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Abstract. A novel transmission with multistage face gears as the core component achieves variable speeds via
differential gear shifting. Single/multistage coupled vibration models have been established in this study to derive
the coupled vibration equation in order to accurately solve the load distribution between the meshing teeth and
the vibration shock between the shifting stages in the transmission process, improve the transmission smoothness
of the face gears during the shifting processing, suppress the resonance of face gears meshing, reduce the noise,
and optimize the power transmission performance. The characterization relationships of the key parameters such
as equivalent mass, rotational inertia, equivalent mesh stiffness, support stiffness, and meshing damping coeffi-
cient to dynamic characteristics were investigated. The linear and nonlinear dynamic characteristics of coupled
vibration differential equations were solved. The influence rules of factors such as integrated transmission error,
dynamic load, tooth surface friction, loading speed, and load on the transmission system were analyzed. The
results of the study provide a theoretical basis for the expansion of field of application of transmission devices.

1 Introduction

The mechanism of multistage face gears integrates the gen-
eral advantages of most planetary transmission devices, and
has a novel structure and flexible arrangement, which can be
widely applied to high-speed or heavy-load fields such as au-
tomobiles, ships, and airplanes. The vibration characteristics
of the device have a significant impact on the transmission
stability and reliability. A significant research work has been
conducted by domestic and foreign scholars to deeply under-
stand the gear dynamic performance. Sakaridis et al. (2019)
investigated the effect of the individual tooth inertia on spur
gear dynamics. A lumped element model was developed, in
which tooth and gear inertial properties were decoupled, with
the incorporation of the meshing position and load depen-
dent meshing stiffness and backlash (Sakaridis et al., 2019).

Tatar et al. (2019) developed six degrees of freedom dynamic
model of a planetary geared rotor system with equally spaced
planets by considering the gyroscopic effects. The dynamic
model was created using a lumped parameter model of the
planetary gearbox and a finite element model of the rotat-
ing shafts using Timoshenko beams (Tatar et al., 2019). Liu
et al. (2019) investigated an excitation pattern of the time-
varying instantaneous center of the noncircular face gear
drive system, wherein a torsional-lateral-axial coupled dy-
namic model of the noncircular face gear system was pre-
sented under the compound parametric excitations of the
time-varying instantaneous center and mesh stiffness (Liu et
al., 2019). Dadon et al. (2019) focused on the fault detec-
tion and characterization based on the vibrations in a spur
gear transmission. The faults were thoroughly analyzed to
understand the fault manifestation in the vibration signature
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and find condition indicators that were robust and sensitive
to the existence and severity of the fault (Dadon et al., 2019).
Yu and Mechefske (2019) defined two types of helical gear
pairs based on the relationship between the transverse con-
tact ratio and overlap the contact ratio, and proposed an im-
proved analytical model using the slicing principle for the
calculation of single mesh stiffness of helical gears (Yu and
Mechefske, 2019). Ren et al. (2018) presented a novel and
generalized bending-torsional-axial coupled dynamic model
of a herringbone planetary gear train (HPGT) to investigate
the dynamic floating performances with the application of the
lumped-parameter approach. The variable step Runge–Kutta
algorithm was utilized to compute the dynamic responses of
the HPGT system (Ren et al., 2018). Saxena et al. (2018)
performed an experimental study to discover the effect of
gear pair contact on the modal behavior of an actual geared
rotor system mounted on the rolling element bearings. The
frequency response functions of the uncoupled and coupled
geared rotor systems were measured to uncover the effect
of gear pair contact on the natural frequencies of the sys-
tem (Saxena et al., 2018). Dong and Hu (2018) established
the bend-torsion coupling dynamics load-sharing model of
the helicopter face gear split torque transmission system by
using the concentrated quality standards, to analyze the dy-
namic load-sharing characteristics, which provided a theo-
retical basis and data support for its dynamic performance
optimization design (Dong and Hu, 2018). Atanasovska and
Hedrih (2018) used a model of a central centric collision of
two fictive rolling disks, with radii equal to the radii of pitch
diameters of coupled gears, in order to describe the vibro-
impact dynamics of spur gears. A set of transmission error
equations for the calculation of the disturbance angular ve-
locity of the pinion was developed; the transmission error
had a role of excitation of vibro-impact vibrations in the gear
tooth contact (Atanasovska and Hedrih, 2018). L. N. Zhang
et al. (2017) proposed a dynamic model of an N-stage power-
split planetary gear set. Natural frequencies and vibration
modes were obtained by solving the eigenvalue problem
governed by the corresponding equations (L. N. Zhang et
al., 2017). Chowdhury and Yedavalli (2017) developed an-
alytical model for the linear vibration analysis of a pair of
coupled spur geared shaft system. The model was a hybrid
discrete-continuous one, wherein the gears were modeled as
rigid disks mounted on the elastic shafts having transverse
as well as torsional flexibilities, and supported by the rigid
bearings. The non-dimensional governing equations along
with the natural boundary conditions were developed using
the Hamilton’s principle (Chowdhury and Yedavalli, 2017).
A. Q. Zhang et al. (2017) established the coupled lateral-
torsional-axial vibration dynamical model of the planetary
gear system under a generalized coordinate system using the
shafting element method. The results indicate that the flexi-
bility of ring-gear had a great effect on the natural frequency
(A. Q. Zhang et al., 2017). Hmida et al. (2017) investigated
a mechanical system composed of an electric motor, an elas-

