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Abstract. The paper considers an impact of viscous linear and cubic nonlinear damping of the elastic support on
nonlinear vibrations of a vertical hard gyroscopic unbalanced rotor, taking into account nonlinear stiffness of the
support material. Analyzing the research results shows that linear and cubic nonlinear damping can significantly
suppress the resonance peak of the fundamental harmonic, eliminate the jumping phenomena of the nonlinear
system. In non-resonance areas where the velocity is higher than the critical one, cubic nonlinear damping,
unlike linear one, can slightly suppress amplitude of the rotor vibration. Therefore, in the high-velocity area,
only nonlinear damping can maintain performance of a vibration isolator. In resonance area, an increase in linear
or cubic nonlinear damping significantly suppresses the ability to absolute displacement. In non-resonance area,
where the rotational velocity is lower than the critical one, they have almost no impact on ability to absolute
displacement. In high velocity area, an increase in nonlinear damping may slightly increase the moment of force
transmissibility, but linear damping has almost no impact on it. The obtained results can be successfully used
to produce passive vibration isolators used for damping the vibrations of rotary machines, including gyroscopic
ones.

1 Introduction

As you know, the rotary machines are widely used in many
industries and have been studied for a long time. Despite this,
there are many problems unsolved, in particular those associ-
ated with an action of mass imbalance on vibrations and sta-
bility, and subsequently with the stabilization of resonance
vibrations of the rotary machines.

A simplified model with concentrated rotor system param-
eters is typically used to study the dynamics of a single rotor
shaft on the bearing supports. It is very important to use the
properties and characteristics of the support material for vi-
bration attenuation and damping to stabilize a movement of
the unbalanced rotor and the vibration systems. Supports are
the mean for connecting devices between the rotor and the
supporting structure, which have various shapes and designs
depending on the specific assumptions. A convenient way is
to introduce attenuation for supporting the bearings in the ro-

tor system on viscoelastic flexible rubber supports (Zakaria
et al., 2015). In parallel with the development of viscoelastic
material simulation (Gil-Negrete et al., 2009; Richards and
Singh, 1999), which helps to describe a complexity of ma-
terial properties, the use of viscoelastic components in rotor
dynamics and vibration systems (Ravindra and Mallik, 1994;
Peng et al., 2012; Ho et al., 2012) as a whole also increased,
including with nonlinear elastic characteristics and damping.
For example, Ravindra and Mallick (1994) researched the
parametric impact of different types of attenuation on the per-
formance of nonlinear vibration isolators in case of harmonic
excitation. The paper (Peng et al., 2012) considers an effi-
ciency of passive vibration isolators with linear damping and
cubic nonlinear damping in resonance and non-resonance vi-
bration areas of the system with linear stiffness. It also pro-
vides an excellent overview of researches of the linear and
nonlinear vibration isolation systems. In the paper (Ho et al.,
2012), an impact of cubic nonlinear rigidity of the material
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on the performance of the isolator is additionally taken into
account in the studies. The papers (Iskakov, 2015, 2017a, b)
researched impacts of quadratic nonlinear damping on the
resonance vibrations and stability of the vertical gyroscopic
unbalanced rotor with quadratic and cubic nonlinear stiffness
of an elastic support. Magnetorheological materials can be
used as damping elements. The model is based on presenta-
tion of magnetorheological oil by bilinear material (Zapomel
and Ferfecki, 2015). In the paper (Fujiwara et al., 2015), an
experimental single-disc rotor system is prepared that is sup-
ported by ball bearings at both ends, and vibration is com-
pared with a flexible support containing springs or rubber
blankets and with a rigid support base, through simulation
and experiment.

This paper is aimed at researching an impact of the mate-
rial of the elastic bearing support with linear and cubic non-
linear damping on the main resonance curve and the moment
of force transmissibility of the gyroscopic vertical hard un-
balanced rotor, taking into account the nonlinear stiffness of
the support.

2 Motion equations

The rotor flowchart shown in Fig. 1 is considered. Shaft with
the length L is installed vertically, using a lower hinged and
an upper elastic support at a distance l0 from it. A disc having
a mass m, a polar moment of inertia IP and a transverse mo-
ment of inertia IT, being the same for any direction, is fixed
at the free end of the shaft. The shaft speed ω is so high that
the rotor can be considered as a gyroscope, which fixed point
is the lower shaft support. The geometric center of the ro-
tor S is determined by the Cartesian coordinates x and y. At
this time, the shaft deflections are determined by the angular
coordinates θx and θy. The Cartesian and angular coordi-
nates of the geometric center S are related by the relations
x = Lθx and y = Lθy. The rotor movement towards the co-
ordinate axis z is neglected. Next, we denote the coordinates
of the center of masses m of the disc through xm and ym.

Also assume that linear eccentricity e lies on the X-axis
of the SXYZ coordinate system which rotates with the rotor.
Limit its elves to small deviations of the rotor axis, so will
take into account in the calculations only terms that are linear
with respect to small quantities e, θx , θy , xm, ym.

