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Abstract. To overcome the limitations of conventional bistable mechanisms, this paper proposes a novel type
of bistable mechanism with linear negative stiffness and large in-plane lateral stiffness. By connecting the novel
negative-stiffness mechanism in parallel with a positive-stiffness mechanism, a novel quasi-zero stiffness com-
pliant mechanism is developed, which has good axial guidance capability and in-plane lateral anti-interference
capability. Analytical models based on a comprehensive elliptic integral solution of bistable mechanism are es-
tablished and then the stiffness curves of both conventional and novel bistable mechanisms are analyzed. The
quasi-zero stiffness characteristic and High-Static-Low-Dynamic-Stiffness characteristic of the novel compliant
mechanism are investigated and its application in constant-force mechanism and vibration isolator is discussed.
A prototype with adjustable load-carrying capacity is designed and fabricated for experimental study. In the two
experiments, the effectiveness of the proposed quasi-zero stiffness mechanism used in the field of constant-force
output and vibration isolation is tested.

1 Introduction

Compliant mechanisms, which gain their output motion from
the deformation of flexible members, possess several attrac-
tive advantages over classical movable joints, including low
cost, reduced assemble time, increased precision, no wear,
no friction and no backlash (Howell, 2001). Hence, compli-
ant mechanisms have been widely applied in many fields. A
compliant mechanism that has a very low dynamic stiffness
or even zero stiffness is called a quasi-zero stiffness mech-
anism, which is typically obtained by combining a positive-
stiffness structure in parallel with a negative-stiffness mech-
anism. Although it has extremely low dynamic stiffness, the
static stiffness of the quasi-zero stiffness mechanism is still
high enough to keep a high loading capacity, that is, it has
a High-Static-Low-Dynamic-Stiffness characteristic. Due to
its quasi-zero stiffness characteristic, the quasi-zero stiffness
mechanism can be used in many fields, especially in passive
vibration isolation mechanism (Ibrahim, 2008) and constant-
force mechanism (Xu, 2017a).

Passive vibration isolation is of vital importance to many
precise instruments, but low frequency vibration isolation has
always been a tough topic, since it will result in low static
stiffness, large static displacements and low loading capacity
of precise instruments (Kovacic et al., 2008a). To deal with
this challenge, many quasi-zero stiffness vibration isolators
have been proposed by researchers. Platus (1999) designed
and analyzed a 6-DOF passive vibration isolator which used
negative-stiffness mechanisms to cancel the positive stiffness
of a spring suspension. Carrella et al. (2007) and Kovacic
et al. (2008a) proposed a kind of nonlinear quasi-zero stiff-
ness vibration isolator consisting of a vertical linear spring
produced positive stiffness and two nonlinear pre-stressed
oblique springs acted as a negative stiffness structure. Liu
et al. (2013) and Huang et al. (2014) performed research on
the passive nonlinear isolator which utilized Euler buckled
beam as a negative stiffness corrector in parallel with a linear
spring. Many researchers studied a combination of magnets
as a negative-stiffness mechanism to obtain single-direction
High-Static-Low-Dynamic stiffness vibration isolator (Car-
rella et al., 2008; Zhou and Liu, 2010; Dong et al., 2017;
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Figure 1. Illustration of a linear quasi-zero stiffness mechanism
consisting of a linear positive-stiffness compliant mechanism in par-
allel with a linear negative-stiffness compliant mechanism.

Zheng et al., 2018), or even low frequency multi-direction
vibration isolator (Dong et al., 2018).

However, all the quasi-zero stiffness vibration isolators
mentioned above have a nonlinear stiffness curve in their
working ranges due to the nonlinear-negative-stiffness mech-
anisms they used. Nonlinear vibration isolation mechanisms
have a number of disadvantages, including difficulty in ob-
taining mathematical expressions of stiffness, jump phe-
nomenon degrading isolator’s performance (Kovacic et al.,
2008b) and easy interference from the excitation amplitude
and damping (Liu et al., 2013). To overcome those issues,
in this paper, a bistable compliant mechanism, which is
designed based on fixed-guided beams and has constant-
negative-stiffness characteristic, is applied as a negative-
stiffness mechanism of a quasi-zero stiffness mechanism.
Obviously, connecting a linear positive-stiffness (LPS) com-
pliant mechanism with a linear negative-stiffness compliant
mechanism in parallel can realize the linear quasi-zero stiff-
ness of mechanisms (Xu, 2017a), as illustrated in Fig. 1. Seg-
ment OB and OD is the initial positive stiffness range, seg-
ment DE is the linear negative stiffness range, and segment
BC is the linear quasi-zero stiffness range.

Moreover, the constant-force mechanism, achieved by
combining a bistable compliant mechanism with a positive-
stiffness compliant mechanism, is also an important appli-
cation case of the quasi-zero stiffness mechanism. When the
displacement input of the constant-force mechanism changes
within its working range, the force output remains constant.
The characteristic of the constant-force mechanism generates
many advantages, including no requirement on driving force
of the mechanism and the constant force limited to a cer-
tain threshold (Xu, 2017a). Therefore, the quasi-zero stiff-
ness constant-force mechanism has drawn many attentions
from many researchers. Dunning et al. (2013) proposed a six

degrees of freedom compliant precision stage with near con-
stant force, which implies near zero stiffness in each direc-
tion. Hao et al. (2017) designed a constant-force gripper and
the constant force output of which can be adjusted to near
zero by preloading the positive-stiffness mechanism. The
various kinds of constant force mechanisms were developed
for many different uses, such as large-stroke constant-force
micro-positioning stage (Xu, 2017a), constant-force micro-
gripper mechanism for biological micromanipulation (Xu,
2017b) and flexure-based constant-force XY precision posi-
tioning stage (Wang and Xu, 2017).

