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Abstract. This contribution shows that a method proposed previously, for the determination of the instantaneous
centers of rotation of planar closed chains, can be generalized for the determination of the instantaneous screw
axes of general one-degree-of-freedom spatial mechanisms. Hence, the approach presented in this paper can be
applied to any of the closed chains that belong to any of the subgroups of the Euclidean group, SE(3), namely
planar, spherical or chains associated with the Schönflies subgroups, among others. Furthermore it can be also
applied to multi-loop mechanisms and even to closed chains that are exceptional o paradoxical, as indicated by
Hervé.

1 Introduction

In 2016, Kim et al. (2016) presented a method for the de-
termination of the instantaneous centers of velocity of pla-
nar mechanisms. The basis of their approach is to set up
the equations for the solution of the velocity analysis of
the mechanism, whose instantaneous centers are to be deter-
mined. From these equations they obtain the position of the
instantaneous centers of planar mechanisms, without explic-
itly employing the theorem of three instantaneous centers,
also known as Aronhold-Kennedy theorem. This important
theorem was independently discovered by Aronhold (1872),
and Kennedy (1886), in the second part of the XIX century.

The instantaneous centers of velocity or rotation are de-
fined as a pair of coincident points that belong to different
links of the mechanism such that one link rotates with re-
spect to the other around an axis perpendicular to the plane
of motion and passes through the pair of coincident points.
Instantaneous centers that can be determined by the applica-
tion of the very same definition are denoted as primary. If
the instantaneous center of rotation requires the application
of the Aronhold-Kennedy theorem or other techniques such

as the one proposed by Kim et al. (2016) and generalized in
this contribution are denoted as secondary.

Since the first decades of the XX century, it was well
known, see Klein (1917), that there were planar mecha-
nisms for which it was impossible to obtain all the secondary
instantaneous centers by resorting only to the Aronhold-
Kennedy theorem. These mechanisms were known as com-
plex or indeterminate. Klein (1917) himself presented a trial
and error graphical method to determine all the secondary
centers of these indeterminate mechanisms.

It is important to note that despite the references cited by
Kim et al. (2016) all the mechanisms presented in their paper
are determined; i.e. all their secondary centers can be ob-
tained by using only the Aronhold-Kennedy theorem. In ad-
dition, it is necessary to point out several misrepresentations
of the theory of kinematic analyses.

– In the last paragraph of the second column of page 1,
Kim et al. (2016) state “This method1 is very intuitive
from the geometry, but it has disadvantages of complex-
ity in calculation and difficulty in determining the direc-

1Here, Kim et al. (2016) is referring to the application of the
Aronhold-Kennedy theorem.
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tion of the linkage movement.”. However, properly ap-
plied the application of the instantaneous centers of ve-
locity can determine the direction of the linkage move-
ment in an easy and straightforward way.

– In the fourth paragraph of the first column of page 2,
Kim et al. (2016) state “The method has three advan-
tages in machine analysis. First, it can calculate the IC
with a single representation for an arbitrary choice of
fixed link. The IC calculation in previous methods for
different fixed links needs totally different calculation
setups.”. However, it should be stressed that the location
of the instantaneous centers of velocity – and the loca-
tion of the instantaneous screw axes, in the more general
case of spatial linkages – depends only on the position
of the linkage and it is independent on the selection of
either the fixed or the input link.

– In several parts, Kim et al. (2016) refer to “the angular
velocity of IC”. It should be noted that an instantaneous
velocity center, since it is a pair of coincident points, can
not have angular velocity. Notwithstanding, it is possi-
ble to reference the angular velocity of one of link of the
mechanism with respect to the other link, both of them
associated with the instantaneous velocity center.

In 1992, Yan and Hsu (1992) presented a method for pla-
nar mechanisms similar to that of Kim et al. (2016) The first
two decades of this century have seen a renewed interest in
the determination of the instantaneous centers of velocity for
indeterminate planar mechanisms, see Foster and Pennock
(2003, 2005), Di Gregorio (2008a, b) and Kung and Wang
(2009), and indeterminate spherical mechanisms, see Di Gre-
gorio (2011), and Zarkandi (2010, 2013).