tic coupling, and one stage spur gear to analyze the dynamic
behavior of elastic coupling, its influence on the natural fre-
quencies, the vibrations, and the response of the system. A
lumped parameter model of the corresponding system was
developed to identify the natural frequencies and vibration
modes (Hmida et al., 2017). Wu et al. (2017) set up a nonlin-
ear vibration model of the gear system with multiple degrees
of freedom, multi-gap, variable parameter, and bending-
torsion coupling by using the mass-concentrated method for
NN-type small tooth-difference planetary gear system. The
nonlinear vibration differential equations deduced by La-
grange equation were solved with the fourth-order Runge–
Kutta-Fehlberg method. MATLAB program was adopted to
systematically analyze the vibration displacement and veloc-
ity response of the gears (Wu et al., 2017). Fernandez-Del-
Rincon et al. (2017) presented a model that could simultane-
ously consider the internal excitations due to variable mesh-
ing stiffness (including the coupling among successive tooth
pairs in contact, non-linearity linked with the contacts be-
tween surfaces and dissipative effects). The model could also
simulate gear dynamics in a realistic torque dependent sce-
nario. The proposed model combined a hybrid formulation
for calculation of meshing forces with a non-linear variable
compliance approach for bearings. The meshing forces were
obtained by means of a double approach which combined
numerical and analytical aspects (Fernandez-Del-Rincon et
al., 2017). Bouslema et al. (2017) aimed at the application
of a substructure methodology, based on the Frequency Re-
sponse Function (FRF) simulation technique, to analyze the
vibration of a stage reducer connected by a rigid coupling
to a planetary gear system. The computation of the vibra-
tion response was achieved by using the FRF-based substruc-
turing method. First of all, the two subsystems were sepa-
rately analyzed and their FRF were obtained. Then, the cou-
pled model was analyzed indirectly using the substructuring
technique (Bouslema et al., 2017). Zhang et al. (2016) first
presented a translational-rotational dynamic model of a two-
stage closed-form planetary gear set under consideration of
the rotational and translational displacements to investigate
the dynamic response and avoid resonance (Zhang et al.,
2016). Xiao et al. (2016) proposed a coupling dynamic model
for multi-stage planetary gears train (PGT) based on the gear-
ing theory and Lagrange equation. The modified transverse-
torsional model was established in the rotating Cartesian co-
ordinates by using the lumped-parameter method; thus, the
model was more accurate than the purely torsional model for
describing the physical dynamics (Xiao et al., 2016). Liu et
al. (2016) performed a systematic analysis of the dynamics
of a helical face-gear system with 8 degrees of freedom un-
der complex excitation. The nonlinear dynamic system was
solved using the Runge–Kutta method. The bifurcation and
dynamic load characteristics of the system were identified
from a series of diagrams. The effect of multi-factor on the
bifurcation diagrams was also analyzed (Liu et al., 2016).
Cai and Lin (2017) presented a generalized nonlinear dy-
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namic model based on Lagrange Bond graphs to study the
nonlinear dynamic characteristics of a curve-face gear drive,
and indicated that the vibration response of the curve-face
gear is more complex than that of the face gear due to the
influence of external excitation (Cai and Lin, 2017). Lin
et al. (2015) established a nonlinear dynamic model of the
twisting vibration of the orthogonal curve-face gear trans-
mission, and presented the nonlinear vibration differential
equation. Using the fourth-order Runge–Kutta numerical in-
tegral method to solve the equation with MATLAB, the dy-
namic response of orthogonal curve-face gear transmission
was obtained (Lin et al., 2015). Peng and DeSmidt (2015)
established a structural dynamics model for the torsional vi-
bration of gearboxes containing a face-gear drive by consid-
ering the flexibilities of gear teeth and transmission shafts.
The face-gear mesh-induced parametric instability phenom-
ena was numerically explored via Floquet theory for various
shaft characteristics and system inertia distributions (Peng
and DeSmidt, 2015). Hu et al. (2015) proposed a fourteen
degree-of-freedom (DOE) lumped parameter dynamic model
considering the coupled translation-rotation vibration. The
jump phenomenon, periodic window, doubling periodic bi-
furcation and chaotic behavior of the system were observed
and a path to chaotic motion through doubling period bifur-
cation motion was also observed (Hu et al., 2015).