Obviously, in a quasi-zero stiffness mechanism, the
bistable mechanism plays a very important role. The bistable
mechanism based on fixed-guided beam shows great per-
formance due to its constant negative stiffness. A variety
of bistable mechanisms based on fixed-guided beam have
been proposed and investigated (Kim and Ebenstein, 2012;
Xu, 2017a; Kashdan et al., 2012; Ren et al., 2018). Dong
et al. (2017) proposed a highly efficient bridge-type mech-
anism based on negative stiffness, which features compact-
ness, symmetric structure, and high efficiency. Moreover,
several mathematical modeling methods used to solve the
large deformation problems of those mechanisms have been
explored (Kim and Ebenstein, 2012; Holst et al., 2011; Zhang
and Chen, 2013; Ma and Chen, 2016). In this paper, a
comprehensive elliptic integral solution to large deformation
problems (Zhang and Chen, 2013) of fixed-guided beams is
employed to establish analytical models of bistable mecha-
nisms.

Nevertheless, the conventional bistable compliant mech-
anism based on fixed-guided beam has a poor performance
in its in-plane lateral stiffness, which will be further inves-
tigated in Sect. 2. The one-dimensional quasi-zero stiffness
mechanism, whether applied as a low frequency vibration
isolator or a constant-force mechanism, requires that the dis-
placement of the mechanism can be strictly maintained in
the axial working direction and there is no offset in other di-
rections. Otherwise, the one-dimensional quasi-zero stiffness
mechanism will not have good axial guidance capability in
its axial working direction, which will greatly affect its per-
formance. Hence, it’s a crucial challenge to improve the con-
ventional bistable compliant mechanism’s performance in its
in-plane lateral direction.

In this paper, a novel bistable compliant mechanism with a
new configuration of fixed-guided beams is developed. Such
mechanism has large in-plane lateral stiffness, good axial
guidance capability and in-plane lateral anti-interference ca-
pability without sacrificing its axial negative stiffness, and
even has a larger linear negative stiffness in its axial working
direction. Moreover, the novel bistable compliant mechanism
with constant negative stiffness is connected parallelly with
a linear positive-stiffness compliant mechanism to obtain a
linear quasi-zero stiffness mechanism, which is applied as a
low frequency vibration isolator and a constant-force mech-
anism.
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Figure 2. Conventional bistable compliant mechanism with four
inclined fixed-guided beams.

The rest of the paper is organized as follows. Section 2
analyzes in-plane axial working stiffness and in-plane lateral
non-working stiffness of the conventional bistable compliant
mechanism by analytical modeling and addresses the limita-
tions of it. In Sect. 3, a novel bistable compliant mechanism
with remarkable performance is developed along with its an-
alytical modeling and performance evaluation. In Sect. 4,
a novel linear quasi-zero stiffness mechanism, obtained by
combining the novel bistable compliant mechanism in par-
allel with a positive stiffness mechanism, is designed. Sec-
tion 5 investigates the application of novel linear quasi-zero
stiffness mechanism in vibration isolators and constant-force
mechanisms, and then describes the design of prototype and
the experimental testing of the linear quasi-zero stiffness
mechanism. Section 6 concludes this paper.

2 Modeling and analysis of conventional bistable
compliant mechanisms

A conventional bistable compliant mechanism consists of
four inclined fixed-guided beams, which is shown in Fig. 2.
Four inclined fixed-guided beams are arranged symmetri-
cally in two sides of the moving platform and have an an-
gle β with respect to y-axis. When the moving platform is
driven axially by the vertical force F , the guided end of each
fixed-guided beam, together with the moving platform, will
move downward in the vertical direction. The external force
exerted by each beam on the moving platform is symmetri-
cal and equal due to the symmetry of the mechanism, so the
movement of the moving platform is strictly axial downward,
which is illustrated in Fig. 3a. During the movement of plat-
form, the angles of fixed end and guided end of each beam
remain constant. The deformation of each fixed–guided beam
is illustrated in Fig. 3b, where L is the beam’s length, 9 is
end force angle with respect to x-axis, ηP is the end force
and M0 is the end moment. Next, an analytical model of the
conventional bistable compliant mechanism will be derived.

2.1 Analytical modeling of the conventional bistable
mechanism

A large deformation of each fixed-guided beam of conven-
tional bistable compliant mechanism is generated, so the
small deformation theory cannot be employed in this case.
Many methods can be used to solve the large deformation
problems of compliant mechanisms, such as the chain algo-
rithm (Coulter and Miller, 1988; Chase et al., 2011), pseudo-
rigid-body model (Howell, 2001; Jensen and Howell, 2003),
finite element model (Masters and Howell, 2003), chained
beam-constraint-model (Ma and Chen, 2016) and the ellip-
tic integral solution (Holst et al., 2011; Kim et al., 2012).
Ma and Chen (2016) have compared many different models
for the bistable compliant mechanism and applied chained
beam-constraint-model to solve large deflection problems.
Zhang and Chen (2013) have studied comprehensive ellip-
tic integral solution to model the fixed-guided beam and ana-
lyzed the bistable mechanism. The chained beam-constraint-
model (Ma and Chen, 2016) is more accurate in capturing the
first peak of the bistable curve and performs well when axial
deflections cannot be neglected. In contrast, comprehensive
elliptic integral solution (Zhang and Chen, 2013) is more ef-
ficient in solving the linear negative stiffness curve because
of their closed-form solutions. In this paper, the linear axial
negative stiffness and in-plane lateral stiffness of compliant
bistable mechanism will be studied further, thus the compre-
hensive elliptic integral solution (Zhang and Chen, 2013) is
employed.

For the deformed fixed-guided beam shown in Fig. 3b, the
coordinates of the guided end are (a, b), and the end force ηP
can be divided into a vertical component P and a horizontal
component nP .