In the rest of this paper the method presented by Kim et
al. (2016) will be generalized to arbitrary linkages with a
correct kinematic formulation. In particular, it will be shown
that once the velocity analysis of an arbitrary linkage – pla-
nar, spherical, spatial or associated to any other subgroup of
the Euclidean group, SE(3), determinate or indeterminate –
is solved, there is an easy process to determine the instanta-
neous screw axes, ISA, for its initials in English, or the cor-
responding simplification; i.e. the instantaneous rotation pole
for spherical linkages or the instantaneous velocity center for
planar linkages. Moreover, it can handle, single or multi-loop
kinematic chains regardless if they are determined or un-
determined, even exceptional and paradoxical linkages, see
Hervé (1978). Some applications of the instantaneous screw
axes, or their counterparts, in the case of planar and spherical
linkages, can be found in Zhao and Zhou (2004), Di Gregorio
(2007) and Zarkandi (2011).

2 Velocity analysis of single and multiple loops
mechanisms

In this section, the fundamentals of the velocity analysis of
single-loop and multi-loop linkages, using screw theory, will
be briefly reviewed, see Hunt (1978) and Rico et al. (1999)

The velocity state of a rigid body B, as seen from the ref-
erence frame A, with respect to a point O fixed in body B is
given by

AV B
O =

[
AωB
;

AvB
O

]T
,

where AωB is the angular velocity of body B as observed
from the body, or reference frame, A, and AvB

O is the velocity
of the point O, fixed in body B, as observed from body A. In
terms of infinitesimal screws, the velocity state of rigid body
B, as seen from the reference frame A, can be written as

AV B
O = AωB

A$B
O , (1)

where A$B
O is the instantaneous screw axis, ISA, which rep-

resents the motion of body B with respect to body A. Fur-
thermore,

A$B
O =

[
AsB
; rP/O ×

AsB
]T (2)

where AsB is a unit vector along the angular velocity AωB

and rP/O is the position vector of an arbitrary point P along
the rotation axis with respect to point O. If the angular veloc-
ity is zero, using projective geometry concepts, the instanta-
neous screw axis, ISA lies at the infinity in a direction per-
pendicular to the translational velocity. Then

A$B
O =

[
0; AsB

]T
where AsB is a unit vector along the translational velocity
of body B with respect to body A. The instantaneous screw
axis, ISA, is the geometrical entity that is at the core of the
contribution of Kim et al. (2016) and the present study.

It can be proved that for 3 arbitrary bodies A, B and C

AV C
O =

AV B
O +

BV C
O (3)

If the bodies C and A are the same, it follows that

0= AV A
O =

AV B
O +

BV A
O hence AV B

O =−
BV A

O . (4)

In terms of infinitesimal screws, the Eq. (4) can be written as

AV B
O = AωB

A$B
O =−BωA

A$B
O =−

BV A
O

This result indicates that the infinitesimal screw A$B
O asso-

ciated with the velocity states of AV B
O and BV A

O can be re-
garded as the same, the only difference will be the sign of
AωB . Once the links of a mechanism have been chosen, the
instantaneous screw axis – or its equivalents; namely, the in-
stantaneous rotation axis or the instantaneous rotation center
– will be always indicated as j $k

O , with j > k, the sign of
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Figure 1. Single-loop closed chain.

the corresponding velocity will determine the corresponding
velocity state; i.e. jωk

j $k
O =

kV
j
O and −jωk

j $k
O =

jV k
O .

This notation is at odds with the notation of Eq. (1), but it is
necessary to preserve the classical notation of instantaneous
centers of velocity. The resulting approach is equivalent to
the one employed by Wolhart (2004).

Consider the single-loop closed chain shown in Fig. 1, us-
ing recursively Eq. (3), it can be shown, see Hunt (1978), or
Rico et al. (1999), that the corresponding velocity equation
is given by

2ω1
2$1

O + 3ω2
3$2

O + . . .+mωm−1
m$m−1

O = 0.

where j+1ωj are the articular velocities and j+1$j
O are the

corresponding screws representing the kinematic pairs. The
kinematic pairs are all considered screw pairs, since revo-
lute and prismatic pairs can be regarded as special cases of a
screw pair.