These results provide good references and background
for the current study. The multistage face gear transmission
mechanism had steady-state linear and strong nonlinear char-
acteristics because of the effect of the factors such as struc-
tural parameters and excitation. This study aims to establish
a suitable coupled vibration model that is solved via Runge–
Kutta numerical method. The related dynamic performance
was studied from the perspective of linear and nonlinear dy-
namics, and the effects of working conditions, geometry, and
corresponding physical parameters on the dynamic charac-
teristics were deeply analyzed.

2 Establishment of multistage face gears coupled
vibration model

The determination and evaluation of the vibration character-
istics are primary content in the study of gear dynamic char-
acteristics. Owing to the effects of error excitations such as
design, manufacturing, and assembly, the vibration is eas-
ily generated during the transmission process, which affects
the transmission efficiency and performance of the system,
and even leads to broken teeth in serious cases. Therefore,
it is necessary to establish a single/multistage coupled vibra-
tion model of the key components of the transmission system
to derive the expressions of the primary characterization pa-
rameters. Hence, the mechanism, size, and properties of the
main excitation of the transmission system were analyzed,
the vibration responses of the internal and external excitation
were determined. The vibration influence mechanisms of the

Figure 1. Kinematics model of single-stage face gear.

transmission system were also suggested, thus, an optimiza-
tion design method of high-efficiency transmission system
has been proposed.

2.1 Single/Multistage coupled vibration model

The face gear transmission system is composed of cylindrical
gears and face gears meshing with each other. The meshing
dynamics models under elastic support conditions are shown
in Figs. 1 and 2. According to the parameters concentrated
method, the cylindrical gear and face gear are regarded as the
concentrated mass and concentrated inertia. The support axle
is considered a massless rigid body, the bearings and the elas-
tic supports are equivalent to the springs and the dampers. In
the model, there were frictions between the stages of face
gears, and dampers were added for the simulation. In the
transmission process, there were normal dynamic meshing
forces on the meshing teeth surface. According to the load-
ing characteristics of face gears, the radial forces can be neg-
ligible. Similarly, the axial forces of the cylindrical gears are
not working. Kcx and Kcz are the stiffness coefficients of the
cylindrical gear in the x and z directions, respectively. Kfx
and Kfy are the stiffness coefficients of the face gear in the x
and z directions, respectively. Kh is the stiffness coefficient
of the gear pair. Ccx and Ccy are the damping coefficients
of the cylindrical gear in the x and z directions, respectively.
Cfx and Cfy are the damping coefficients of the face gear in
the x and y directions, respectively. Ch is the damping coef-
ficient of the gear pair. eh is the static integrated transmission
error of the gear pair. bh is the backlash of the gear pair. µ
is the time-varying friction coefficient of the gear pair. θcy
and θfz are the torsional angular displacements of cylindrical
gear and face gear, respectively. Tc and Tf are the torques of
cylindrical gear and face gear, respectively. Cf12 and Cf23 are
the damping coefficients of friction and backlash between the
stages of multistage face gears.
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Figure 2. Kinematics model of multistage face gears.