Since the angles of the guided end and the fixed end of
the beam remain zero constantly, there is at least one in-
flection point on the deflected beam. We use m to indicate
the number of inflection points on the fixed-guide beam. In
most cases, the inflection points of the fixed-guide beam of
bistable mechanisms after deformation will not exceed two,
that is, the range of the number of inflection points is 1 or 2.
In addition, the fixed-guide beams with different number of
inflection points correspond to different buckling modes: the
first buckling mode and the second buckling mode represent
the fixed-guide beams of one inflection point and two inflec-
tion point, respectively. Most importantly, at each inflection
point, the curvature of the fixed-guide beam will change the
sign, which also implies the change of the sign of beam in-
ternal moment.

Then the comprehensive elliptic integral solution of the
fixed-guided beam can be expressed as follows,

α =
Sr
√
η
f (1)

a

L
=

Sr

αη
5
2

(
−nηf + 2nηe+

√
2ηu

)
(2)
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Figure 3. (a) Deformation and internal force of the bistable mechanism driven axially by the vertical force. (b) The deformation and external
force of each fixed–guided beam during the movement of the bistable mechanism.

b

L
=

Sr

αη
5
2

(
ηf − 2ηe+ n

√
2ηu

)
(3)

where α is the nondimensional value of the beam length, Sr is
the sign of the moment at the fixed end of the beam, a/L and
b/L are the nondimensional coordinates of the beam guided
end along the x- and y-axes, respectively and f,e,u can be
given as:

f =

{
−2F (γ1, t)+ 2SrF (t) m= 1
4SrF (t) m= 2 (4)

e =

{
−2E (γ1, t)+ 2SrE(t) m= 1
4SrE(t) m= 2 (5)

u=

{
2
√
λ+ n m= 1

0 m= 2
(6)

where m is the number of inflection points and γ1 is the am-
plitude of the elliptic integral corresponding to the fixed end
of the beam, which can be expressed as

γ1 = arcsin
(√

η− n

λ+ η

)
(7)

In addition, λ can be expressed as

λ=−n+ κ (8)

where κ is the load ratio defined as

κ =
M2

0
2(EI )2 (9)

where M0 is the moment of the beam guided end, E and I
denote the Young’s modulus of material and the second-order
moment of inertia of the fixed-guided beam, respectively. αis
the nondimensional value of the beam length L and be ex-
pressed as,

α =

√
PL2

EI
(10)

Then, Sr is defined as the sign of Mr , which is the moment
of the fixed end of the beam, as shown in Fig. 3b. Also, S0 is

defined as the sign of M0. Therefore, it can be formulated as
below,

Sr = (−1)mS0 (11)

F (γ, t) andE(γ, t) are the incomplete elliptic integrals of the
first and second kind respectively, which are defined as

F (γ, t)=

γ∫
0

1√(
1− t2sin2(θ )

)dθ (12)

E(γ, t)=

γ∫
0

√
1− t2sin2(θ )dθ (13)

where t and γ is modulus and the amplitude of the elliptic in-
tegral respectively and specifically, γ1 is the amplitude of the
elliptic integral corresponding to the fixed end of the beam.
When γ = π

2 , Eqs. (12) and (13) become the complete ellip-
tic integrals of the first and second kinds which are F (t) and
E(t) respectively.

As for the fixed-guided beam, the displacement that the
beam end moves in the guided direction is δ, which is shown
in Fig. 3b. β is the inclined angle of the beam guided end with
respect to y-axis. Then, the coordinates of the beam guided
end (a, b), can be obtained as follows

a = L− δ sin(β) (14)
b =−δ cos(β) (15)

When the coordinates of the beam guided end (a, b) are
known, we can numerically solve the force and moment of
the beam end (P , n, M0). Given the initial value of n and κ ,
a numerical iteration process of Eqs. (2) and (3) can be em-
ployed in order to obtain the value of n and κ . Substitutingn
and κ into Eqs. (1), (9) and (10), the value of P and M0 can
be calculated finally. The above calculation process can be
easily solved using MATLAB.

Based on above analytical model, the driving force of a
single fixed-guided beam shown in Fig. 3a can be expressed
as

Fv = nP sin(β)−P cos(β) (16)
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Since the conventional bistable mechanism consists of four
fixed-guided beams shown in Fig. 3b, the axial external force
of the mechanism is given as

F = 4Fv = 4nP sin(β)− 4P cos(β) (17)

With the above analytical model of the fixed-guided beam,
the performance of the bistable mechanism axial movement
is evaluated in Sect. 2.3.

2.2 Analytical modeling of lateral stiffness

In addition to the previous solutions to solve the in-plane ax-
ial movement of the conventional bistable mechanism, the
model of in-plane lateral stiffness must be solved in order
to evaluate whether the conventional bistable mechanism has
a well-performed axial guidance capability and lateral anti-
interference capability. The in-plane lateral direction is per-
pendicular to the axial direction of the bistable mechanism.

During the axial movement of the bistable mechanism, the
deflection of each fixed-guided beam is gradually increased
at the beginning. When the fixed and guided ends of each
fixed-guided beam are at the same horizontal line, the deflec-
tion of each beam reaches a maximum, and then will gradu-
ally reduce. At that point, each beam has the largest external
force which is strictly horizontal without component force
in the axial direction, as shown in Fig. 3a. At this time, the
bistable mechanism is in an unstable equilibrium state, and
each beam has the largest deflection in the range of motion,
so the mechanism is easy to perform lateral motion and is
susceptible to lateral interference.

In Sect. 2.3, we will investigate that the lateral stiffness
of the bistable mechanism is not large enough to achieve a
good axial guidance capability and lateral anti-interference
capability, especially at the unstable equilibrium point. Be-
fore that, the analytical modeling of the in-plane lateral stiff-
ness of the bistable mechanism at the unstable equilibrium
point needs to be derived first as follows.