Given the above, the projections of the angular velocity on
the coordinate axes will be written as

ωx ≈−θ̇y +ωθx,ωy ≈ θ̇x −ωθy,ωz ≈ ω+ θ̇x · θy, (1)

and kinetic energy of the system as

T =
1
2
m
(
ẋ2
m+ ẏ

2
m

)
+

1
2

(
Ixω

2
x + Iyω

2
y + Izω

2
z

)
,

Figure 1. Rotor geometry.

given that Ix = Iy = IT, Iz = IP and Eq. (1), obtain in a form
of

T =
1
2
m
(
ẋ2
m+ ẏ

2
m

)
+

1
2

{
IT

[(
θ̇2
x + θ̇

2
y

)
−2ω

(
θx θ̇y + θy θ̇x

)]
+ IP

(
ω2
+ 2ωθ̇xθy

)}
, (2)

where

xm = x+ ecosϕ = Lθx + ecosωt,

ym = y+ e sinϕ = Lθy + e sinωt. (3)

Moments of external forces are as follows

Mx = (Lθx + ecosωt)G,My =
(
Lθy + e sinωt

)
G, (4)

where L is the shaft length, G=mg is the disc weight.
Mallick et al. (1999) experimentally confirmed that

the restoring and damping forces in elastomeric isolators
should be described, using a nonlinear model. Richards and
Singh (1999) found that rubber dampers have both nonlinear
damping and nonlinear stiffness. To achieve higher perfor-
mance, any nonlinearities in the design should be taken into
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account. Consequently, the elastic support of the upper bear-
ing of the gyroscopic rotor can be made of non-linear mate-
rials, such as rubber, resin and other polymers widely used
as the damper of the arising vibrations. Given all this, we set
the dissipative forces in the elastic support as

φ =
1
2
µd1

(
θ̇2
x + θ̇

2
y

)
+

1
4
µd3

(
θ̇4
x + θ̇

4
y

)
, (5)

where µd1 is a coefficient of linear viscous damping of the
support material, µd3 is a coefficient of nonlinear cubic vis-
cous damping of the support material. If consider that the
rotor shaft is hard and only its upper support has elasticity,
the potential energy of the system can be represented as

V =
1
2
k1l

2
0

(
θ2
x + θ

2
y

)
+

1
4
k3l

4
0

(
θ4
x + θ

4
y

)
, (6)

where k1 is a coefficient of linear stiffness of the elastic sup-
port, k3 is a coefficient of nonlinear stiffness of the elastic
support.

The Lagrange’s Equations of Second Kind (Yablonsky,
2007) for the rotor system are written as

d
dt

(
∂T

∂q̇i

)
−
∂T

∂qi
+
∂V

∂qi
=−

∂φ

∂q̇i
+Qi . (7)

Here, qi : θx , θy is the joint coordinates; Qi :Mx , My are the
generalized forces.

Substituting the expressions (2)–(6) in (7), obtain the
equations of motion of the rotor(
IT+mL

2
)
θ̈x + IPωθ̇y +µd1θ̇x +µd3θ̇

3
x

+

(
k1l

2
0 −GL

)
θx + k3l

4
0θ

3
x

= (meω2L+mge)cosωt,(
IT+mL

2
)
θ̈y − IPωθ̇x +µd1θ̇y +µd3θ̇

3
y

+

(
k1l

2
0 −GL

)
θy + k3l

4
0θ

3
y

= (meω2L+mge) sinωt, (8)

where

meω2L+Ge =Mf (9)

is an amplitude of the resultant moment of the external
forces.

By entering the following dimensionless parameters

ε = e/L; l = l0/L; t = tω0;�= ω/ω0;

IP = IP/(mL2);IT = IT/(mL2);K1 = k1/
(
mω2

0

)
;

K3 = k3L
2/
(
mω2

0

)
;P =G/

(
mLω2

0

)
;

µ1 = µd1/
(
mL2ω0

)
;µ3 = µd3ω0/

(
mL2

)
, (10)

where

ω0 =

√
k1l

2
0 −GL

mL2− (IP− IT)
(11)

is a critical velocity of a damping-free linear system, using a
designation of the expression of the dimensionless amplitude
of the resultant moment of external forces

M = ε�2
+ εP (12)

can provide the equations of motion (8) with a compact di-
mensionless view(

1+ IT
)
θ ′′x + IP�θ

′
y +µ1θ

′
x +µ3θ

′3
x

+

(
K1l

2
−P

)
θx +K3l

4θ3
x =M cos�t, (13)(

1+ IT
)
θ ′′y − IP�θ

′
x +µ1θ

′
y +µ3θ

′3
y

+

(
K1l

2
−P

)
θy +K3l

4θ3
y =M sin�t. (14)

Here the strokes denote derivatives in dimensionless time t .
Thus, it turns out that the steady-state motion of the

considered rotor is described by the Duffing type differ-
ential equation system (13) and (14). To determine a pe-
riodic solution with a period equal to the period of exter-
nal action, a method of decomposition of solutions (13) and
(14) into Fourier series with uncertain coefficients is usually
used. The coefficients can be found by the harmonic balance
method (Hayashi, 1964; Szemplinska-Stupnicka, 1968; Ky-
dyrbekuly, 2006), taking into account the finite and usually
small number of terms.