In the transmission process, there was a normal dynamic
meshing force between the two tooth surfaces. There were
circumferential force and radial force on the cylindrical gear,
and the circumferential component force and the axial force
were also generated on the face gears. Therefore, the coupled
vibration model contains seven degrees of freedom:{
xc,zc,θcy,xf,zf,θfx,θfz

}T (1)

Among these:

1. Bending vibration: The translations of cylindrical gear
in x axis and z axis are xc and zc. The translation of face
gear in x axis is xf.

2. Torsional pendulum vibration: The torsional pendulum
of face gear in x axis is θfx .

3. Torsional vibration: The rotation of cylindrical gear in
y axis is θcy . The rotation of face gear in z axis is θfz .

4. Axial vibration: The translation of face gear in z axis is
zf.

When the unilateral constraint condition with impenetrable
contact was introduced, the corresponding dynamic equation
is:{

Mq̈ +Cq̇ +Kq + ςT
q λ= F+Q

ς (q, t)= 0
(2)

In Eq. (2), M, C and K are the generalized mass matrix, gen-
eralized damped matrix, and generalized stiffness matrix, re-
spectively. ς is the constraint equation, λ is the Lagrange
multiplier, Q is the generalized force matrix, and F is the
contact collision force.

2.2 Modeling of coupled vibration equations

According to the force analysis of the teeth, the normal dy-
namic meshing force Fn, and the component forces Fx and
Fz along the coordinate axes x and z are: Fn = km(t)f (dn)+ cmḋn

Fx = Fn cosαn
Fz = Fn sinαn

(3)

In Eq. (3), km(t) is the time-varying meshing stiffness, f (dn)
is the backlash function, cm is the meshing damping, and dn
is the relative displacement in the normal direction.

The face gear is excited by vibration and error during the
transmission process to generate relative displacement in the
normal direction of the meshing points.

dn = (xc+ rcmθcy)cosαn+ zc sinαn− (xf+ rfmθfz)

cosαn− (zf+ rfmθfx) sinαn− en(t) (4)

In Eq. (4), rcm and rfm are the meshing point radii of the
cylindrical gear and face gear, respectively. αn are the normal
pressure angles of meshing points. en(t) is the transmission
error in the normal direction of the face gear.

Dynamic differential equations were established for each
vibration direction of face gear transmission system:

Mcẍc+ ccx ẋc+ kcxxc =−Fx −µf̄µFn sinαn
Mcz̈c+ cczżc+ kczzc =−Fz−µf̄µFn cosαn
Jcy θ̈cy = Tc−Fnrcm+µf̄µLAFn sinαn
Mfẍf+ cfx ẋf+ kfxxf = Fx +µf̄µFn sinαn
Mfz̈f+ cfzżf+ kfzzf = Fz+µf̄µFn cosαn
Jfx θ̈fx + cθfx θ̇fx + kθfx θfx = Fzrfm−µf̄µFn sinαn
Jfzθ̈fz = Fnrfm−Tf+µf̄µrfmFn cosαn

(5)

In Eq. (5), Mc and Mf are the concentrated mass of cylindri-
cal gear and face gear, respectively. kij and cij (i = c,f ;j =
x,z) are the support stiffness and damping of the cylindri-
cal gear or face gear along the x and z axes, respectively.
Jcy is the rotational inertia of the cylindrical gear along the
y axes. Jfx and Jfz are the rotational inertias of face gear
in the x and z axes, respectively. Tc is the input torque act-
ing on the cylindrical gear. Tf is the load torque acting on
face gear. cθfx and kθfx are the damping and torsional pendu-
lum vibration stiffness of face gear in the x axis, respectively.