If link 2 is regarded as the input link, the articular velocity
2ω1 is known and the equation can be rewritten as

3ω2
3$2

O + . . .+mωm−1
m$m−1

O =−2ω1
2$1

O (5)

This is the equation employed in the solution of the velocity
analysis of RCCC spatial linkages, see Sect. 3.3

If the mechanism is multi-loop, it is necessary to resort to
some basics of graph theory, see Wolhart (2004), or Müller
(2018). As an example, Fig. 2 shows the directed graph as-
sociated with the single flyer planar mechanism shown in
Fig. 3. The nodes of the graph correspond to the links, while
the edges correspond to the kinematic pairs, indicated by the
instantaneous center of velocity of the revolute.

The multi-loop mechanism has three independent loops.
However, there are other selections besides those shown in
Fig. 2. In this case, the direction of loop I is clockwise, and
the directions of the kinematic pairs in this loop are such that
coincide with the direction of the loop. For the remaining

Figure 2. Directed graph of the single flyer planar mechanism.

Figure 3. Single flyer planar mechanism.

loops, it is impossible to choose the direction of the kine-
matic pairs in such a way that all of them coincide with the
direction of the loop, see Wolhart (2004). Basically, if the di-
rection loop’s edge coincide with the direction of the loop,
the sign of the term in the equation is positive, otherwise the
sign is negative. Therefore, the velocity equations for the sin-
gle flyer planar mechanism shown in Fig. 3 are given by

2ω1
2$1

O + 3ω2
3$2

O + 4ω3
4$3

O + 4ω1
4$1

O = 0

5ω2
5$2

O + 8ω5
8$5

O + 8ω6
8$6

O + 6ω3
6$3

O − 3ω2
3$2

O = 0

8ω7
8$7

O + 7ω4
7$4

O − 4ω3
4$3

O − 6ω3
6$3

O − 8ω6
8$6

O = 0 (6)

This is the equation used in the velocity analysis of the
indeterminate planar mechanism dealt with in Sect. 3.1 and
it is the basic equation for solving the velocity analysis of
any multi-loop mechanism.
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3 Examples

This section illustrates the computation of the instantaneous
screw axes, or their corresponding simplifications, of three
representative linkages. In all these examples, the velocity
analysis, for an arbitrary velocity of the driver link will be
solved, and from the results, the velocity state of an arbitrary
link k with respect to another arbitrary link j will be ob-
tained. From these results, the corresponding instantaneous
screw axis, or the instantaneous pole center, if the mechanism
is an spherical one, or the instantaneous center of velocity, if
the mechanism is a planar one, will be easily obtained.

3.1 Indeterminate planar mechanism

Consider the mechanism shown in Fig. 3, proposed by Klein
(1917), and known as eight-bar single flyer linkage. Klein
(1917) himself determined all the secondary centers using
his trial and error method. Foster and Pennock (2005), and
Di Gregorio (2008b), also solved all the secondary centers.
The mechanism has 4 ternary links and 4 binary links, and
10 revolute pairs. The mechanism is a trivial one, and its mo-
bility, F , can be computed using the Grübler criterion as

F = 3 (N − 1)− 2PI = 3 (8− 1)− 2 (10)= 1.

where N is the number of links, and PI is the number of
kinematic pairs of class 1, revolute pairs are precisely of class
1. The 28 instantaneous centers of velocity are shown in Ta-
ble 1, where the number (−1) indicates that the instantaneous
center is a primary one, while (−2) indicates that the instan-
taneous center is a secondary one. It should be noted that the
instantaneous centers of velocity O31 and O42 can be easily
determined using the Aronhold-Kennedy theorem. However,
the remaining secondary centers can not be obtained using
the theorem. Furthermore, it should be noted that, for this
planar mechanism, the usual convention of denoting an in-
stantaneous center as Oji , where j > i has been used. This
convention was also extrapolated to the infinitesimal screws.

In order to carry out the velocity analysis, it is necessary
to determine the screws associated with the kinematic pairs,
all of them revolute pairs, with respect to the origin of the
coordinate system, O. For that purpose, it is necessary to find
a unit vector along the direction of the rotation axes2, the
Z axis, given by u=

[
0 0 1

]T and the position vectors
of points located along the revolute axes, with respect to the
origin of the coordinate system, O, those position vectors are
given in terms of an unspecified arbitrary unit of length

2In this contribution all vectors are column vectors; however due
to space considerations they are written as the transpose of row vec-
tors.

r21 =
[

0 0 0
]T

, r32 =
[

70 184 0
]T

,

r43 =
[

160 120 0
]T

, r41 =
[

180 0 0
]T

,

r52 =
[

10 176 0
]T

, r85 =
[
−52 240 0

]T
r86 =

[
32 260 0

]T
, r63 =

[
172 260 0

]T
,

r87 =
[

140 420 0
]T

, r74 =
[

252 168 0
]T

.

where the subscripts indicate the kinematic pair associated
with the position vectors.

