis of velocity u57, determine
the angular velocity > VZ) as

5
Tw=% + 70’ = 6W5 U5 — TW6 UT6

T
=386346[ 0 13 3]

—2.162413[@ ¥ _Q]T

:[ —1.248469 2.31780 2.73441]T
:3.79577[ —0.3289136 0.6106342 0.7203908]T

From these results, the instantaneous axis of velocity
u7s is given by

u7s :[ —0.3289136 0.6106342 O.7203908]T.

— Second Case. Instantaneous axis of velocity u4g, deter-
mine the angular velocity 4V§) as

408 =40° 1 00° 4308 = —gwsues — 506165 + 53 UsS

=6.21473[ 1

T
1 2
+6.53041[0 4 ﬁ]
—[ 3.107365 4736331 4.355030]"
= 7.145266[ 0434884 0.662862 0.609498]"

T T
S oo] —3sem6[ 0 B3]

From these results, the instantaneous axis of velocity
ugy is given by

uga = [ 0.434884 0.662862 0.609498]".



The unit vectors representing u7s5 and ugs are also
shown in Fig. 4.

Consider the RCCC spatial mechanism shown in Fig. 6,
where the kinematic pair between links 1 and 2 is a revo-
lute and the remaining pairs are cylindrical. The mechanism
is a trivial one and its mobility ¥ = 1 can be computed using
the Kutzbach-Griibler criterion. The unit vectors associated
with the revolute axis and the cylindrical pairs axes are given
by

[ 6 5 3
U32a = U32b [ 4939 34® 23/?] :
43, = ta3p [ 12161 /61

u41a=u41b=[ 3V22 V22 3«/@] .

Similarly, the position vectors of points along the kinematic
pairs with respect to the origin, O, are given by

ra=[0 0 o],

rop=[ 246 388 —176]",
ris=[ 580 224 175]", 4=

[ 671 27 -28]".
The screws associated with the kinematic pairs of the RCCC

mechanism, where each cylindrical pair has two screws as-
sociated with the pair, are given by

lag2 [ 4 3 _ _28 212 84T
L v Vo ’
T
3bq2 4 3 2
$ [ 000 7 75 29} ;
dag3 :[ 12 1 4 10347 220 _ 2108 ]T
161 161 161’ V23 V16l JViel |
T
4b¢3 12 1 4
$ _[ 000 161 161 \/161] ’
4$1a=[ 3 2 3. 137 _ 2097 1261]T
% V22 I 22’ 22 V22 V22
T
4¢lb_ 3 2 3
$0_[ 000 v22 1 m]

The velocity analysis equation is given by
3002 2985 + 300 8L +aewz Y83 +Fapus 83
+awia *$Y +avip Y = —w1 28 (10)
where >w; = 10rads™, the results of the velocity analysis
are:

/870 3029587 /870
3qw2 = — 55T Orads™ , 3V = — e wl.s™F,
17 «/483 __ 898707 /4830
4aw3 = rads™, 4pv3 = o wlsT,
91 «/66 118 604 /660
401 = rads™ 4V1p = e ul.s™

The RCCC spatial mechanism.

From these results, it is possible to determine the velocity
states of the different links relative to the other links, and
from these velocity states the corresponding instantaneous
screw axes, ISA will be determined. One special and simplest
case is the ISA of the relative movement of link 2 to link 1.
Since its velocity state is given by

1y,2 2¢1
VO =2W1 $0

Therefore, the instantaneous screw axis ISA of link 2 with
respect to link 1 is given by

T
[ ¥» 0.0 0 o . (D

1
2¢1 _ 20,1 _
So = Vo = 15 30

201
The next task is to find the ISA of the relative movement of
link 3 to link 2. It should be noted that the kinematic pair be-
tween links 2 and 3 is a cylindrical pair, thus at the outset it
seems that there is not a unique ISA; however, after carrying
out the velocity analysis the joint velocities are uniquely de-
termined and the velocity state of link 3 with respect to link
2 is given by

R R I 72
_ ~V29v30 [ 4 3 —2. -8 212
201

21,3
Vo=3aw2

V9 V™ V2™ V2 V™ V9

—3029587/294/30 00 0 A 3 =2
T[ V29 V29 m]
V8101 4 3 2 . 18160906 27237875  —914329977
= 01 [ V29 V29 V29’ V61 J134 NG ]

Therefore the instantaneous screw axes of the relative move-
ment of link 3 with respect to link 2 is given by

—4 -3 N
3$2 — V29 /29 V29’ (12)
0= | 18160906 27237875 —9143299 | -
NG 134 V61



The results of Egs. (11) and (12) verify the data employed in
the setting up of this problem.

Now, the the ISA of the relative movement of link 3 to
link 1 will be determined. It follows that
W3=13 +2v3 =201 2$L 43000 385 43500 8%

=10[ -0 B S g O]T

_\/Tf[ 4 3 -2. =248

|
[
—
5]
|
©
—_
S
—
=]

201 N2 N RN T RN T N T BT

~3029587+/29+/30 00 0 4 3 27

8978 [ V29 Vo «/@]
—3J/113 131 6 .77

/4105290 1211 136843 136843’

B 201 —18160906  _ 3891125./136843 9143299

67136843 2619566 67136843

Therefore, the angular velocity of link 3 with respect to link 1
is given

JA105290 .

3w = Trads ,

and the ISA associated with the movement of link 3 with
respect to link 1 is given

—3./113 131 6 .7
el V1211 /136843 /136843’
$, =
—18160906 _ 3891125+/136843 9143299
67136843 2619566 67 /136 843

The line associated to the screw 3$ is also shown in Fig. 6.
Due to space considerations, the computatlon of 4$2 is omit-
ted.

This paper has shown that once the velocity analysis of an
arbitrary mechanism with one degree of freedom has been
carried out it is straightforward to determine the instanta-
neous screw axis associated with the relative movement of
two arbitrary links of the mechanism, regardless the type of
mechanism, whether they are single- or multi-loop, or they
are determined or undetermined. However, it should be noted
that in kinematics, the usual approach is to find first the in-
stantaneous screw axis associated with two arbitrary links
of the mechanism and from this knowledge to perform the
mechanism’s velocity analysis. An upcoming paper will ana-
lyze thoroughly this approach for arbitrary mechanisms. All
the computations were carried out using Maple© and verified
with Adams©.
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