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In this paper, a synthesis method is proposed for the 5-point-contact four-bar linkage that approx-
imates a straight line with given angle parameters. The given parameters were the angles and the location of
the Ball point. Synthesis equations were derived for a general Ball-Burmester point case, the Ball-Burmester
point at an inflection pole, and the Ball point that coincided with two Burmester points, resulting in three re-
spective groups of bar linkages. Next, taking Ball-Burmester point as the coupler point, two out of the three
bar-linkage combinations were used to generate three four-bar mechanisms that shared the same portion of a
rectilinear trajectory. Computation examples were presented, and nine cognate straight-line mechanisms were
obtained based on the Roberts-Chebyshev theory. Considering that the given parameters were angles which was
arbitrarily chosen, with the other two serving as the horizontal and vertical axes, so the solution region graphs
of the solutions for three mechanism configurations were plotted. Based on these graphs, the distribution of the
mechanism attributes was obtained with high efficiency. By imposing constraints, the optimum mechanism so-
lution was straightforwardly identified by the designers. For the angular parameters prescribed in this paper, the
solutions for three straight-line mechanism configurations were obtained, along with nine cognate straight-line
mechanisms that shared the same portion of the rectilinear trajectory. All the fixed pivot installation locations and
motion performances differed, thus providing multiple solutions to the trajectory of the synthesis of mechanisms.

The synthesis and optimization of mechanisms is a key tech-
nology in modern equipment innovations such as those in
ship building, power locomotives and construction machin-
ery, to name a few. As modern machinery continues to move
toward greater automation and intelligence, due to the advan-
tages of reliable support, strong bearing capacity, and easy
processing, linkage mechanisms play an increasingly impor-
tant role. As such, research on new synthesis methods and
application technologies is attracting the attention of more
and more specialists in the field of mechanics (Han, 1993;
McCarthy, 2000). Brake et al. discussed the Complete So-
lution of Alt-Burmester Synthesis Problems for Four-Bar

Linkages (Brake et al., 2016). Bulatovic¢ et al. (2016) devel-
oped a variable controlled deviations method and modified
Krill Herd (MKH) algorithm to synthesize four-bar linkages
for accomplishing approximately rectilinear motion (Bula-
tovi¢ and Dordevi¢, 2009; Bulatovi¢ et al., 2016). Singh et
al. (2017) used nature inspired optimization algorithms to re-
duce the computation and get the crank-rocker mechanisms
without defects (Singh et al., 2017). Sleesongsoma and Bu-
reerat (2017) proposed a variant of teachinglearning-based-
optimization for four-bar linkage path generation, which was
significantly superior to its original version (Sleesongsoma
and Bureerat, 2017). Deshpande and Purwar (2017) pro-
posed a novel algorithm for optimal approximate synthesis of



Burmester problem with no exact solutions (Deshpande and
Purwar, 2017). Wang et al. (2019) developed a program pack-
age based on Matlab for the synthesis calculation of planar
4R linkage based on the theory of planar analytic geometry
(Wang et al., 2019). Ramanpreet et al. proposed a refinement
scheme for the optimal syntheses of the planar crank-rocker
linkage free from all defects, which is used in human knee
exoskeleton (Singh et al., 2017). Bulatovi¢ and Dordevi¢
(2009) proposed the variable controlled deviations method
to synthesize planar four-bar mechanisms for accomplish-
ing approximately rectilinear motion. Sleesongsoma and Bu-
reerat (2017) introduced a variant of teachinglearning-based-
optimization, which was significantly superior to its origi-
nal version. Singh et al. (2017) proposed an optimization al-
gorithm based on TLBO, which could reduce the computa-
tion and get the crank-rocker mechanisms without defects. A
straight-line motion mechanism refers to one whose points
occupy a portion of a trajectory that is approximately or pre-
cisely rectilinear (Vidosic and Tesar, 1967; Dijksman, 1976;
Yu et al., 2013; Yin et al., 2019). Numerous researchers have
worked on the synthesis theory and developed optimization
methods for such mechanisms (Han et al., 2009; Han and
Cao, 2018; Yang et al., 2011; Cui and Han, 2016). Chen
et al. (2013, 2016) focused on the design and analysis of
compliant Sarrus straight-line mechanisms, and developed
several straight-line mechanisms with special performance
(Chen et al., 2013, 2016).

