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Abstract. The focus of the present work is on the investigation of the separation point and its relative location
in a circular diffuser carrying incompressible laminar flow in the presence of a non-uniform external magnetic
field. Two different approaches are deployed in the present analysis. In the first approach, a similarity transform
is applied to reduce the momentum equation to the nonlinear ordinary differential equation (ODE). The ODE
is solved by a dual integral–numerical method and the separation position is directly determined. In this com-
bined numerical–integral methodology, the integration is applied followed by a numerical method. In the second
approach, the equation is solved by the least square method (LSM), and the separation position is indirectly
specified. In this study it is shown that the magnetic field intensity can be manipulated to postpone the separation
such that it could be eliminated totally. Comparing the results yields a good agreement. It has been concluded
that by increasing the magnetic field intensity, as the Lorentz force increases, increased shear stress on the wall
and delay in the occurrence of the separation position are observed.

1 Introduction

Magnetohydrodynamics (MHD) is a physical–mathematical
framework concerned with the dynamics of magnetic fields
in electrically conducting fluids. It focuses on the interaction
between the hydrodynamic boundary layer and the electro-
magnetic field. Today, the study of MHD flow is not only
of increasing interest in studying fluid mechanics, but also
for studies in many disciplines formulated as branches of
physics including, but not limited to, mathematical or con-
densed matter physics, astrophysics, geophysics, and bio-
physics. According to the literature, in a wide range of re-
search spectra, MHD and fluid dynamics are indispensable
(Bhatti et al., 2018; Ghadikolaei et al., 2017; Hosseinzadeh
et al., 2017; Jhorar et al., 2018; Regev et al., 2016). MHD
has increasing applications in the fields of the aerospace en-
gineering, environment engineering and sciences, chemical
engineering, mechanical and biomechanical engineering, etc.
One of its applications in material processing could be the
control of molten metal flow by the magnetic field in the cast-
ing industry.

The governing equations of MHD radial flow were orig-
inally carried out by Jeffery (1915) and Hamel (1916).

Steady-state incompressible flow through a parallel plate
channel with stretching walls under an externally applied
magnetic field has been studied by Abbasi et al. (2014).
Taheri et al. (2017) presented analytical solutions to laminar
flow of MHD Newtonian and non-Newtonian power-law flu-
ids in the entrance regions of channels. They observed that an
augmentation of the magnetic interaction parameter leads to
a greater pressure drop in comparison with a typical hydro-
dynamic flow without the presence of a magnetic field. Khaki
et al. (2014) studied a boundary-layer analysis of an incom-
pressible viscous steady flow and forced convection over a
horizontal flat plate.

An efficient computational technique was considered to
be a modified decomposition method that was proposed and
successfully applied for solving the nonlinear problem of the
two-dimensional flow of an incompressible viscous fluid be-
tween nonparallel planes (Kezzr et al., 2015). There have
been numerous studies focusing on Jeffery and Hamel’s
problem without considering the effect of magnetic fields,
such as Bougoffa et al. (2016), Khan et al. (2016b), and Stow
et al. (2001). To the knowledge of the authors, Axford (1961)
was the first to study MHD flow in Jeffrey–Hamel problems.
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Figure 1. Schematic diagram of the problem.

The study represented the exact solutions of the MHD equa-
tions for the radial flow of a viscous incompressible fluid be-
tween non-parallel walls. In that study, the reduction of the
displacement thickness of the boundary layer due to mag-
netic field presence was observed. Sadeghy et al. (2007) stud-
ied a theoretical investigation of the applicability of magnetic
fields for controlling hydrodynamic separation in Jeffrey–
Hamel flows of viscoelastic fluids. Makinde (2008) inves-
tigated the effect of an arbitrary magnetic Reynolds num-
ber on a steady flow of an incompressible conducting vis-
cous liquid in convergent–divergent channels under the influ-
ence of an externally applied homogeneous magnetic field.
Ellahi et al. (2016) studied a Jeffrey fluid peristaltic flow
in a non-uniform rectangular duct under the effects of Hall
and ion slip. They showed that shear thinning reduces the
wall shear stress. On the other hand, there has been a set of
nearly-new tracks’ semi-analytical and numerical solutions
addressing the solution of the problem: the Adomian decom-
position method (Ganji et al., 2011), the homotopy analy-
sis method (Moghimi et al., 2011a) and the homotopy per-
turbation method (Moghimi et al., 2011b). Analytical exact
solutions in the implicit form for further physical interpre-
tation were presented by Abbasbandy and Shivanian (2012).
As an efficient semi-analytical approach alternative to both
numerical and exact (analytical) solutions, the variational it-
eration method was successfully applied by Mirgolbabae et
al. (2009). Developing numerical techniques for a nonlinear
MHD Jeffery–Hamel blood flow problem to analyze the be-
havior of blood flow and its contribution to high blood pres-
sure through artificial neural networks trained with the Ac-
tive Set and Interior Point Algorithm was used by Ahmad et
al. (2014). However, analytical and numerical solutions for
(MHD) Jeffery–Hamel nano-fluid flow have been frequently
in articles (Alam et al., 2016; Ananthaswamy and Yogeswari,
2016). Khan et al. (2016a) have studied deals with the nu-
merical investigation of Jeffery–Hamel flow and heat transfer
in Eyring–Powell fluid in the presence of an outer magnetic
field by using the Haar wavelet method.