3 Amplitude- and phase-frequency characteristic
and moment of force transmissibility of the
system

Expanding the solutions of the equations of motion (13) and
(14) into the Fourier series with indefinite coefficients, can
verify that the approximation of the solutions with a sim-
ple harmonic and oscillation frequency equal to the disturb-
ing moment frequency is quite satisfactory in the case of the
main resonance. Taking into account the following notation
of the vibration parametersA= A1 and α = α1, the solutions
of the equations of motio (13) and (14) at a first approxima-
tion can be written as

θx = Acos(�t−α), (15)
θy = Asin(�t−α). (16)

After substitution the expressions (15)–(16) in (13)–(14)
and applying the harmonic balance method (Hayashi, 1964;
Szemplinska-Stupnicka, 1968; Kydyrbekuly, 2006), obtain
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Figure 2. Oscillogram θx = θx (t) and θy = θy (t) when K3 =
0.075,µ1 = 0.09,µ3 = 0. Solid lines are the results of a numerical
solution, points are the results of an analytical solution.

the amplitude-frequency and the phase- frequency depen-
dences of the fundamental harmonic{[

(1−H )�2
−

(
K1l

2
−P

)
− 0.75K3l

4A2
]2

+

(
µ1+ 0.75µ3A

2�2
)2
�2
}
A2
=M

2
, (17)

tanα =

(
µ1+ 0.75µ3A

2�2)�
−(1−H )�2+ (K1l2−P )+ 0.75K3l4A2

, (18)

where H = IP− IT is the nominal thickness of the disc.
The formula for the amplitude-frequency characteristic

(17) taking into account the expressions of dimensionless
parameters (10), the critical velocity formula (11), and the
formula for the resulting moment amplitude (12), may be
needed when experimentally determining the values of the
linear damping coefficients µ1 and nonlinear cubic damp-
ing µ3 of the support under the values of the amplitude A
and rotation speeds � of the experimental resonance curve
A= A(�).

The results of numerical solutions of the equations of mo-
tion (13) and (14) of a rotor system with nonlinear rigidity
and the dependency graphs (15) and (16) taking into account
expressions (17) and (18) are presented in Figures 2 and
3 for the following parameters: l = 0.88, P = 0.012, IP =

0.19,IT = 0.1, H = 0.09, ε = 0.91, K1 = 1.19, �= 1.5.
The graphs in Figs. 2 and 3 show a sufficient approxima-

tion of the results of numerical modeling and analytically ob-
tained results.

In the absence of nonlinear terms in Eqs. (13) and (14),
the results for the linear rotor model are obtained from ex-
pressions (17) and (18) (Iskakov and Kalybaeva, 2010).

Figure 3. Oscillogram θx = θx (t) and θy = θy (t) when K3 =
0.075,µ1 = 0.09,µ3 = 0.18. Solid lines are the results of a numer-
ical solution, points are the results of an analytical solution.

With the introduction of additional value notations

1=
(
K1l

2
−P

)
/ (1−H ) ;K3 =K3l

4/ (1−H ) ;

µ1 = µ1/ (1−H ) ,µ3 = µ3/ (1−H ) ;

M =M/ (1−H ) (19)

obtain an expression for the amplitude-frequency and the
phase-frequency characteristics(
ω2
∗−�

2
)2
+

(
µ1�+ 0.75µ3�

3A2
)2
=M2/A2, (20)

tanα =

(
µ1+ 0.75µ3A

2�2)�
1−�2+ 0.75K3A2 , (21)

where the notations are introduced

ω2
∗ = 1+ 0.75K3A

2. (22)

Amplitude-frequency supporting curves typically describe a
relationship between amplitude and frequency of free vibra-
tions of the system without damping (Panovko, 1971). As-
suming the expression M to be equal to zero due to the ex-
ternal moment, and the damping coefficients µ1 and µ3 in
Eq. (20), obtain the equation of the supporting curve for vi-
brations at the fundamental resonance frequency

A=
1

√
0.75K3

√
�2− 1. (23)

Here

�≥ 1.

It can be seen from formula (23) that the supporting curve is a
parabola symmetric about the axis �, the larger the valueK3
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the greater the slope to the right, of the supporting curve For-
mula (23) and the reference curve constructed from it are
important for the experimental determination of the nonlin-
ear stiffness coefficient of the support material K3 from the
intersection point of the reference curve with the resonance
curve A= A(�).

In case when H = 0.99 and moment P of gravitational
force is neglected the amplitude of the centrifugal couple is
M =�2. Solving Eq. (20) with respect to A depending on
� and µ1 at a constant value of µ3 = 0 and depending on �
and µ3 at a constant value of µ1 = 0 with K3 = 0, get

A=
�√(

1−�2
)2
+ (µ1�)2

, (24)

A=

√
3
√
−q/2+

√
Q+

3
√
−q/2−

√
Q, (25)

where

Q= (p/3)3
+(q/2)2,p =

(
1−�2

0.75µ3�3

)2

,q =
1

(0.75µ3�)2 .

If shaft speeds are close to zero, the action of the gravita-
tion moment is more noticeable. Then, if �= 0, the Eq. (20)
takes the following form

(1+ 0.75K3A
2)A= P. (26)

Solutions of Eq. (26) if K3 = 0:

A= P (27)

and if K3 6= 0

A=
3

√√√√ P

1.5K3
+

√(
1

2.25K3

)3

+

(
P

1.5K3

)2

+
3

√√√√ P

1.5K3
−

√(
1

2.25K3

)3

+

(
P

1.5K3

)2

. (28)

Using dimensionless parameters in accordance with formu-
las (10), it is possible to give the following form to ex-
pressions of the projections of moment of transmitted force
(transmissive force)

Mτx = µ1θ
′
x +µ3θ

′3
x +

(
K1l

2
−P

)
θx +K3l

4θ3
x ,

Mτy = µ1θ
′
y +µ3θ

′3
y +

(
K1l

2
−P

)
θy +K3l

4θ3
y . (29)

On the other hand, take the projection of the moment of
transmitted force (29) in a form of the following harmonics