In the practical application of hinged four-bar straight-
line mechanisms, the designers usually have specific require-
ments regarding the installation locations, dimensions, and
performance of the fixed pivots, and there can be an infinite
number of mechanisms that might satisfy these requirements.
Therefore, selection of the optimum mechanism solution that
best satisfies the practical engineering conditions is a difficult
problem that has puzzled designers.

In this paper, a synthesis method is proposed for the 5-
point-contact four-bar linkage that approximates a straight
line with given angle parameters. The given parameters were
the angles and the location of the Ball point. Synthesis equa-
tions were derived for a general Ball-Burmester point case,
the Ball-Burmester point at an inflection pole, and the Ball
point that coincided with two Burmester points, resulting in
three respective groups of bar linkages. Next, taking Ball—-
Burmester point as the coupler point, two out of the three
bar-linkage combinations were used to generate three four-
bar mechanisms that shared the same portion of a rectilin-
ear trajectory. Computation examples were presented, and
nine cognate straight-line mechanisms were obtained based
on the Roberts-Chebyshev theory. Considering that the given
parameters were angles which was arbitrarily chosen, with
the other two serving as the horizontal and vertical axes, so
the solution region graphs of the solutions for three mecha-
nism configurations were plotted. Based on these graphs, the
distribution of the mechanism attributes was obtained with
high efficiency. By imposing constraints, such as the mech-
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Definitions of various parameters (Yin et al., 2019).

anism type, the ratio of the longest to the shortest link, the
minimum transmission angle, and the length of approximate
straight-line, the optimum mechanism solution was straight-
forwardly identified by the designers. For the angular param-
eters prescribed in this paper, the solutions for three straight-
line mechanism configurations were obtained, along with
nine cognate straight-line mechanisms that shared the same
portion of the rectilinear trajectory. All the fixed pivot in-
stallation locations and motion performances differed, thus
providing multiple solutions to the trajectory of the synthesis
of mechanisms. The designers obtained intuitionally mech-
anism properties involved and avoided aimlessness in tradi-
tional optimum design methods mentioned in the references.
The optimal mechanism with expected parameters could be
selected more precisely and rapidly as the synthesizing pro-
cess was visible and automatic.

Based on theories of kinematic geometry for points with in-
finite proximity, it is well known that the motion of a rigid
body can be described as the pure rolling of its instantaneous
center line on its fixed centrode. The curvature relationship of
trajectory of any point on a moving system is determined in

terms of Euler-Savary equation. The Euler-Savary equation
1 1 1 1 1

IS 54~ PA; = Dsina ' ¥ ~ 715 = Dsina °' P = Dima
Where, D is defined as the diameter of inflexion circle; PA
and P A are vectors, as shown in Fig. 1. The relevant fun-
damental theories and parameter definitions are described in
detail in Yin et al. (2012) and Yin and Han (2011) and are
not repeated here. Taking the instantaneous center pole P as
the coordinate origin, we draw a unit circle along the positive
y axis and tangent x axis at the origin. The angles between
PA, PB, PC, PP and the positive x axis are o, &p, O,
and o7, respectively, as illustrated in Fig. 1.



Taking the second-order derivative of the Euler-Savary
equation p, = fyse—, We obtain:

NM-2 dN
tan*o + (T)tan3a + (a — 1) tan’a
N2 _ 3N M N2(1—M)
+‘1‘7Ttana+T=O, ()

where M and N are auxiliary variables: % = % [% + 1 ],

P
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Equation (1) is a quartic equation for a single variable
and it has four real roots at most. These four roots give
the «; of Burmester points’ polar coordinates by employing
Mueller’s concepts on the highest attainable order of straight
lines (Kwun-Lon Ting, 1991). Movable joints A, B, and C
correspond to the three roots of o, o, and «, respectively.
The coupler point P; corresponds to one root of «j.

From the relationship between the roots and coefficients
of a quadratic equation, one obtains:

M}ana

tanzoz + |:tan o, +tanoap + M

N>(1—M
# =0, )
MZtano, tanoy,

where tano; and tana,. are the two roots of the quadratic
equation.