Figure 2. The C–αRe curve comparison between the present work
and references (Schlichting and Gersten, 2000; Withe, 2006).

According to the above survey, although the numerous
investigations focused on MHD flows for different appli-
cations, the displacement of the separation point for MHD
flows in circular diffusers by changing the magnetic field
intensity has not been studied yet. The present work aims
to fill this gap by deployment of two different approaches
and eventually investigation of the accuracy of the solu-
tions. The separation position is determined directly using
the semi-analytical method and so indirectly by the least
square method (LSM), and the effect of the magnetic field
intensity on the displacement of the separation point is dis-
cussed in detail.

2 Manuscript preparation

Consider a steady, laminar incompressible flow in a two-
dimensional circular diffuser with a 2α expansion angle, un-
der the influence of a non-uniform external magnetic field, as
shown in Fig. 1.

The r and θ axes are defined as the usual polar coordinate,
whereas the r axis corresponds to the direction of the flow
and lies on the center line. The flow velocity distribution is
considered to be V = [u(r,θ ),0,0]. The general governing
equations for the defined problem are defined as (Davidson,
2001; Schlichting and Gersten, 2000)

∇ ·V = 0, (1)

ρ
DV

Dt
=−∇P +µ′∇2V +J ×B, (2)

J = σ (E+V ×B). (3)

Eqs. (1) to (3) are continuity, momentum and Ohm’s law, re-
spectively. The V , J , E, P , σ and B are the velocity vector,
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Figure 3. Hartmann number effect on the C–αRe curve.

the electric current density, the electric field, the pressure, the
electrical conductivity and the total magnetic field, respec-
tively. The total magnetic field is B = B0+b, where B0 is the
external magnetic field and b is the magnetic field induced.
In the problem, the magnetic Reynolds number is assumed
to be small enough, so that the induced magnetic field can be
neglected (Roidt and Cess, 1962). The boundary conditions
are defined as follows:

θ = 0 : ur = umax, (4a)

θ = 0 :
∂ur

∂θ
= 0, (4b)

θ = α,−α : ur = 0. (4c)

Define η, U (η), the Reynolds number (Re) (28) and the Hart-
mann number (Ha) as:

η =
θ

α
, (5a)

U (η)=
ur

umax
=−

1
r

f (θ )
umax

, (5b)

Re=
umaxrα

ν
, (5c)

Ha=
Iα

2π
µ

√
σ

µ′
. (5d)

By substituting Eq. (5) into Eq. (2) and after some simplifi-
cation, we have

U ′′′+ 2αReUU ′+
(

4−
Ha2

α2

)
α2U ′ = 0. (6)

Then the boundary conditions are transformed to

η = 0 : U (0)= 1, (7a)

Figure 4. Hartmann number effect on the dimensionless velocity
profile for αRe= 14.76.

η = 1 : U (1)= 0, (7b)
η = 0 : U ′(0)= 0. (7c)

3 Solution of the problem

The solution of the problem is obtained by means of the two
different approaches. In the first method, a dual integral–
numerical method (DINM) is employed, and then the sep-
aration point was obtained directly. In the second approach,
the LSM is used, and the separation point is obtained, indi-
rectly. Furthermore, the fourth-order Runge–Kutta numerical
method is used for the validation.