Mτx = Aτ cos(�t −α),

Mτy = Aτ sin(�t −α) (30)

Substituting solutions (15), (16) and (30) into expressions
(29) and taking into account additional notations of values
(19), obtain an expression for determining amplitude of the
moment of transmitted force Aτ depending on the rotation
velocity �, the linear damping coefficient µ1, and the non-
linear damping coefficient µ3:

A2
τ =

(
µ1A�+ 0.75µ3A

3�3
)2
+

(
A+ 0.75K3A

3
)2
. (31)

The moment of force transmissibility is defined as a ratio of
amplitude of the moment of transmitted force to the ampli-
tude of the disturbing moment (Ho et al., 2012):

γ = Aτ /M = Aτ /�
2

=

√[(
µ1A�+ 0.75µ3A3�3

)2
+
(
A+ 0.75K3A3

)2]
/�4. (32)

Introduce a function

f (K3,µ1,µ3,�)=
[(
µ1A�+ 0,75µ3A

3�3
)2

+

(
A+ 0,75K3A

3
)2
]
/�4. (33)

Calculate a derivative of f at � and equate it to zero:

df
d�
= 0. (34)

The solution of Eq. (34) is a certain value �1. If K3 = 0,
this value is equal �1 ≈ 1. It can be shown that the second
derivative of f at � at this point is negative, i.e. the function
f (�) really has the maximum value, while

γmax =
√
f (�1). (35)

If the shaft speed is �= 0 and K3 = 0 the moment of force
transmissibility of the system is

γ =
A

P
= 1 (36)

and if �= 0 and K3 6= 0

γ =
1
P

(
A+ 0.75K3A

3
)

=
1
P



3

√
P

1.5K3
+

√(
1

2.25K3

)3
+

(
P

1.5K3

)2

+
3

√
P

1.5K3
−

√(
1

2.25K3

)3
+

(
P

1.5K3

)2
+

+0.75K3

 3

√
P

1.5K3
+

√(
1

2.25K3

)3
+

(
P

1.5K3

)2

+
3

√
P

1.5K3
−

√(
1

2.25K3

)3
+

(
P

1.5K3

)2

3



. (37)
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Figure 4. Dependence of the vibration amplitude A on the rotor
velocity�with linear stiffness of the support and at different values
of the coefficient of linear viscous damping µ1.

4 Impact of damping on rotor dynamics

The numerical solution of the Eq. (20) and the calculation
from the expression (32) were performed using MathLab
to demonstrate an impact of linear and nonlinear viscous
damping on vibration isolation of the Duffing type rotor sys-
tem. The results are shown in Figs. 4–13. The rotary system
with linear stiffness of the elastic support as described in re-
searches (Peng et al., 2012; Iskakov, 2018a, b) is presented
in Figs. 4–7. In Figures 4 and 5, the elastic support of the
rotor has linear stiffness and linear damping with µ1 = 0.1,
0.2, 0.4. When the parameter of linear damping µ1 increases,
the amplitude of vibrations A and the moment of force trans-
missibility of the system γ in the resonance area near �≈ 1
decrease, and in non-resonance areas, where�� 1 or�≺ 1,
the impacts of µ1 on A and γ are very weak and negligible.
In Figs. 6 and 7, the µ1 value is kept constant at the level
of 0.1, while the cubic damping parameter µ3 takes 0, 0.2,
0.4. In this case, the resonance peak of the fundamental har-
monic at �≈ 1 is significantly suppressed with increasing
µ3, and in the non-resonance area, where �≺ 1 µ3 has vir-
tually no impact on A and γ . However, in the non-resonance
area, where �� 1, it can be seen that an increase in µ3 may
slightly suppress the A vibration amplitude and slightly in-
crease γ .

Figures 8–9 shows the effects of linear damping in case
of nonlinear stiffness of the elastic support. A contrast be-
tween the effects of linear and nonlinear viscous damping
can be observed by comparing Figs. 8–9 with Figs. 10–13,
where the cubic viscous damping coefficient µ3 is 0, 0.2, 0.4
forK3 = 0.05 andK3 = 0.1, respectively. Similar to the case
of pure linear stiffness, the linear viscous damping µ1 again
modifies the resonance area without causing noticeable ef-
fects in non-resonance areas.

To ensure the stable movement, avoiding jumping should
be an important feature of the vibration isolator. Researches
of Ravindra and Mallick (1994) have shown that the jump-
ing phenomena can be eliminated by linear damping. With

Figure 5. Dependence of the moment of force transmissibility of
the system γ on the rotor velocity � with linear stiffness of the
support and at different values of the coefficient of linear viscous
damping µ1.

Figure 6. Dependence of the vibration amplitude A on the rotor
velocity � with linear stiffness of the support and at value of the
coefficient of linear viscous damping µ1 =0.1 and various values
of nonlinear viscous damping coefficient µ3.

pure linear viscous damping, the calculation results in Figs. 8
and 9 show jumps occurring at�= 1.54 and�= 1.52 when
µ1 = 0.1 and µ1 = 0.2 for K3 = 0.1 and µ3 = 0, but when
the level of linear damping increases to µ1 = 0.4, jumps no
longer exist. Nonlinear viscous damping can also take into
account the known jumping phenomenon in the presence
of nonlinear stiffness of the elastic support of the rotor. In
Figs. 10–13, jumps disappear when µ3 increases from 0 to
0.2. A compromise between the use of linear damping to
eliminate the jumping phenomena is in the overwhelming
impact of nonlinear damping on the vibration amplitude in
high velocity areas.