The in-plane lateral force and displacement of the bistable
mechanism at the unstable equilibrium point is shown in
Fig. 4a. The bistable mechanism is subjected to lateral force
F1, and the resulting lateral displacement of the moving plat-
form is1. At the same time, the external force and deforma-
tion of each fixed-guided beam of the bistable mechanism
with in-plane lateral deviation is shown in Fig. 4b.

At the unstable equilibrium point, the axial displacement
of the bistable mechanism is given as

δ0 = Lsin(β) (18)

Substituting Eq. (18) into Eqs. (14) and (15) gives

a = L− δ0 sin(β)= L−Lsin2(β)= Lcos2(β) (19)
b =−δ0 cos(β)=−Lsin(β)cos(β) (20)

At this case, the coordinates of beam guided end (a, b)
is known, then we can use the elliptic integral derived in

Sect. 2.1 to solve the resulting force and moment of the beam
guided end (P , n, M0). Therefore, in Fig. 4b, the external
force of the beam from the guided end to the fixed end can
be expressed as below.

Fn =

√(
1+ n2

)
P (21)

The lateral displacement of each fixed-guided beam is 1, as
shown in Fig. 4b. Then, the coordinates of the beam guided
end change to (al, bl), which is given as

al = Lcos2(β)−1cos(β) (22)
bl =− (Lsin(β)cos(β)−1sin(β)) (23)

The force and moment of the beam end that is calculated by
the elliptic integral in Sect. 2.1 also change to (Pl, nl, M0l).
Thus, the resultant force of the beam from the guided end to
the fixed end after the lateral displacement can be written as

Fnl =

√(
1+ n2

)
Pl (24)

The amount of change in the force before and after lateral
displacement is

F1n = Fnl−Fn (25)

As shown in Fig. 4b, after the lateral displacement of the
beam, the direction of the lateral resultant force of each fixed-
guided beam does not change, but the value changes from Fn
to Fnl. Since the fixed-guided beam is arranged symmetri-
cally in two sides of the moving platform, the followings can
be formulated.

F1l = F1−F11 (26)
F2l = F2−F12 (27)
F3l = F3+F13 (28)
F4l = F4+F14 (29)

When the in-plane lateral displacement of the bistable mech-
anism does not occur, the guided end force of each fixed-
guided beam must be equal.

F1 = F2 = F3 = F4 (30)

Then the external driving force of the bistable mechanism in
the lateral direction, as shown in Fig. 4b, can be expressed as

F1 = F3l +F4l −F1l −F2l (31)

Substituting Eqs. (26)–(30) into Eq. (31) yields

F1 = F11+F12+F13+F14 (32)

where,

F11 = F12 (33)
F13 = F14 (34)

Based on the above derived analytical model, the perfor-
mance of in-plane lateral stiffness of bistable mechanism is
evaluated in Sect. 2.3.
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Figure 4. (a) The relationship of in-plane lateral force and deformation of the conventional bistable mechanism at the unstable equilibrium
point. (b) The external force and deformation of each fixed-guided beam of the bistable mechanism with in-plane lateral deviation at the
unstable equilibrium point.

Table 1. Parameters of the fixed-guided beam.

Parameter Value Unit

β 8 ◦

L 50 mm
h 0.4 mm
d 8 mm
E 110 Gpa

2.3 Performance evaluation

In order to evaluate the performance of the bistable mecha-
nism quantitatively, the parameters of the fixed-guided beam
are first determined identically, including the inclined an-
gle β, length L, in-plane width h, out-of-plane depth d and
Young’s modulus E, as listed in Table 1.

Given the value of the axial displacement of the bistable
mechanism moving platform δ, the driving force of the mov-
ing platform F can be calculated numerically by MATLAB
using the analytical model in Sect. 2.1. Then, with the pa-
rameters shown in Table 1, the axial force F versus displace-
ment δ of the conventional bistable compliant mechanism
can be obtained, which is shown in Fig. 5. Obviously, the
axial force–displacement curve can be divided into three seg-
ments: the segment AB is the initial buckling range, the seg-
ment BD is the constant negative stiffness range, and the seg-
ment DE is positive stiffness range. The main working range
of the bistable negative stiffness mechanism is the segment
BD which has an excellent linear negative stiffness charac-
teristic. In Fig. 5, the value of the linear negative stiffness
can be calculated, which is K− =−6.016 N mm−1.

It can be concluded from Figs. 1 and 5 that if the linear
negative stiffness of the mechanism is large enough and con-
nected in parallel with positive stiffness of the same mag-
nitude, the maximum load carrying capacity or the constant
force output of the quasi-zero stiffness mechanism will be
great. Therefore, the new bistable mechanism must be de-
signed to enhance the value of the linear negative stiffness,
which will be discussed in Sect. 3.

Next, we analyze the in-plane lateral stiffness of the con-
ventional bistable mechanism based on the analytical model

Figure 5. The axial force–displacement curve of the conventional
bistable negative-stiffness compliant mechanism.

derived in Sect. 2.2. In the case that the fixed and guided
ends of each beam are at the same horizontal line, which
implies the unstable equilibrium point, as shown in Fig. 4a,
the in-plane lateral displacement of the moving platform 1

is differentiated within the allowable range, and then the
value of lateral diving force F1 corresponding to 1 can
be obtained. With the parameters shown in Table 1, the in-
plane lateral force–displacement curve of the bistable mech-
anism is shown in Fig. 6. It can be observed from Fig. 6
that in the first segment OA, the lateral positive stiffness is
very small, then the linear lateral positive stiffness increases
slowly. Therefore, the conventional bistable mechanism has
a poor performance in its axial guidance capability and lat-
eral anti-interference capability. Figure 6 also shows that af-
ter the point A, the lateral positive stiffness of the mecha-
nism increases faster and faster, and finally tends to infinity.
Such phenomenon can be explained as follows. When the
lateral displacement of the mechanism increases, on one side
of the moving platform, fixed-guided beams becomes more
and more buckled, but on the other side, fixed-guided beams
gradually change from buckled to stretched and finally even
stretched to the limiting position. The external force of the
fixed-guided stretched beam is far greater than that of the
fixed-guided buckled beam.