To simplify the calculation, in this paper, the diameter of
the inflection circle is taken as D = 1. The final solution can
be multiplied by the diameter of the practical inflection cir-
cle. Now, we solve for the joint coordinates of the four-bar
mechanisms under various given conditions.

For a general case of a Ball-Burmester point, the given pa-
rameters are the angles o, op, and «1. From Eq. (2), the
value of «, can be computed as follows:

2tanc + V
-1
=t _), 3
e =tan ( U+1 ) 3)

where U = tana, tanay and V = tano, + tana;,.
By definition, one obtains the following:

PP, = Dsinaj. @

Therefore, the coordinates of the Ball-Burmester point can
be obtained as follows:

P, = PP xcosu
Ply = PP1 X SiIlOll

&)

PA, PB and PC can be computed from the following re-
spective equations:

[BU + Dtanw; + U V]sina,

= , 6
(U + DHtana, + U tanay + V) ©

_ [BU + Dtana; + U V]sinay
" (U+ Dtanap + U Qtana + V)’
PC — [BU + Dtana; + UV]sinac.
(U —-1)Rtana; + V)

(7
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From the geometric relationships, the coordinates of movable
joints A, B, and C are as follows:

Ay = PA x cosay ©)
Ay=PA xsina, ’
B, = PB x cosay
By = PB xsinap ’ (10)
C, = PC x cosa, an
Cy=PC xsina,
From the equations:
PA-Dsinoy,
PAo =~ i pn;
-Dsmce,
PBy= _I;BCTsin(:b , (12)
sina,
PCo=— PC—sina,

PAy, PBy, PCg can be solved. In turn, the coordinates of
fixed joints Ag, Bg, Co can be obtained as follows:

Aoy = PAg X cosay, (13)
Agy = PAg x sinag ’

Box = PB( x cosay

Boy = PBg x sinay, ’ (14)
Cox = PCq x cosa, (5)
Coy = PCp xsino

When the coordinates of all the joints are available, the three
groups of bar linkages AAg, BBy, CCy can be obtained. Tak-
ing Ball-Burmester point P as the coupler point, two out of
the three bar linkage combinations can be used to generate
three four-bar straight-line mechanisms.

When the Ball-Burmester point is on inflection-circle pole,
the given parameters are angle «, and parameter D’, where
D’ is the diameter when the trajectory of the circle center
degenerates into a circle. Coupler point P is the inflection
pole. The remaining parameters of the mechanism are com-
puted as follows:

PAg = D'sina,, (16)
PA
=0, 17
D' +1
D' +1 1
~1
=t _ , 18
ap = tan ( D3 tanaa) (18)
PB():D/SinOl},, (19)
_ P By 20)
D +1
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Figure 2. Linkage ratio distribution and Mechanism type distribution plots.

Table 1. Parameters of mechanisms.

Mechanisms The length of links lsum %’ﬁ Type of mechanisms
ApA AB  ByBy ApBy AP
Mi_q 258.18 89.66 8556 100.56 73.10 53396  3.01 5-three rocker
Mi_; 258.18 185.08 31.14 106.23 73.10 580.63 8.29  3-rocker-crank
Mi_3 8556 9542 31.14 4844 82.63 260.56  3.06 3-rocker-crank
My_q 45.60  65.39 114 196.16 94.66 421.15  4.30 8-three rocker
My_; 45.60  27.48 8.33 65.04 94.66 14645 7.81  3-rocker-crank
My _3 114 37091 833 14354 59.18 303.78 17.23  3-rocker-crank
M3 8.48 2339 4248 5661 5990 13096  6.68 1-crank-rocker

Mech. Sci., 10, 545-552, 2019 www.mech-sci.net/10/545/2019/
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Figure 3. Mechanism plots.

In this situation, o, = 90°.

D/
C=—— 21
2D +4 @h

D/
PCy=—— 22
=512 (22)

After computing the above parameters, similar to Eq. (1),
the coordinates of movable joints A, B, and C and fixed
joints Ag, B, and Cp can be solved to obtain three four-bar
straight-line mechanism.