In non-resonance area, where �≺ 1, linear damping µ1
and cubic nonlinear damping µ3 have virtually no impact
on the ability to the isolator absolute displacement. Deriva-
tives dγ

dµ1
≈ 0 and dγ

dµ3
≈ 0, moment of force transferability

of the system γ weakly depends on µ1 and µ3. In the reso-
nance area, where �≈ 1, an increase in either linear damp-
ing µ1 or cubic nonlinear damping µ3 can significantly sup-
press ability to absolute displacement. Derivatives dγ

dµ1
≺ 0
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Figure 7. Dependence of the moment of force transmissibility of
the system γ on the rotor velocity � with linear stiffness of the
support and at value of the coefficient of linear viscous damping
µ1 = 0.1 and various values of nonlinear viscous damping coeffi-
cient µ3.

Figure 8. Dependence of the vibration amplitudeA on the rotor ve-
locity�with nonlinear stiffness coefficient of the supportK3 = 0.1
and at different values of the coefficient of linear viscous damping
µ1.

and dγ
dµ3
≺ 0, with an increase in µ1 and µ3, the moment of

force transmissibility of the system γ decreases. In high ve-
locity area of, where�� 1, an increase in the linear damping
µ1 does not affect the ability to the isolator absolute displace-
ment. Derivative dγ

dµ1
≈ 0, the moment of force transmissibil-

ity of the system γ remains almost unchanged, an increase in
the cubic nonlinear damping µ3 may slightly reduce the abil-
ity to relative displacement and an increase in ability to ab-
solute displacement and the moment of force transmissibility
of the system γ , i.e dγ

dµ3
� 0.

Diagrams for study of the phase-frequency characteristic
of the rotor are shown in Figs. 14–17. When plotting the di-
agrams, the properties of the arctangent function were used.
These diagrams show that in case of linear stiffness of the
support, a rotation of the vibration phase occurs when pass-
ing through the critical velocity, i.e. when �=1 (Figs. 14–
17), and in case of a nonlinear component of stiffness of the
support, a rotation of the vibration phase is observed in a
phenomenon of the amplitude jump, in Figs. 16–17 this cor-

Figure 9. Dependence of the moment of force transmissibility of
the system γ on the rotor velocity � with nonlinear stiffness of the
support K3 = 0.1 and at different values of the coefficient of linear
viscous damping µ1.

Figure 10. Dependence of the vibration amplitude A on the rotor
velocity � with nonlinear stiffness coefficient of the support K3 =
0.05 and at value of the coefficient of linear viscous damping µ1 =
0.1 and various values of nonlinear viscous damping coefficient µ3.

responds to the shaft velocity �= 1.6. The joint impact of
the linear and nonlinear components of the support damping
essentially eliminates the jump phenomenon, which indicates
the rotation of the vibration phase when the shaft velocity is
close to the critical one, i.e. if �≈ 1 (Fig. 17), as in the case
of only linear stiffness of the support (Figs. 14–15).

The results of numerical solutions of the equations of mo-
tio (13) and (14) of a rotor system with nonlinear rigidity
with the output of the A= A(�) dependence for the param-
eters: l = 0.88, P = 0.012, Ip = 0.19, IT = 0.1, H = 0.09,
ε = 0.91, K1 = 1.19 are shown in Figs. 18 and 19. A com-
parison of the graphs in Figs. 18 and 19 shows that nonlinear
damping of the elastic support significantly suppresses the
main resonant amplitude at �≈ 1.57 and completely elim-
inates the height of the vibration amplitude in the region of
the rotation speed �∼ 1.178.
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Figure 11. Dependence of the moment of force transmissibility of
the system γ on the rotor velocity � with nonlinear stiffness coef-
ficient of the support K3 = 0.05 at value of the coefficient of linear
viscous damping µ1 = 0.1 and various values of nonlinear viscous
damping coefficient µ3.

Figure 12. Dependence of the vibration amplitude A on the rotor
velocity � with nonlinear stiffness coefficient of the support K3 =
0.1 at value of the coefficient of linear viscous damping µ1 = 0.1
and various values of nonlinear viscous damping coefficient µ3.

5 Motion stability

Consider motion stability using an approximate theory
(Iskakov, 2018b; Iskakov, 2019; Van Dooren, 1971). The ge-
ometric location of the points at which the amplitude curves
for the oscillations of the principal resonance have vertical
tangents is determined by the equation

d�
dA
= 0. (38)

In accordance with Eq. (20), equality takes place

f1(�,a)=
[(

1+ 0,75K3A
2
−�2

)2

+

(
µ1�+ 0,75µ3�

3A2
)2
]
A2
−�2

= 0. (39)

Differentiated the last Eq. (39) in frequency, obtaining

∂f1

∂�
+
∂f1

∂A

∂A

∂�
= 0. (40)

Figure 13. Dependence of the moment of force transmissibility of
the system γ on the rotor velocity � with nonlinear stiffness coef-
ficient of the support K3 = 0.1 at value of the coefficient of linear
viscous damping µ1 = 0.1 and various values of nonlinear viscous
damping coefficient µ3.

Figure 14. Dependence of the vibration phase α on the rotor speed
� with linear stiffness of the support and at different values of the
coefficient of linear viscous damping µ1.