Then, the parametric analysis of the lateral positive stiff-
ness of bistable mechanism is conducted using the analyti-
cal model in Sect. 2.2. There are two main parameters af-
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Figure 6. In-plane lateral force–displacement curve of the conven-
tional bistable mechanism at the unstable equilibrium point.

Table 2. Values of the axial negative stiffness and the in-plane
lateral positive stiffness at the unstable equilibrium point of the
bistable mechanism when changing the beam length L.

Beam length Axial negative Lateral positive
(mm) stiffness (N m−1) stiffness (N m−1)

50 6015.7 2997.3
52 5347.4 2664.6
54 4774.0 2379.4
56 4279.3 2133.4
58 3850.3 1920.2
60 3476.6 1734.6

fecting the lateral positive stiffness: the beam length L and
the inclined angle β of the fixed guide beam with respect to
x-axis. When one parameter changes and the other parame-
ters remains constant, the variation tendencies of the segment
OA of the in-plane lateral force–displacement curve are illus-
trated in Fig. 7. It is observed from Fig. 7 that when the beam
length L decreases or the inclined angle β increases, the lin-
ear lateral positive stiffness of the bistable mechanism at the
unstable equilibrium point increases. However, it is obvious
that the influence of the inclined angle β on the lateral posi-
tive stiffness is actually small.

In order to analyze the characteristics of the lateral posi-
tive stiffness of the bistable mechanism more accurately, we
change the beam length L of the bistable mechanism and
then calculate the values of the axial constant negative stiff-
ness and the in-plane lateral constant positive stiffness of the
mechanism. The results are listed in Table 2. By analyzing
the data in Table 2, we can easily find that the value of the
constant lateral positive stiffness of the bistable mechanism
at the unstable equilibrium point is ever smaller than the lin-
ear negative stiffness. Most importantly, the value of constant
negative stiffness is near 2 times larger than that of the con-
stant positive stiffness.

The conclusion drawn from the above parts means that the
lateral positive stiffness of the conventional bistable mecha-
nism is very small so that the mechanism will perform a bad
axial guidance capability and lateral anti-interference capa-
bility.

Therefore, in order to overcome these shortcomings, a
novel bistable mechanism with large in-plane lateral positive
stiffness must be designed, which is discussed in Sect. 3.

3 Design of novel bistable compliant mechanism

3.1 Configuration of novel bistable compliant
mechanism

The conventional bistable compliant mechanism consists of
four fixed-guided beams, as is shown in Fig. 2.

In order to increase the lateral stiffness of the conventional
bistable mechanism, the configuration of the fixed-guided
beams of the conventional bistable mechanism is expanded
from being distributed on both sides of the moving platform
to four sides, and then a novel bistable mechanism, which is
called Type A bistable mechanism, is proposed, as shown in
Fig. 8b.

The Type A bistable mechanism has a very good per-
formance in axial guidance capability and lateral anti-
interference capability. The design ideas for the new type of
mechanism are described as follows. The buckling of each
fixed-guided beam can only occur in one plane, that is to
say, each beam has two degrees of freedom during buck-
ling. However, in the out-of-plane direction, which is per-
pendicular to the plane of two degrees of freedom, the fixed-
guided beam has very large stiffness and can hardly deform.
Such characteristic provides a limit on the degree of freedom
in the out-of-plane direction. Therefore, if each fixed-guide
beam is symmetrically arranged according to the configu-
ration shown in Fig. 2, the bistable mechanism must have
two degrees of freedom in one plane. Nevertheless, if each
fixed-guided beam is connected in parallel on four sides of
the moving platform, as shown in Fig. 8a, the two transla-
tional degrees of freedom in the horizontal plane of the mov-
ing platform are suppressed. Thus, the Type A bistable mech-
anism only has one degree of freedom in the axial direction.
As a consequence, the stiffness in the horizontal plane (the
horizontal stiffness) of the Type A bistable mechanism be-
comes very large so that the mechanism can resist very large
horizontal interferences and has a good axial guidance capa-
bility.

Then, in order to improve the load-carrying capacity of
the quasi-zero stiffness mechanism which consists of the
negative-stiffness bistable mechanism in parallel with the
positive-stiffness mechanism, the constant negative stiffness
of the bistable mechanism is required to be as large as possi-
ble. The positive stiffness should be of the same magnitude
as the constant negative stiffness. Therefore, it is necessary
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Figure 7. Variation tendencies of segment OA of the in-plane lateral force–displacement curve of the conventional bistable mechanism at
the unstable equilibrium point. (a) The beam length L is varied; (b) the inclined angle β is varied.

Figure 8. (a) Three-dimensional model of the Type A bistable mechanism. (b) The optimizing design process from the type A bistable
mechanism to the type B bistable mechanism. (c) Three-dimensional model of the newly designed Type B bistable mechanism. The red,
yellow and blue parts represent the moving platform, the fixed-guided beams and the fixed base, respectively.

to carry out further innovative design based on the Type A
bistable mechanism.

By further innovative design of the Type A bistable mech-
anism, we can obtain the Type B bistable mechanism. The
optimizing design process from the type A bistable mecha-
nism to the type B bistable mechanism is shown in Fig. 8b

and detailed as follows. The moving platform of the Type A
bistable mechanism changes into a fixed base, and the four
surrounding fixed bases turn into a moving platform, i.e., the
moving platform and the four surrounding fixed bases of the
Type A bistable mechanism are reversed. Then, four pairs of
fixed-guided beams are added parallelly around the bistable
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Figure 9. The axial force–displacement curve of the Type B
bistable mechanism and of conventional bistable mechanism.

mechanism and a new fixed base to which the newly-added
fixed-guided beams are attached is arranged on the outermost
of the novel bistable mechanism. Finally, the newly designed
Type B bistable mechanism is obtained, as shown in Fig. 8c.