2.3 Ball point coinciding with two Burmester points

When two Burmester points coincide with the Ball point,
the given parameters are angles o, and «p. Every group of
given parameters can only generate one four-bar straight-line
mechanism. The remaining parameters of this mechanism
are computed as follows:

\%
o) = tan™"! (_U——|—3) , (23)

where U =tana, tanay and V = tano, + tanay,.
By substituting Eq. (23) into P P| = Dsinag, PP can

be solved.

_ V(U — 1)sina,

T (U+3)tana, +U -V

PA 24

www.mech-sci.net/10/545/2019/
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_ V(U — 1)sinay
T (U+3)tanap +U -V

(25)

By substituting Eqgs. (24) and (25) into the following two
equations:

____ PA-Dsing,
PAO — PA-Dsina, (26)
PBy— — PB-Dsinay
0= =~ PB—Dsina,

P Ap and P Bg can be obtained. After the above parameters
have been computed, the coordinates of movable joints A, B,
and C and fixed joints Ag, By, and Cq can be solved to obtain
one four-bar straight-line mechanism.

Mech. Sci., 10, 545-552, 2019
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3 Solution region analysis and synthesis examples

Now, we adopted the mechanism solution region method,
taking the inflection circle diameter D =1 and the
mechanism-type distribution plot as an example to draw the
mechanism solution region graphs for all three conditions.

3.1 General Case of the Ball-Burmester Point

Without losing generality, let oy = 70°, take o, and o} as
the horizontal and vertical axes, respectively, and let «, and
o take continuous values from 0 to 180° to obtain solution
region graphs for three mechanism configurations, as illus-
trated in Fig. 2 (Barker, 1985).

By arbitrarily choosing «, = 40° and «; = 10° in Fig. 2,
Fig. 3b shows the obtained mechanism, and Fig. 3c and d
show the two corresponding mechanism solutions. Table 1
lists the mechanism parameters.

3.2 Ball-Burmester point lying on the inflection pole

Take o, as the horizontal axis and the diameter of the de-
generated circular center curve D’ as the vertical axis and let
parameter D’ take continuous values from —7.2 to 7.2 and
angle o, take continuous values from 0 to 180°, then the so-
lution region graphs of the three mechanism configurations

Mech. Sci., 10, 545-552, 2019
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can be obtained. Figure 4 shows the mechanism-type distri-
bution graph for the first configuration AgABoBP;.

By arbitrarily choosing «, =20° and D’ =2 in Fig. 4,
Fig. 5b shows the obtained mechanism, and Fig. 5c and d
show the other two mechanisms. Table 1 lists the mechanism
parameters.

3.3 Ball point coinciding with two Burmester points

Similar to Eq. (1), by taking ¢, as the horizontal axis and o
as the vertical axis, we obtained the mechanism type of the
single mechanism configurationAgAByBP; and its linkage-
ratio distribution plot, as shown in Fig. 6. By arbitrarily
choosing «, = 100° and «;, = 150° in Fig. 6, Fig. 7 shows
the obtained mechanism. Table 1 shows the mechanism pa-
rameters.

4 Conclusion

Using the synthesis method proposed in this paper combined
with the cognate mechanism theory, nine different four-
bar mechanisms with identical rectilinear trajectory sections
were obtained that have different frame locations and perfor-
mances for the designer to choose. Given that the known pa-
rameters were angular, this method was used to obtain the so-
lution region graphs of three mechanism solutions. Based on
these solution region graphs, the distribution of the attributes
of the mechanism solutions was obtained with high effi-

www.mech-sci.net/10/545/2019/



ciency, and the optimum solution was extracted in a straight-
forward manner. The optimum design mentioned in the paper
was to choose optimum mechanism from the infinite num-
ber of mechanism solutions. By imposing constraints, such
as the mechanism type, the ratio of the longest to the short-
est link, the minimum transmission angle, and the length of
approximate straight-line, the optimum mechanism solution
was straightforwardly identified by the designers. The design
data have been obtained and converted into a series of design
graphs by the computer program which can be used to syn-
thesize easily four-bar linkages yielding desired straight-line
outputs of predetermined position. The method proposed in
this paper represents is a new approach to the synthesis of
classic straight-line mechanisms and has high value in prac-
tical applications.

All the data used in this manuscript can be ob-
tained on request from the corresponding author.
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