The screws associated with the kinematic pairs, with re-
spect to the origin, O, – again, due to space restrictions only
the non-zero elements, the z component of the angular ve-
locity, and the x and y components of the origin traslational
velocity are indicated – are given by

2$1
O =

[
1; 0 0

]T
, 3$2

O =
[

1; 184 −70
]T

,

4$3
O =

[
1; 120 −160

]T
, 4$1

O =
[

1; 0 −180
]T

,

5$2
O =

[
1; 176 −10

]T
, 8$5

O =
[

1; 240 52
]T

,

8$6
O =

[
1; 260 −32

]T
, 6$3

O =
[

1; 260 −172
]T

,

8$7
O =

[
1; 420 −140

]T
, 7$4

O =
[

1; 168 −252
]T

.

The semicolon indicates that the units of the first component
is different from the remaining components. It will be as-
sumed that the input link is link 2, and 2ω1 = 5 rad s−1 is
in counterclockwise sense. Solving the system of equations
given by Eq. (6), the solutions are given by

3ω2 =−
1350
119 , 4ω3 =

2070
119 , 4ω1 =−

1315
119 ,

5ω2 =−
31 361 850
2 420 341 , 8ω5 =

27 380 700
2 420 341 , 8ω6 =−

17 515 170
1 540 217 ,

6ω3 =
28 331 370
16 942 387 , 8ω7 =−

116 131 140
16 942 387 , 7ω4 =

246 507 750
16 942 387 .

All the results are given in rad s−1, if the sign is positive the
angular velocity is counterclockwise and if the sign is nega-
tive the angular velocity is clockwise.

Once the velocity analysis has been completed the velocity
states between two arbitrary links can be computed and the
corresponding instantaneous screw axes can be determined.
Due to space considerations, only a few instantaneous veloc-
ity centers will be computed; for example:

– First Case. Instantaneous center of velocity O61, deter-
mine the velocity state 1V 6

O as

1V 6
O =

1V 2
O +

2V 5
O +

5V 8
O +

8V 6
O

= 2ω1
2$1

O + 5ω2
5$2

O + 8ω5
8$5

O + 8ω6
8$6

O
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Table 1. Instantaneous centers of velocity associated with the single flyer linkage.

O21(−1) O31(−2) O41(−1) O51(−2) O61(−2) O71(−2) O81(−2)
O32(−1) O42(−2) O52(−1) O62(−2) O72(−2) O82(−2)

O43(−1) O53(−2) O63(−1) O73(−2) O83(−2)
O54(−2) O64(−2) O74(−1) O84(−2)

O65(−2) O75(−2) O85(−1)
O76(−2) O86(−1)

O87(−1)

= 5

 1;
0
0

− 31361850
2420341

 1;
176
−10


+

27380 700
2420 341

 1;
240
52

− 17515170
1540217

 1;
260
−32



=


−

135 822 985
16 942 387 ;

−
42 731 609 400

16 942 387

426 214 980
394 009



=−
135 822985
16 942387


1;

8 546 321 880
27 164 597

−
3 665 448 828

27 164 597

= 1ω6
1$O

6

Therefore

1$O
6
=
[

1; 8 546 321 880
27 164 597 −

3 665 448 828
27 164 597

]T
Comparing this result with that of Eq. (2), and resorting
to the triple vector identity of

AsB
×

(
rP/O ×

AsB
)
= rP/O (AsB

·
AsB )

−
AsB (AsB

· rP/O )= rP/O , (7)

since rP/O and AsB are perpendicular, the location of
the instantaneous velocity center O61 is given by

r61 =
[ 3 665 448 828

27 164 597
8 546 321 880

27 164 597 0
]T

. (8)

– Second Case. Instantaneous center of velocity O84, de-
termine the velocity state 8V 4

O as

8V 4
O=

8V 7
O +

7V 4
O = 8ω7

8$7
O + 7ω4

7$4
O

=−
116131140
16942387

[
1;

420
−140

]
+

246507750
16942387

[
1;

168
−252

]

=


18 625 230
2 420 341 ;

−
1 051 682 400

2 420 341

−
6 551 656 200

2 420 341

= 18625230
2420341


1;

−
11 685 360

206 947

−
72 796 180

206 947



Figure 4. Indeterminate spherical mechanism.