In the design process above, with the number of fixed-
guiding beams increased, the Type B bistable mechanism
not only has great horizontal stiffness to ensure good axial
guidance capability and horizontal anti-interference capabil-
ity, but also improve the axial negative stiffness remarkably.
More specifically, since the Type B bistable mechanism con-
sists of sixteen fixed-guided beams, as shown in Fig. 8c, the
axial external force of the mechanism is given as

FB = 16Fv = 16nP sin(β)− 16P cos(β) (35)

With the parameters of fixed-guided beams shown in Table 1,
the axial force FB versus displacement δB of the Type B
bistable compliant mechanism can be obtained, which is
shown in Fig. 9. Obviously, the new design enlarges the ab-
solute value of constant negative stiffness by twice in com-
parison with the conventional bistable mechanism. Hence,
the load-carrying capacity of the quasi-zero mechanism com-
bined of the Type B bistable compliant mechanism in paral-
lel with positive-stiffness mechanism can also be enhanced
greatly.

3.2 Model and analysis of maximum stress

When the axial negative stiffness of the Type B bistable
mechanism is increased, each fixed-guided beam must en-
dure larger force. If the internal stress in the beam is larger
than the limit stress of the material, it will cause the beam
to break. Therefore, it is necessary to calculate the maximum
internal tensile stress of the fixed-guided beams during the
movement, and then evaluate whether the fixed-guided beam
will break according to the maximum allowable stress of the
material.

The maximum internal tensile stress of the fixed-guided
beam during the motion occurs when the fixed-guided beam
is maximally deformed. The maximum normal stress the

fixed-guided beam can be expressed as

σmax =
Nmax

A
+
Mmax

h
2

I
(36)

where Nmax is the maximum internal normal force along the
beam, andMmax is the largest internal moment. At the unsta-
ble equilibrium point during the mechanism vertical move-
ment, the distance between the guided end of each beam
and the fixed end is minimal, so the deformation of each
fixed-guided beam is largest. The internal normal force of
the fixed-guided beam is constantly compressive, so the max-
imum internal normal force along the beam can be calculated
as below.

Nmax =−
√

1+ n2P (37)

According to the Euler beam theory, the largest internal mo-
ment occurs at the point that has the largest curvature of the
beam. The largest internal moment along the beam can be
derived as below.

Mmax =
√

2PEI (λ+ η) (38)

Substituting Eqs. (37) and (38) into Eq. (36) results in the
expression of maximum stress.

σmax =−
ηP

A
+

√
2PEI (λ+ η)h2

I
(39)

The above calculation of the maximum stress can be used to
verify whether the parameters of the linear negative-stiffness
mechanism satisfy the material strength criterion.

4 Design of quasi-zero stiffness compliant
mechanism

In order to achieve a quasi-zero stiffness compliant mech-
anism, the positive-stiffness and negative-stiffness mecha-
nisms need to be connected in parallel, and the magnitude
of the stiffness absolute value of the two mechanisms should
be the same. Therefore, with the novel Type B bistable mech-
anism proposed in Sect. 3.1, a positive-stiffness mechanism
should be discussed in Sect. 4.1.

4.1 Linear positive-stiffness mechanism analysis

In previous designs, leaf flexure is always used as positive
stiffness mechanism (Wang and Xu, 2017). However, the
shortages of the leaf flexure are obvious, like the size of the
slender leaf and the stress stiffening phenomenon (Wang and
Xu, 2016). In this paper, in order to increase the stroke of
positive stiffness mechanism in the axial direction, we use
a V-shaped positive-stiffness mechanism which is similar to
the compound parallelogram flexure but with a larger vertical
stroke. The structure of the V-shaped positive-stiffness mech-
anism is shown in Fig. 10. The base of the V-shaped mech-
anism is fixed at the bottom and the tilted flexure beams are
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Figure 10. The structure of the V-shaped positive-stiffness mech-
anism. The red, yellow and blue parts represent the moving plat-
forms, the tilted flexure beams and the fixed base, respectively.

arranged symmetrically on two sides of the mechanism in a
V-shaped configuration.

When the uppermost moving platform moves axially
downward, the tilted flexure beams will be compressed, but
at the same time, the connecting ends of two tiled beams on
both sides will produce corresponding outward movement.
Therefore, each tilted flexure beam can be analyzed by small
deformation theory and the stiffness of the V-shaped mech-
anism can be calculated in the same way to the stiffness of
compound parallelogram flexure (CPF) which is discussed
by Xu (2012). The expression of the constant positive stiff-
ness of the V-shaped mechanism is formulated as below,

KV =
Ed+(h+)3

(L+)3 (40)

where h+, d+ andL+ represent the in-plane width, out-plane
thickness and length, respectively.

4.2 Conceptual design

The quasi-zero stiffness compliant mechanism can be de-
signed by connecting the novel Type B negative-stiffness
compliant mechanism in parallel with positive-stiffness
mechanism. As shown in Fig. 11, the V-shape positive-
stiffness mechanism is attached to the center of the Type B
bistable mechanism while the base and the moving platform
of the two mechanisms are also joined together. When the
upper moving platform of the Type B bistable compliant
mechanism moves axially downward, the moving platform of
positive-stiffness mechanism has axially downward motion
simultaneously. Hence, the positive-stiffness and negative-
stiffness mechanisms will work in parallel and the quasi-zero
stiffness compliant mechanism can be achieved.

4.3 Parametric design

In order to achieve the quasi-zero stiffness, the negative stiff-
ness Kn must be equal to the positive stiffness Kv. The
parameters of the Type B bistable mechanism is given in

Figure 11. The conceptual design of the quasi-zero stiffness com-
pliant mechanism. The red, yellow and blue parts represent the mov-
ing platforms, the tilted flexure beams and the fixed bases, respec-
tively.