It follows that

∂�

∂A
=−

∂f1/∂A

∂f1/∂�
. (41)

Condition (36) is approximately satisfied subject to the
equality

∂f1

∂A
= 0. (42)

Equality (42) with allowance for (39) leads to the equation(
1+

3
4
K3A

2
−�2

)(
1+

9
4
K3A

2
−�2

)
+

(
µ1�+

3
4
µ3�

3A2
)(

µ1�+
9
4
µ3�

3A2
)
= 0. (43)

Equation (43) describes the boundary curves of the stability
region for oscillations at the principal resonance frequency.
Therefore, the geometrical location of the points at which
the amplitude curves have vertical tangents determine the
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Figure 15. Dependence of the vibration phase α on the rotor speed
� with linear stiffness of the support and at value of the coefficient
of linear viscous damping µ1 = 0.1 and different values of the non-
linear viscous damping coefficient µ3.

Figure 16. Dependence of the vibration phase α on the rotor speed
� with coefficient of non-linear stiffness of the support K3 = 0.1
and at different values of the coefficient of linear viscous damping
µ1.

boundaries of the stability region (Iskakov, 2018b, 2019; Van
Dooren, 1971).

The solutions of Eq. (43) have the form

A1,2 =



8
9
K3
(
�2
−1
)
−µ1µ3�

4

K2
3+µ

2
3�

6

∓


[

8
9
K3
(
�2
−1
)
−µ1µ3�

4

K2
3+µ

2
3�

6

]2

−
16
27

(
�2
−1
)2
+(µ�1)2

K2
3+µ

2
3�

6


1
2



1
2

. (44)

Equation (43) have real roots (44) under the condition

{
8
9

[
K3

(
�2
− 1

)
−µ1µ3�

4
]}2

�
16
27

[(
�2
− 1

)2
+ (µ�1)2

]
,

Figure 17. Dependence of the vibration phase α on the rotor speed
� with coefficient of non-linear stiffness of the support K3 = 0.1
and at value of the coefficient of linear viscous damping µ1 = 0.1
and different values of the nonlinear viscous damping coefficient
µ3.

Figure 18. Amplitude response of oscillations at K3 = 0.075,
µ1 = 0.09, µ3 = 0.

where

K3

(
�2
− 1

)
� µ1µ3�

4.

The results of calculations by the formula (44) for a rotor
system with the support of cubic non-linear stiffness under
the influence of linear and non-linear damping of the support
are shown in Figs. 20 to 21. Figure 20 were given the bound-
aries of the instability region of an oscillatory system with
non-linear stiffness K3 = 0.2 depending on the rotation ve-
locity� for different values of the linear damping coefficient
µ1 = 0.1; 0.2; 0.4. A slight narrowing of the height of the in-
stability region is observed as the linear damping coefficient
increases from 0.1 to 0.4.

Figure 21 shows the boundaries of the instability region
of an oscillatory system with non-linear stiffness K3 = 0.2
depending on the rotation velocity � for different values of
the non-linear damping coefficient µ3 = 0; 0.01; 0.02. Here
it was take that µ1 = 0.1. This shows that with an increase
the coefficient of nonlinear damping µ3 from 0 to 0.02, not
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Figure 19. Amplitude response of oscillations at K3 = 0.075,
µ1 = 0.09, µ3 = 0,18.

Figure 20. The boundaries of the instability region for a system
with a coefficient of non-linear stiffness of the support K3 = 0.2
and different values of linear viscous damping coefficient µ1.

only the height of the instability region decreases, but also its
width.

6 The dynamics of the experimental rotor

Experimental studies of an effect of the support material on
dynamics of the centrifugal gyroscopic rotor were carried out
on a test unit which is generally shown in Fig. 22, and a flow
chart with all measuring instruments is shown in Fig. 23.

The unit consists of an electrically powered rotor, a chan-
nel for measuring and recording the precession motion per-
formance, a channel for measuring and recording the rotor
shaft speed, a channel for measuring and recording current
in driven electric motor.

The rotor to be studied is made in form of a cylindri-
cal cup made of duralumin D 16 T with a top transpar-
ent PMMA cover. Distance between supports l0 = 0.33 m,
distance from the bottom support to the cup center L=
0.52 m, eccentricity e = 0.2× 10−3 m, cup mass m= 3 kg,
cup weight G= 29.4 N, the rubber support rigidity coeffi-

Figure 21. The boundaries of the instability region for a system
with a coefficient of non-linear stiffness of the support K3 = 0.2
with a linear viscous damping coefficient µ1 = 0.1 and different
values of non-linear viscous damping coefficient µ3.

Figure 22. Test Unit Overview: 1 – centrifuge with rotor, 2 –
F 5034 frequency meter, 3 –H 043.1 electromagnetic oscillograph,
4 – Topaz-3 DC amplifier, 5 – amplifier UT-4 AC amplifier, 6 –
Agate power supply.

cient k1 = 2×104 N m−1. The rotor is mounted on the upper
cone part of the shaft inside the centrifuge (1).

The unit uses an electromagnetic speed sensor, voltage
pulses from which are fed to an input of frequency meter
F 5034 (2) and/or to one of the channels of the electromag-
netic oscillograph H 043.1 (3).

Strain-gauge and variable inductance transducers of dis-
placement were used to record precession motion perfor-
mance. Transducers are coupled by a half-bridge circuit and
are connected to an input of Topaz-3 (4) amplifier. Offset
voltage of the bridge between a movable rotor and variable
inductance transducer of displacement is fed to the input of
UT-4 (5) amplifier and from its output to H 043.1 (3) oscil-
loscope. Supply voltage of Topaz-3 and UT-4 is produced by
Agate (6) power supply unit.