3.1 Integral–numerical method

At the separation point, the shear stress vanishes, so the sep-
aration occurs if

∂ur

∂θ
= 0. (8)

Thus, according to Eq. (6), we can write

∂U (η)
∂η
= 0. (9)

In the following,U ′(η) is analyzed. Equation (6) is integrated
with respect to η as

U ′′+αReU2
+

(
4−

Ha2

α2

)
α2U = s, (10)

where “s” is constant. Multiplying Eq. (10) in 2U ′ and inte-
grating again give

U ′
2
+

2
3
αReU3

+

(
4−

Ha2

α2

)
α2U2

= 2 s U +C. (11)
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Figure 5. Hartmann number effect on the dimensionless velocity distribution.

Table 1. The dimensionless velocity distribution comparison for the LSM and the numerical method at Ha= 1, α = 2.5◦, and (αRe)sep. =
11.41.

αRe= 6.54 αRe= 8.78 αRe= 11.41 αRe= 15.27

U (η) U (η) U (η) U (η)

η LSM Num. Diff. LSM Num. Diff. LSM Num. Diff. LSM Num. Diff.

0.00 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
0.10 0.9790 0.9790 0.0000 0.9732 0.9732 0.0000 0.9650 0.9651 0.0001 0.9519 0.9519 0.0000
0.20 0.9184 0.9185 0.0001 0.8971 0.8972 0.0001 0.8675 0.8676 0.0001 0.8212 0.8211 0.0001
0.30 0.8252 0.8252 0.0000 0.7831 0.7832 0.0001 0.7262 0.7262 0.0000 0.6404 0.6402 0.0002
0.40 0.7087 0.7087 0.0000 0.6465 0.6465 0.0000 0.5648 0.5648 0.0000 0.4467 0.4466 0.0001
0.50 0.5794 0.5794 0.0000 0.5026 0.5027 0.0001 0.4051 0.4052 0.0001 0.2704 0.2703 0.0001
0.60 0.4468 0.4469 0.0001 0.3644 0.3645 0.0001 0.2633 0.2633 0.0000 0.1293 0.1291 0.0002
0.70 0.3185 0.3186 0.0001 0.2411 0.2411 0.0000 0.1488 0.1488 0.0000 0.0307 0.0305 0.0002
0.80 0.1997 0.1997 0.0000 0.1378 0.1379 0.0001 0.0660 0.0660 0.0000 −0.0236 −0.0236 0.0000
0.90 0.0931 0.0931 0.0000 0.0572 0.0572 0.0000 0.0164 0.0164 0.0000 −0.0337 −0.0338 0.0001
1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 6. Dimensionless velocity profile behavior in the separation point region.

Using boundary conditions Eqs. (7a) and (7c) and doing
some algebraic manipulations, we will have

U ′
2
= (1−U )

[
2
3
αRe

(
U2
+U

)
+

(
4−

Ha2

α2

)
α2U +C

]
.

(12)

Applying Eq. (7b) in Eq. (12) gives(
U ′ (η) |η=1

)2
= C. (13)

According to the above equation, if C equals zero, the shear
stress at the wall becomes zero. By using Eqs. (7a) and (7b)
we can write

U ′ =
dU
dη
→

1∫
0

dη =

0∫
1

dU
U ′
. (14)

Combining with Eq. (12), we will have

1=−

1∫
0

dU√
(1−U )

(
2
3αRe

(
U2−U

)
+

(
4− Ha2

α2

)
α2U +C

) . (15)

For small α and large Re, Eq. (15) simplifies as follows:(
2
3
αRe

) 1
2
=

−

1∫
0

dU√
(1−U )

(
U2+

(
1− Ha2

2
3αRe

)
U + 3

2
C
αRe

) . (16)

The trial and error technique is used for solving Eq. (16).
It is divided into two parts as follows:(

2
3
αRe

) 1
2
=

−

1∫
0

dU√
(1−U )

(
U2+

(
1− Ha2

2
3αRe

)
U +K

) , (17)

K =
3
2
C

αRe
. (18)
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Table 2. The C values corresponding to αRe, K and Ha number.