From these results, the location of the instantaneous ve-
locity center O84 is given by

r84 =
[ 72 796 180

206 947 −
11 685 360

206 947 0
]T

The locations of the instantaneous velocity centers O61
and O84 are also shown in Fig. 3.

3.2 Indeterminate spherical mechanism

Consider the multi-loop spherical mechanism proposed by
Zarkandi (2013), and denoted as a double butterfly spheri-
cal mechanism with a sliding pair, shown in Fig. 4. This is a
completely indeterminate mechanism and its mobility can be
easily computed using the Kutzbach-Grübler criterion so that
F = 1. The 28 instantaneous axes of velocity of the spherical
mechanism are shown in Table 2, where the number (−1) in-
dicates that the axis is primary – there are 10 primary centers
– while the number (−2) indicates that the axis is secondary.

It should be noted that, unlike the planar mechanism, here
the subscripts associated with the primary instantaneous axes
of velocity are chosen in the way that makes simpler to un-
derstand the required velocity analysis equations.

Figure 5 shows the directed graph of the spherical mecha-
nism. The Figure also shows three independent loops that can
be obtained from the mechanism, in these cases all the loops
are positive in counterclockwise. Furthermore, the directions
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Table 2. Instantaneous axes of velocity associated with the indeterminate spherical mechanism.

u21(−1) u31(−2) u41(−2) u51(−2) u61(−2) u71(−1) u81(−1)
u32(−1) u42(−1) u52(−2) u62(−2) u72(−2) u82(−2)

u43(−2) u53(−1) u63(−2) u73(−2) u83(−2)
u54(−2) u64(−1) u74(−2) u84(−2)

u65(−1) u75(−2) u85(−1)
u76(−1) u86(−2)

u81(−2)

Figure 5. Directed graph of the single flyer spherical mechanism.

of the kinematic pairs can be established so that the equa-
tions necessary to solve the velocity analysis of the mech-
anism shown in Fig. 4 are given by Eq. (9). It should be
noted that if the origin, O, of the coordinate system is lo-
cated in the common center of all the spheres, the velocity
of the origin and the translational velocity components are
always zero and do not need to be considered. Therefore, the
velocity equations that involve the corresponding screws are
reduced to the equations involving only the unit vectors as-
sociated with the corresponding angular velocities.

2ω1 u21+ 3ω2 u32+ 5ω3 u35+ 8ω5 u85+ 8ω1 u81 = 0
−3ω2 u32− 5ω3 u53− 6ω5 u65− 6ω4 u64− 4ω2 u42 = 0

7ω1 u71+ 7ω6 u76+ 6ω4 u64+ 4ω2 u42− 2ω1 u21 = 0 (9)

where the unit vectors associated with the primary instanta-
neous axes of velocity are given by

u21 =
[ 2

3
1
3

2
3

]T
, u32 =

[ √
6

6

√
6

6

√
6

3

]T
,

u53 =
[

3
5
√

5
2
√

5
4

5
√

5

]T
, u85 =

[
0 1

√
5

2
√

5

]T
,

u81 =
[

1
2 0

√
3

2

]T
, u42 =

[ √
3

3

√
3

3

√
3

3

]T
,

u64 =
[

1
2

√
3

2 0
]T

, u65 =
[

0 12
13

5
13

]T
,

u76 =
[ √

3
3

√
3

3 −

√
3

3

]T
, u71 =

[
−

59
100

39
50

1
5

]T
.

Assuming that 2ω1 = 10 rad s−1 is counterclockwise, the
results for the articular velocities involved in Eq. (9) are – the
results where obtained in Maple© in an exact form, however
the radical expressions are too unwieldy to be shown here –
instead only decimal approximations are shown.