To measure current intensity in circuit of the driving mo-
tor, compensation method was used since the capacity varia-
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Figure 23. Experimental installation flowchart.

tions to be determined are much less than the primary engine
capacity.

Dynamic performance of the rotor motion and parameters
of interaction with the driving motor were read according to
the following procedure.

According to the results of measuring the amplitude of sig-
nals received in H 043.1 (3) oscilloscope, from the strain re-
sistor and inductive sensors through Topaz-3 (4) and UT-4
amplifiers (5), respectively, and according to the readings of
F 5034 (2) frequency meter, the amplitude-frequency perfor-
mance of oscillations of the experimental rotor was read.

Sensitivity and stability of amplifier channels was moni-
tored and precession performance was recorded before and
after each experiment by displacing the rotor shaft from an
equilibrium position towards the sensor using a pusher with
a distance meter. Value of voltage applied to the motor from
LATR-1M laboratory autotransformer was recorded at all
shaft velocities.

Along with determination of the rotor oscillation ampli-
tude and the shaft velocity, the current in the circuit of the
motor was recorded by H 043.1 oscilloscope.

The above operations were repeated at different damping
of upper elastic support and values of radial clearance of
bearing. Changing in damping was achieved by installing the
PTFE support material in one case, and the soft rubber sup-
port material in another one. Changing in radial clearance
was carried out by changing the bearings. Dynamic values of
the rotor motion were compared for two limiting options of
these parameters – a fluoroplastic support and bearings with
0.1 mm clearance in one case and a soft rubber elastic sup-
port and bearings with 0.01 mm clearance in another one.

As can be seen from the above, the measured values were
amplitude and frequency of the rotor precession, shaft speed,
voltage and current in the driving motor circuit.

Figure 24. Amplitude-frequency characteristic of the centrifugal
rotor in different versions of the support material.

Amplitude-frequency characteristics of the rotor measured
for cases of fluoroplastic support, bearings with a clearance
of 0.1 mm and a rubber support, bearings with a clear-
ance of 0.01 mm are shown in Fig. 24. Similar curves were
previously obtained respectively in the papers by Kelzon
and Pryadilov (1965), Tuleshov (1987). Comparison of the
amplitude-frequency characteristic curves shows that the re-
placement of the fluoroplastic material of the support with
rubber damps a resonance curve of the main harmonic in
the area of the critical velocity ω ≈ 68 s−1 and in the high-
velocity area up to the rotation velocity ω = 284 s−1, com-
pletely suppresses a significant elevation of the vibration am-
plitude in the area of the rotation velocity ω ∼ 600 s−1. It
describes a previously undetected peak of much smaller am-
plitude (relative to the above one) in the area of the rotation
velocity of ω ∼ 300 s−1.

Zones of higher vibration amplitudes are not related to
a coincidence of the shaft velocity with one of the rotor
eigenfrequencies, but are related to the ripple frequency of
power in the electric motor because of the limited energy
source power. The presence of modes of coupled vibra-
tions of power and precession amplitude (Felix et al., 2015;
Tuleshov, 1987), at frequencies that are multiples of the fre-
quency of the alternating component of the actuating moment
(628 s−1) can be, along with the nonlinearity of the system
itself, also due to the presence of subharmonics in the time
law of the supply voltage change. The results of the exper-
imental works qualitatively correspond to the results of the-
oretical studies of the impact of nonlinear damping on the
amplitude-frequency characteristic of the rotor, carried out
in the absence of nonlinear stiffness of the elastic support.

Figure 25 presents a dependence of the angular shaft ve-
locity on the tension applied during acceleration and brak-
ing of the engine. The obtained dependence indicates the
quadratic character of an increase in losses in the en-
gine with an increase in its power, which is consistent
with (Vishnevsky, 1955). Significant deviation from this law
when accelerating the rotor in the range of angular veloci-
ties 550 s−1

≺ ω ≺ 700 s−1 and when braking in the range
400 s−1

≺ ω ≺ 600 s−1 indicates the development of a pro-
cess of consuming additional power from the engine (Kelzon
and Pryadilov, 1965). This explains the significant elevation
of the vibration amplitude in the range of angular velocities
550 s−1

≺ ω ≺ 700 s−1 (Fig. 24).
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Figure 25. Dependence of the shaft velocity on the tension applied
to the engine in case of the fluoroplastic material of the rotor sup-
port.

Swinging of the centrifugal rotor by torsional vibrations
occurs due to the cyclicity of the instantaneous power in the
engine when powered from the AC network, i.e., there is a
phenomenon of capture on a ripple frequency of the engine
power. When replacing the support material with rubber, the
movement of an area of increased amplitudes to the area of
the shaft velocity value ω ∼ 300 s−1 is associated with the
development of parametric vibrations in which the most no-
ticeable response is at a frequency twice as low as a fre-
quency of the exciting force (Tondl, 1971).

Thus, selecting the values of the stiffness coefficient k, the
linear damping coefficient µd1 and the coefficient of nonlin-
ear cubic damping µd3 of the support, it is possible to cre-
ate such an elastic support that would have simultaneously
a restoring and damping impact on the resonance amplitude
and enable the rotor to pass painlessly through the critical ve-
locity. The restoring and damping properties of the support
are the principle of operation of the centrifuge elastic sup-
port, which operates based on a gyroscopic rotor, for which
the Kazakhstan patent of invention was obtained (Iskakov
and Kunelbayev, 2018).