Table 3. The parameters of the positive-stiffness mechanism.

Parameter Value Unit

h+ 0.8 mm
d+ 14 mm
L+ 32 mm
γ 8 ◦

Table 2, then the value of constant negative stiffness can
be calculated using the negative stiffness curve shown in
Fig. 9. The value of constant negative stiffness of the Type B
bistable mechanism is about −24.063 N mm−1. Therefore,
the positive stiffness should be equal to or slightly larger than
24.063 N mm−1. With the formula Eq. (37) of the positive
stiffness of the V-shaped mechanism, the parameters of the
positive-stiffness mechanism are designed in Table 3.

4.4 Performance evaluation

According to models and parameters above, the stiffness
curve of the V-shaped positive-stiffness and the Type B
negative-stiffness mechanism can be obtained, as shown in
Fig. 12. Then the stiffness curve of the quasi-zero stiffness
mechanism can be obtained in Fig. 12. The stiffness curve of
the quasi-zero stiffness mechanism in the working range is
close to horizontal, that is, the stiffness is close to zero.

When the axial displacement occurs, the force has no
changes and remains very large. Therefore, this quasi-zero
stiffness mechanism has excellent characteristics as a con-
stant force mechanism. Moreover, if the quasi-zero stiff-
ness mechanism is used as a vibration isolator, it will have
near zero dynamic stiffness and therefore has a good low-
frequency vibration isolation performance. Besides the good
dynamic characteristics, the load-carrying capacity of the vi-
bration isolator is still very large, that is, the static stiffness of
it is large enough. As shown in Fig. 12, the vibration isolator
can carry a load of about 170 N. In conclusion, the quasi-zero
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Figure 12. The force–displacement curve of the Type B bistable
linear negative-stiffness mechanism, V-shaped positive-stiffness
mechanism and quasi-zero stiffness compliant mechanism.

stiffness mechanism as a vibration isolator has good high-
static-low-dynamic-stiffness characteristics.

5 Experimental validation

5.1 Prototype fabrication

A prototype of the quasi-zero stiffness mechanism has been
designed in detail and fabricated to demonstrate the perfor-
mance of the proposed design. The tilted flexure beams are
composed of beryllium bronze, while the other parts of the
prototype are made of Al-6061. The Young’s modulus of
beryllium bronze is very close to that of titanium alloy, and
such material is easy to process.

A computer-aided design (CAD) model of the proposed
quasi-zero stiffness mechanism is shown in Fig. 13a. The
positive-stiffness mechanism is connected in parallel at the
center of the Type B bistable negative-stiffness mecha-
nism to obtain the quasi-zero stiffness platform. The tilted
leaf springs in both positive-stiffness and negative-stiffness
mechanisms are standard size thin beams manufactured sep-
arately in order to improve dimensional accuracy. The end
of each leaf spring is fully constrained by two wedge-shaped
blocks, which is shown in Fig. 13b. The wedge-shaped pres-
sure block is pressed by screwing the bolts, and the pressure
is amplified by the wedge surface, thus the beams are stably
tightened.

From the quasi-zero stiffness curve in Fig. 12, it is obvi-
ous that although its force output or load carrying capacity
is large and the stiffness is close to zero, the value of the
constant force output or load-bearing capacity in the range
of zero stiffness cannot change. Therefore, we need to opti-
mize the design of the prototype so that it can be adjusted
to achieve quasi-zero stiffness at any force output. First, a
limit structure is designed between the moving platform and
the fixed base of the positive-stiffness mechanism to limit
the moving platform to only move axially downward but not

Figure 13. (a) Three-dimensional computer-aided design model
of the proposed quasi-zero stiffness mechanism. (b) Leaf springs
fully constrained by the wedge-shaped blocks. (c) Limit structure
between the moving platform and the fixed base of the positive-
stiffness mechanism. (d) The bolt and the limit cover connecting
the positive-stiffness and negative-stiffness mechanism tightly.

upward, as shown in Fig. 13c. Second, the moving platform
of the positive-stiffness and negative-stiffness mechanism is
connected by a bolt, as shown in Fig. 13d. When the bolt
is screwed in, the positive-stiffness mechanism cannot move
axially upward due to the limit structure, so that only the
moving platform of the negative-stiffness mechanism will
move downward. This is equivalent to applying a preload dis-
placement to the negative-stiffness mechanism, thus achiev-
ing adjustment of the constant force output or load-carrying
capacity. Finally, a limit cover is designed on the bolt, and
serves as a load-carrying platform, as shown in Fig. 13d.
When the moving platform moves upward or downward, the
positive-stiffness and negative-stiffness mechanism can be
tightly connected due to the limit cover.
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Table 4. Parameters of the quasi-zero stiffness stage.

Parameter Value Unit

β 8 ◦

L 50 mm
h 0.4 mm
d 8 mm
γ 8 ◦

h+ 0.8 mm
d+ 14 mm
L+ 32 mm

When the bolt is not screwed in, it can be seen from Fig. 12
that the quasi-zero stiffness mechanism has the maximum
constant force output or load-carrying capacity of 160 N.
When the bolt is screwed in, the negative-stiffness mecha-
nism has a preload displacement, which corresponds to the
negative stiffness curve moving horizontally to the left for
a distance. The quasi-zero stiffness curve also changes ac-
cordingly, as shown in Fig. 14. When the bolt is screwed into
different displacements, different quasi-zero stiffness curves
can be obtained, which corresponds to different force out-
put or load-carrying capacity. When the bolt is screwed into
3 mm, the negative stiffness curve moves 3 mm to the left
along the horizontal axis, and thus the constant force output
of the quasi-zero stiffness mechanism is 100 N. When the
bolt is screwed into 5 mm, the constant force output is 50 N.