3ω2 =−10.79933 rads−1, 5ω3 =−2.06279 rads−1,

8ω5 = 6.53041 rads−1, 8ω1 =−3.40871 rads−1,

6ω5 = 3.86346 rads−1, 6ω4 =−6.21473 rads−1,

7ω1 =−0.77268 rads−1, 7ω6 = 2.162413 rads−1,

4ω2 = 13.97708 rads−1.

From these results it is straightforward to compute the
velocity state between two arbitrary links of the spherical
mechanisms and eventually determine the corresponding in-
stantaneous axis of velocity. For example:

– First Case. Instantaneous axis of velocity u57, determine
the angular velocity 5V 7

O as

7ω5
=

6ω5
+

7ω6
= 6ω5 u65− 7ω6 u76

= 3.86346
[

0 12
13

5
13

]T
−2.162413

[ √
3

3

√
3

3 −

√
3

3

]T

=
[
−1.248469 2.31780 2.73441

]T
= 3.79577

[
−0.3289136 0.6106342 0.7203908

]T
From these results, the instantaneous axis of velocity
u75 is given by

u75 =
[
−0.3289136 0.6106342 0.7203908

]T
.

– Second Case. Instantaneous axis of velocity u48, deter-
mine the angular velocity 4V 8

O as

4ω8
=

4ω6
+

6ω5
+

5ω8
=−6ω4 u64− 5ω6 u65+ 5ω8 u85

= 6.21473
[

1
2

√
3

2 0
]T
− 3.86346

[
0 12

13
5

13

]T
+6.53041

[
0 1

√
5

2
√

5

]T

=
[

3.107365 4.736331 4.355030
]T

= 7.145266
[

0.434884 0.662862 0.609498
]T

From these results, the instantaneous axis of velocity
u84 is given by

u84 =
[

0.434884 0.662862 0.609498
]T

.
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The unit vectors representing u75 and u84 are also
shown in Fig. 4.

3.3 Spatial mechanism

Consider the RCCC spatial mechanism shown in Fig. 6,
where the kinematic pair between links 1 and 2 is a revo-
lute and the remaining pairs are cylindrical. The mechanism
is a trivial one and its mobility F = 1 can be computed using
the Kutzbach-Grübler criterion. The unit vectors associated
with the revolute axis and the cylindrical pairs axes are given
by

u21 =
[
−

√
30
6

√
30

15

√
30

30

]T
,

u32a = u32b =

[
4
√

29
29

3
√

29
29 −

2
√

29
29

]T
,

u43a = u43b =

[
12
√

161
161

√
161

161
4
√

161
161

]T
,

u41a = u41b =

[
3
√

22
22

√
22

11
3
√

22
22

]T
.

Similarly, the position vectors of points along the kinematic
pairs with respect to the origin, O, are given by

r21 =
[

0 0 0
]T

, r32 =
[

246 388 −176
]T

,

r43 =
[

580 224 175
]T

, r41 =
[

671 27 −28
]T

.

The screws associated with the kinematic pairs of the RCCC
mechanism, where each cylindrical pair has two screws as-
sociated with the pair, are given by

2$1
O=

[
−

√
30
6

√
30

15

√
30

30 ; 0 0 0
]T

,

3a$2
O=

[
4
√

29
3
√

29
−

2
√

29
; −

248
√

29
−

212
√

29
−

814
√

29

]T
,

3b$2
O=

[
0 0 0; 4

√
29

3
√

29
−

2
√

29

]T
,

4a$3
O=

[
12
√

161
1
√

161
4
√

161
;

103
√

7
√

23
−

220
√

161
−

2108
√

161

]T
,

4b$3
O=

[
0 0 0; 12

√
161

1
√

161
4
√

161

]T
,

4$1a
O =

[
3
√

22

√
22

11
3
√

22
;

137
√

22
−

2097
√

22
1261
√

22

]T
,

4$1b
O=

[
0 0 0; 3

√
22

√
22

11
3
√

22

]T
.