Ha= 0 Ha= 1 Ha= 2 Ha= 3

K αRe C K αRe C K αRe C K αRe C

0 10.31 0.0000 0.0000 11.41 0.0000 0.0000 14.76 0.0000 0.0000 20.55 0.0000
0.001 9.83 0.0065 0.005 10.28 0.0342 0.004 13.48 0.0359 0.001 19.62 0.0130
0.006 9.19 0.0367 0.02 9.31 0.1242 0.01 12.80 0.1280 0.01 17.85 0.1190
0.02 8.39 0.1119 0.05 8.34 0.2781 0.03 11.63 0.2327 0.03 16.25 0.3250
0.05 7.50 0.2500 0.1 7.40 0.4936 0.05 10.90 0.5453 0.05 15.27 0.5091
0.1 6.63 0.4422 0.17 6.54 0.7508 0.07 10.37 0.4841 0.084 14.13 0.7915
0.4 4.47 1.1933 0.25 5.90 0.9834 0.1 9.73 0.9737 0.1 13.70 0.9139
0.6 3.78 1.5157 0.35 5.29 1.2348 0.14 9.09 0.8488 0.16 12.49 1.3325
0.8 3.31 1.7653 0.5 4.63 1.5435 0.2 8.35 1.1141 0.2 11.87 1.5826
1 2.94 1.9661 0.7 4.00 1.8690 0.26 7.78 1.3487 0.33 10.38 2.2843
1.5 2.33 2.33 1 3.35 2.2393 0.35 7.10 1.6576 0.4 9.78 2.6093
2 1.93 2.58 1.4 2.78 2.5977 0.5 6.26 2.0874 0.6 8.49 3.3960
3 1.45 2.9116 2 2.22 2.9691 0.84 5.03 2.8200 0.84 7.40 4.1445
4 1.16 3.1144 3 1.67 3.3579 1 4.62 3.0839 1.3 6.01 5.2097
8 0.65 3.4913 4 1.35 3.6015 2 3.12 4.1686 1.6 5.37 5.7359
20 0.28 3.7762 10 0.62 4.1670 3 2.38 4.7637 2 4.72 6.2954
– 0 4 – 0 4.6826 4 1.92 5.1431 3 3.63 7.2798

Table 3. The αRe values for some Hartmann numbers (Ha) at the
separation point.

Ha 0 1 2 3 4 5

αRe 10.31 11.41 14.76 20.55 29.11 40.80

For a given value of the Hartmann number, the different val-
ues can be attributed to K . For each case, αRe is obtained
from Eq. (17). By substituting Eq. (17) into Eq. (18), the
value of C will be obtained. By considering that K equals
zero, the shear stress becomes zero at the wall, according to
Eqs. (13) and (18). Thus, at the separation point, Eq. (17) is
simplified as

(
2
3
αRe

) 1
2
=

1∫
0

dU[
(1−U )

(
U2+

(
1− Ha2

2
3αRe

)
U

)] 1
2
. (19)

In order to solve Eq. (19), for different Ha, a numerical
method is used by trial and error. For accuracy control a com-
parison between the results obtained from the present work
and that by the references (Schlichting and Gersten, 2000;
Withe, 2006), for Ha= 0, is shown in Fig. 2. It can be ob-
served that there is an excellent agreement among them.

3.2 Least square method

The dimensionless velocity distribution for the separation re-
gion, which is adjacent to the separation point (corresponds
to (αRe)sep.), is obtained by the solution of Eq. (6) using the

least square method (Moakher et al., 2016; Vahabzadeh et
al., 2015). Owing to that the boundary conditions must sat-
isfy the trial solution; the trial solution can be assumed as

U (η)= c7η
9
+ c6η

8
+ c5η

7
+ c4η

6
+ c3η

5
+ c2η

4
+ c1η

3

− (c7+ c6+ c5+ c4+ c3+ c2+ c1+ 1)η2
+ 1. (20)

For example, when Re= 150, α = 2.5◦ and Ha= 1, by sub-
stituting Eq. (20) into Eq. (6) one equation with seven un-
known coefficients is obtained. With some algebraic manip-
ulation and by derivation with respect to each coefficient,
seven equations with seven unknown coefficients are gener-
ated. The coefficients are calculated by solving the system of
equations. Then by substituting the coefficients into the trial
solution, the dimensionless velocity profile is determined as

U (η)= 0.1543447535η9
− 1.145388050η8

+ 3.131845935η7
− 3.589374832η6

+ 0.4875483608η5
+ 2.080667937η4

+ 0.001026575533η3
− 2.120670680η2

+ 1. (21)

Now, Eq. (21) is differentiated with respect to η; then,

U ′(η)= 1.389102782η8
− 9.163104400η7

+ 21.92292154η6
− 21.53624899η5

+ 2.437741804η4
+ 8.322671748η3

+ 0.3079726599e− 2η2
− 4.241341360η. (22)

The value of C is defined according to Eq. (13), and then we
will have

αRe= 6.54498, C = 0.7485315026. (23)
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In the same way, the value of C is calculated for the different
values of αRe and Hartmann number. To verify, the results of
the integral method and the LSM are plotted in Figs. 2 and 3.