The invention is illustrated by drawings in Fig. 26. In
Fig. 26, the driving electric motor (4) with the power take-off
shaft (5) is strengthened on the platform (3) by means of the
cylindrical ring (1) and the brackets (2). The electric motor
shaft is connected to the power take-off shaft by a transient
coupling (6). The driving electric motor with a power take-
off shaft is attached to the frame by a lower hinge (7) and an
upper spring (8) and rubber (9) elastic supports. A cylindri-
cal vessel (10) is mounted on the upper conical part of the
shaft (5) and is held on the shaft (5) by a lock nut (11). The
cylindrical vessel has an internal lining (12) and is closed on
top with a transparent cover (13). To measure characteristics
of the precessional movement, the displacement sensors (14)
are installed on the bracket (2), connected to the control de-
vice by wires (15), (16) and (17). To measure the shaft veloc-

Figure 26. Gyroscopic rotor based centrifuge.

ity (5), a magnetoelectric velocity sensor (18) is used, con-
nected by wires (19) and (20) to the recording device in the
control apparatus. The rotor velocity in the operating modes
is set by the power source voltage regulator.

The electric motor is powered by wires (21) and (22). The
shaft precession amplitude for the operating velocity and at
full fill with liquid is regulated by tightening the spring of
the upper elastic support (8) with the help of a nut (23), de-
pending on the production process and product quality re-
quirements. In this case, a rubber nozzle of the lower elastic
support (9) is selected in such a way that the value of the
vibration isolation coefficient (moment of force transmissi-
bility of the system) of a special resin or rubber material is
acceptable for safe passage through the critical velocity in
case of determining the operating velocity beyond the criti-
cal velocity.

7 Conclusions

The following conclusions can be drawn based on the analy-
sis and discussion of the research results:

The impact of an elastic bearing material with linear vis-
cous damping and with cubic non-linear viscous damping on
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non-linear vibrations of a vertical hard gyroscopic rotor was
studied, taking into account the non-linear stiffness of the
elastic support.

The equations of motion of the rotor were composed based
on the Lagrange’s Equations of Second Kind, which were
reduced to a dimensionless form.

The equations of motion of the rotor were solved by the
harmonic balance method, and the expressions of amplitude-
frequency and phase-frequency characteristics of the funda-
mental harmonic and the expression for determining the mo-
ment of force transmissibility of the system were obtained.

Researches of the amplitude-frequency characteristic de-
pending on the coefficient of linear viscous damping and
nonlinear viscous cubic damping of the elastic support
showed that both linear and nonlinear cubic damping sig-
nificantly suppresses the resonance amplitude of the funda-
mental harmonic, eliminate jumping effect of the nonlinear
system.

In non-resonance areas, an impact of linear damping on
the vibration amplitude is very weak and negligible, and non-
linear cubic damping in an area where the velocity is many
times greater than its critical value can slightly suppress the
amplitude of the rotor vibrations and, therefore, only nonlin-
ear damping can maintain performance of the vibration iso-
lator throughout the entire range of the rotor velocity.

The research results were used when preparing an appli-
cation for a patent for invention of a gyroscopic rotor based
centrifuge to develop a description, abstract and claims. The
invented centrifuge can be used in pharmaceutical and food
industries to effectively intensify the mixing of suspensions
of medicinal herbs, dairy and cultured milk products, other
liquid food products throughout the volume of a container
due to controlled precession.

Data availability. Our main research results prior to this pub-
lication are stored in the following public data repositories:
https://doi.org/10.6567/IFToMM.14TH.WC.OS14.001 (Iskakov,
2015), http://www.proceedings.com/36097.html (Iskakov, 2015),
https://doi.org/10.1007/978-3-319-45450-4 (Iskakov, 2017a),
http://iftomm.net/images/Documents/ConferenceProceedings/
ISMMS2017_Proceedings.compressed.pdf (Iskakov, 2017b),
https://mes2018.aua.am/wp-content/uploads/2019/03/rus.pdf
(Iskakov, 2018), https://doi.org/10.12955/cbup.v6.1319 (Iskakov,
2018a), https://doi.org/10.1007/978-3-030-20131-9 (Iskakov,
2019).
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Appendix A:

Nomenclature

A= vibration amplitude, rad
Aτ = amplitude of the moment of transmitted force, dimensionless
e = linear eccentricity, m
G= disc weight, N
H = nominal thickness of the disc, dimensionless
IP = polar moment of inertia, kg m2

IP = polar moment of inertia, dimensionless
IT = transverse moment of inertia, kg m2

IT = transverse moment of inertia, dimensionless
k1 = coefficient of linear stiffness, N m−1

k3 = coefficient of nonlinear stiffness, N m−3

K3 = coefficient of nonlinear stiffness, dimensionless
l0 = distance between supports, m
L= shaft length, m
m= disc mass, kg
M = amplitude of the resultant moment, dimensionless
α = vibration phase, ◦

γ =moment of force transmissibility, dimensionless
θx,θy = angles, rad
µd1 = coefficient of linear viscous damping, N ms rad−1

µ1 = coefficient of linear viscous damping, dimensionless
µd3 = coefficient of nonlinear cubic viscous damping, N ms3 rad−3

µ3 = coefficient of nonlinear cubic viscous damping, dimensionless
ω = shaft speed, rad s−1

�= shaft speed, dimensionless
ω0 = critical speed, rad s−1
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