The velocity analysis equation is given by

3aω2
3a$2

O + 3bv2
3b$2

O + 4aω3
4a$3

O + 4bv3
4b$3

O

+ 4ω1a
4$1a

O + 4v1b
4$1b

O =−2ω1
2$1

O (10)

where 2ω1 = 10 rad s−1, the results of the velocity analysis
are:

3aω2 =−
√

870
201 rad s−1, 3bv2 =−

3 029 587
√

870
8978 u.l. s−1,

4aω3 =
17
√

4830
67 rad s−1, 4bv3 =

898 707
√

4830
8978 u.l. s−1,

4ω1a =−
91
√

660
201 rad s−1, 4v1b =

118 604
√

660
13 467 u.l. s−1.

Figure 6. The RCCC spatial mechanism.

From these results, it is possible to determine the velocity
states of the different links relative to the other links, and
from these velocity states the corresponding instantaneous
screw axes, ISA will be determined. One special and simplest
case is the ISA of the relative movement of link 2 to link 1.
Since its velocity state is given by

1V 2
O = 2ω1

2$1
O

Therefore, the instantaneous screw axis ISA of link 2 with
respect to link 1 is given by

2$1
O =

1

2ω1

2V 1
O =

[
−

√
30
6

√
30

15

√
30

30 ; 0 0 0
]T

. (11)

The next task is to find the ISA of the relative movement of
link 3 to link 2. It should be noted that the kinematic pair be-
tween links 2 and 3 is a cylindrical pair, thus at the outset it
seems that there is not a unique ISA; however, after carrying
out the velocity analysis the joint velocities are uniquely de-
termined and the velocity state of link 3 with respect to link
2 is given by

2V 3
O= 3aω2

3a$2
O + 3bv2

3b$2
O

=
−
√

29
√

30
201

[
4
√

29
3
√

29
−2
√

29
;

−248
√

29
−212
√

29
−814
√

29

]T

−3029587
√

29
√

30
8978

[
0 0 0; 4

√
29

3
√

29
−2
√

29

]T

=

√
870

201

[
−4
√

29
−3
√

29
2
√

29
;

18 160 906
√

67
27 237 875
√

134
−9 143 299
√

67

]T

Therefore the instantaneous screw axes of the relative move-
ment of link 3 with respect to link 2 is given by

3$2
O =

[
−4
√

29
−3
√

29
2
√

29
;

18 160 906
√

67
27 237 875
√

134
−9 143 299
√

67

]T

. (12)
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The results of Eqs. (11) and (12) verify the data employed in
the setting up of this problem.

Now, the the ISA of the relative movement of link 3 to
link 1 will be determined. It follows that

1V 3
O=

1V 2
O +

2V 3
O = 2ω1

2$1
O + 3aω2

3a$2
O + 3bv2

3b$2
O

= 10
[
−

√
30
6

√
30

15

√
30

30 ; 0 0 0
]T

−

√
29
√

30
201

[
4
√

29
3
√

29
−2
√

29
;

−248
√

29
−212
√

29
−814
√

29

]T

−
3029587

√
29
√

30
8978

[
0 0 0; 4

√
29

3
√

29
−2
√

29

]T

=

√
4105290

201


−3
√

113
√

1211
131

√
136 843

69
√

136 843
;

−18 160 906
67
√

136 843
−

3 891 125
√

136 843
2 619 566

9 143 299
67
√

136 843


T

.

Therefore, the angular velocity of link 3 with respect to link 1
is given

3ω1 =

√
4105290

201
rads−1,

and the ISA associated with the movement of link 3 with
respect to link 1 is given

3$1
O =


−3
√

113
√

1211
131

√
136 843

69
√

136 843
;

−18 160 906
67
√

136 843
−

3 891 125
√

136 843
2 619 566

9 143 299
67
√

136 843


T

The line associated to the screw 3$1
O is also shown in Fig. 6.

Due to space considerations, the computation of 4$2
O is omit-

ted.

4 Conclusions

This paper has shown that once the velocity analysis of an
arbitrary mechanism with one degree of freedom has been
carried out it is straightforward to determine the instanta-
neous screw axis associated with the relative movement of
two arbitrary links of the mechanism, regardless the type of
mechanism, whether they are single- or multi-loop, or they
are determined or undetermined. However, it should be noted
that in kinematics, the usual approach is to find first the in-
stantaneous screw axis associated with two arbitrary links
of the mechanism and from this knowledge to perform the
mechanism’s velocity analysis. An upcoming paper will ana-
lyze thoroughly this approach for arbitrary mechanisms. All
the computations were carried out using Maple© and verified
with Adams©.
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