According to the three-dimensional CAD model of the
mechanism designed above, the prototype platform is fab-
ricated as depicted in Fig. 15. The main parameters of the
quasi-zero stiffness stage are listed in Table 4.

5.2 Test 1: force–displacement curve (stiffness curve)
and constant force output of the prototype

The setup of the first test is shown in Fig. 16. In the
first force–displacement test, displacement was applied to
the quasi-zero stiffness platform by an actuating translation
stage. The driving displacement of the platform is measured
with a laser displacement sensor (model: LK-G5000, from
Keyence Corp., Osaka, Japan). The output force of the plat-
form is measured by a force sensor (model: T301, from
Changzhou Right Measurement & Control System Co., Ltd.,
Changzhou, China). Using the raw data acquired from posi-
tion and force sensor, the force–displacement behavior of the
prototype platform is obtained, as shown in Fig. 17. For accu-
rate comparison between experiment and theoretical results,
the analytical force–displacement curve is also depicted in
Fig. 17.

From the Fig. 17, it is obvious that in the zero-stiffness
range, the force-displacement curve is close to horizontal and
rises slightly slowly, which means quasi-zero stiffness and
constant-force property of the prototype platform. The exper-
imental results show that the constant force is 160 N, which

very closely marches the analytical result of 168 N with a dis-
crepancy of 4.7 %. However, the force-displacement curve
is not completely horizontal and rises slightly slowly. The
reason is that the buckling of each fixed-guided beam is not
completely the same. Some fixed-guided beams buckle more
than others due to errors in assembly and manufacturing of
beam members and the slight discrepancy of the constant
force output is also caused by the assembling and manu-
facturing error of the mechanism. Although there are some
inconsistencies, the error between the theoretical and the ex-
perimental results is within an acceptable range.

5.3 Test 2: vibration isolation experiment of the
prototype

The setup of the second test is shown in Fig. 18. In the sec-
ond test, we will verify the vibration isolation performance
of the quasi-zero stiffness mechanism used as vibration iso-
lator. Vibration was exerted to the base of the vibration iso-
lator by a voice coil motor (model: VCAR0113-0089-00A,
from Suzhou Unite Precision Technology Co., Ltd., Suzhou,
China). The VCM will generate a series of vibration out-
puts with frequency from 2 to 5 Hz and amplitude of 2 mm.
Subsequently, vibration of moving platform was measured
with the laser displacement sensor (model: LK-G5000, from
Keyence Corp., Osaka, Japan) in the way that the displace-
ment was measured in Test 1.

Figure 19 shows the output of an experimental conducted
at a vibration frequency of 2 Hz and amplitude of 2 mm. The
load of the mechanism reaches 50N, and then the load ca-
pacity of the mechanism is adjusted to match it. The exper-
imental results show that the vibration attenuation is about
65 %. In theory, the vibration attenuation of the quasi-zero
stiffness mechanism should be 100 %. However, due to as-
sembly and manufacturing errors, the mechanism does not
achieve quasi-zero stiffness completely, so the vibration iso-
lation effect is affected. The closer the zero-stiffness curve of
the mechanism is to horizontal and linear, the better the vi-
bration isolation effect will be. Overall, although not as per-
fect as the theoretical vibration isolation effect, the isolation
performance is still satisfactory.

In the future work, the application of mechanism in vibra-
tion isolation will be further explored and the influence of the
exciting frequency on the transmissibility ratio and the isola-
tion region will be investigated in more detail. In the process-
ing of the mechanism, the manufacturing precision should
be improved, and the assembly error should be reduced, so
that the beams of the mechanism are bent to the same extent.
In addition, based on the existing one-dimensional quasi-
zero stiffness mechanism, a new bistable mechanism and a
new multi-dimensional zero stiffness mechanism will be de-
signed.
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Figure 14. Different quasi-zero stiffness curves with the bolt screwing into different displacements. (a) The bolt is screwed into 3 mm.
(b) The bolt is screwed into 5 mm.

Figure 15. Prototype of the designed quasi-zero stiffness stage.

Figure 16. Photograph of the experimental setup of Test 1.

Figure 17. Force–displacement curve of the fabricated prototype
platform.

Figure 18. Initial state of the experimental setup of Test 2.
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Figure 19. Experimental output at a vibration frequency of 2 Hz
and amplitude of 2 mm.

6 Conclusion

A novel bistable linear negative-stiffness mechanism with
large in-plane lateral stiffness are first developed in this pa-
per, and then, based on this, a novel quasi-zero stiffness
mechanism is proposed by connecting the novel negative-
stiffness compliant mechanism in parallel with positive-
stiffness mechanism. Both the negative-stiffness mechanism
and the quasi-zero stiffness mechanism have good axial guid-
ance capability and in-plane lateral anti-interference capabil-
ity. At the same time, the proposed quasi-zero stiffness mech-
anism has extremely low and even zero dynamic stiffness,
while it still keeps a high loading capacity, that is, it has a
High-Static-Low-Dynamic-Stiffness characteristic. Analyti-
cal modeling of bistable mechanism based on a comprehen-
sive elliptic integral solution is derived and the stiffness curve
of both traditional and novel bistable mechanism is analyzed.
The quasi-zero stiffness mechanism can be used as constant-
force mechanism and passive vibration isolation mechanism
due to its quasi-zero stiffness characteristic. A prototype of
the quasi-zero stiffness mechanism with adjustable constant
force output or load-carrying capacity has been designed in
detail and fabricated to demonstrate the performance of the
proposed design. Experimental results show that the force-
displacement curve is close to horizontal and rises slightly
slowly, which indicates quasi-zero stiffness and constant-
force property. In addition, the isolation performance is sat-
isfactory despite the slight discrepancy between theoretical
and experimental results. The slight discrepancy is caused
by the assembling and manufacturing error of the platform.
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