Table 1 represents the results for the dimensionless veloc-
ity field, obtained from the two different approaches, which
are employed in this study, i.e., the numerical method and the
LSM. Comparing the results shows a reasonable agreement
between them.

4 Results and discussion

In Table 2, the results obtained from DINM are presented.
The first row of the table shows the separation point informa-
tion (corresponds to C = 0), and it can be seen that as the Ha
number increases, the value of αRe in which the separation
occurs increases as well. It should be noted that α times Re is
correlated with radial position and for the specified problem
the separation occurs further downstream at distance from
the inlet.

In the physical aspect, the Lorentz force is proportional to
velocity, and it has a higher value in the center region. As
a result, the velocity profile becomes flatter by imposing a
higher magnetic intensity. Thus, for a certain velocity at the
diffuser inlet, the momentum becomes higher near the wall
by imposing the magnetic field and separation shifts down-
stream. Also, with an increasing magnetic field (Hartmann
number), the Lorentz force increases, so that the separation
is delayed and the αResep. value increases as shown in Fig. 3.

The dimensionless velocity profile for Reα = 14.76αRe=
14.76 at a certain cross section is shown in Fig. 4. By the
magnetic field (Ha) augmentation, αResep. increases; then,
for Ha= 2, the dimensionless velocity profile becomes tan-
gent. For Ha= 0 and Ha= 1, there are back flow and for
Ha= 3 the back flow does not occur.

In Fig. 5, the effect of the magnetic field on the fluid flow
regime is demonstrated. As can be seen, for Reα smaller than
αResep., the dimensionless velocity vectors are positive di-
rections, which means there is no separation, whereas for the
Reα larger than αResep., there is a reverse flow. For exam-
ple, as is seen in Table 3, the αResep. value corresponding
to Ha= 2 is 14.76. For αRe= 9.18 and αRe= 11.99, the
dimensionless velocity profile is “normal”, while for αRe=
17.45 there is a reverse flow near the wall. In the physical
aspect, the dimensionless velocity gradient should be zero
on the wall in the separation point. As a validity discussion,
it is expected that for a separation point with characteristic
αRe= 14.76 and Ha= 2, the dimensionless velocity profile
at η = 1 is tangential to the η axis. For the sake of clarity, this
along with three other cases are shown in Fig. 6.

5 Conclusions

In this paper, the separation point displacement for the steady
incompressible laminar flow, through a two-dimensional cir-
cular diffuser due to the variation of the imposed magnetic
field intensity, was investigated. It was concluded that, by
increasing the magnetic field intensity, the Lorentz force in-
creases and the separation is delayed. Moreover, in a diffuser
of certain conditions, with adjustable magnetic field inten-
sity, one can increase the magnitude of the Lorentz force up
to a level that the separation will not occur on the walls.
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Appendix A: Nomenclature

umax Inlet velocity (m s−1) σ Electrical conductivity (�m)−1

ur r component of the velocity (m s−1) J Density of electric current (A m−2)
R Coordinate in the direction of flow (m) I Electric current (A)
α Diffuser half angle (radian) B Total magnetic field (T)
θ Angle between center line and wall (radian) B0 External magnetic field (T)
P Pressure (Pa) b Induced magnetic field (T)
Re Reynolds number E Electric field (V m−1)
ρ Density (kg m−3) Ha Hartmann number
T Time (s) µ◦ Permeability of free space (Tm A−1)
η Arbitrary variable µr Relative permeability
U (η) Dimensionless velocity µ Permeability of a specific medium (Tm A−1)
f (θ ) A function of θ (m2 s−1) µ′ Dynamic viscosity (pa s)
ν Kinematic viscosity (pa s) (αRe)sep. Value of αRe at separation point
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