LA =

√
r2

ca− r
2
cb− εscb+ ncrcbt is the friction arm. rcb and

rca are the base radius and addendum radius of the cylindri-
cal gear, respectively. ε is the overlap ratio of the gear pair.
scb is the base tooth pitch. nc is the speed of the cylindrical
gear. f̄µ = sign(LA− rcb tanαn) is the direction function of
the frictional force.

3 Solving of coupled vibration differential equation
of face gear

In order to reduce the vibrational degree of freedom in the
system, it is necessary to simultaneous the torsional vibration
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equations:{
Jcy θ̈cy = Tc−Fnrcm+µf̄µLAFn sinαn
Jfzθ̈fz = Fnrfm−Tf+µf̄µrfmFn cosαn

(6)

After rewriting: rcmθ̈cy =
Tc−Fnrcm+µf̄µLAFn sinαn

Jcy
rcm

rfmθ̈fz =
Fnrfm−Tf+µf̄µrfmFn cosαn

Jfz
rfm

(7)

Hence,

rcmθ̈cy − rfmθ̈fz =
Tc−Fnrcm

Jcy
rcm−

Fnrfm−Tf

Jfz
rfm

+
µf̄µLAFn sinαn

Jcy
rcm

−
µf̄µrfmFn cosαn

Jfz
rfm (8)

The first and second derivative ḋn, d̈n of displacement dn in
the normal direction of mesh points are introduced:
ḋn = (ẋc− ẋf)cosαn+ (rcmθ̇cy − rfmθ̇fz)cosαn
+(żc− żf− rfmθ̇fx) sinαn− ėn(t)

d̈n = (ẍc− ẍf)cosαn+ (rcmθ̈cy − rfmθ̈fz)cosαn
+(z̈c− z̈f− rfmθ̈fx) sinαn− ën(t)

(9)

Equation (8) is substituted and rearranged as:

d̈n = (ẍc− ẍf)cosαn+

(
Tc−Fnrcm

Jcy
rcm−

Fnrfm−Tf

Jfz
rfm

+
µf̄µLAFn sinαn

Jcy
rcm−

µf̄µrfmFn cosαn

Jfz
rfm

)
cosαn

+ (z̈c− z̈f− rfmθ̈fx) sinαn− ën(t)
(10)

Me is substituted and rearranged as:

Med̈n−Me(ẍc− ẍf)cosαn−Me(z̈c− z̈f) sinαn

+Meën(t)=
MeTcrcm cosαn

Jcy
+

MeTfrfm cosαn

Jfz

+
Meµf̄µLArcmFn sinαn cosαn

Jcy

−
Meµf̄µr

2
fmFncos2αn

Jfz

− cosαnFn−Merfmθ̈fx sinαn

(11)

Let F′cy =
MeTcrcm cosαn

Jcy
, F′fz =

MeTfrfm cosαn
Jfz

, F′′cy =
Meµf̄µLArcmFn sinαn cosαn

Jcy
, F′′fz =

Meµf̄µr
2
fmFncos2αn
Jfz

be sub-
stituted and simplified as:

Med̈n−Me(ẍc− ẍf)cosαn−Me(z̈c− z̈f) sinαn+Meën(t)

= F′cy +F′fz+F′′cy −F′′fz− cosαnFn−Merfmθ̈fx sinαn

(12)

Then, the coupled vibration equation can be reduced to six
degrees of freedom:



Mcẍc+ ccx ẋc+ kcxxc =−Fx −µf̄µFn sinαn
Mcz̈c+ cczżc+ kczzc =−Fz−µf̄µFn cosαn
Mfẍf+ cfx ẋf+ kfxxf = Fx +µf̄µFn sinαn
Mfz̈f+ cfzżf+ kfzzf = Fz+µf̄µFn cosαn
Jfx θ̈fx + cθfx θ̇fx + kθfx θfx = Fzrfm−µf̄µFn sinαn
Med̈n−Me(ẍc− ẍf)cosαn−Me(z̈c− z̈f) sinαn+Meën(t)
= F′cy +F′fz+F′′cy −F′′fz− cosαnFn−Merfmθ̈fx sinαn

(13)

In the process of solving the differential equation of the gear
coupling vibration, the torsional pendulum vibration has a
little influence on the gear transmission system, so it can be
neglected. The coupled vibration equation was reduced to
five degrees of freedom. Equation (3) is introduced and re-
arranged as:



Mcẍc+ ccx ẋc+ kcxxc =−(cosαn+µf̄µ sinαn)Fn
Mcz̈c+ cczżc+ kczzc =−(sinαn−µf̄µ cosαn)Fn
Mfẍf+ cfx ẋf+ kfxxf = (cosαn+µf̄µ sinαn)Fn
Mfz̈f+ cfzżf+ kfzzf = (sinαn+µf̄µ cosαn)Fn
Med̈n−Me(ẍc− ẍf)cosαn−Me(z̈c− z̈f) sinαn
+Meën(t)= F′cy +F′fz+F′′cy −F′′fz− cosαnFn

(14)

Due to the large magnitude of differences between the physi-
cal quantities, a numerical solution is extremely difficult, and
it is also challenging to select the step size and control the
error. Therefore, it is necessary to adopt the dimensionless
normalization to the coupled vibration equation. Assuming
that the natural frequency of the dynamic model of face gear
pair is:

Nf =

√
k̄cm/Me (15)

The dimensionless excitation frequency ND and the time in-
dependent variable τ are respectively defined as:

{
ND = ωi/Nf
τ =Nft

(16)
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The results of the dimensionless transformation of the new 5
degrees of freedom coupled vibration equation are:



d2xdc
dτ 2 +

ccx
MdcNf

dxdc
dτ +

kcx
MdcN

2
f
xdc

−(cosαn+µf̄µ sinαn) knf (τ )
MdcN

2
f
fb(dd)

−(cosαn+µf̄µ sinαn) ccf
MdcNf

ddd
dτ = 0

d2zdc
dτ 2 +

ccz
MdcNf

dzdc
dτ +

kcz
MdcN

2
f
zdc

+(sinαn−µf̄µ cosαn) knf (τ )
MdcN

2
f
fb(dd)

+(sinαn−µf̄µ cosαn) ccf
MdcNf

ddd
dτ = 0

d2xdf
dτ 2 +

cfx
MdfNf

dxdf
dτ +

kfx
MdfN

2
f
xdf

−(cosαn+µf̄µ sinαn) knf (τ )
MdfN

2
f
fb(dd)

−(cosαn+µf̄µ sinαn) ccf
MdfNf

ddd
dτ = 0

d2zdf
dτ 2 +

cfz
MdfNf

dzdf
dτ +

kfz
MdfN

2
f
zdf

+(sinαn−µf̄µ cosαn) knf(τ )
MdfN

2
f
fb(dd)

+(sinαn−µf̄µ cosαn) ccf
MdfNf

ddd
dτ = 0

d2dd
dτ 2 −

(
d2xdc
dτ 2 −

d2xdf
dτ 2

)
cosαn−

(
d2zdc
dτ 2 −

d2zdf
dτ 2

)
sinαn

=
F′cy+F′fz+F′′cy−F′′fz

MdeN
2
f

−
knf(τ )cosαn

MdeN
2
f
fb(dd)

−
ccf(τ )cosαn

MdeNf

ddd
dτ −

1
N2

f
ënf (τ )

(17)

The static integrated transmission error equation is intro-
duced and derivative is taken:{
ėnf(τ )= erωi cos(ωiτ +ϕipa)
ënf (τ )=−erω2

i sin(ωiτ +ϕipa)
(18)

Let Acx =
ccx

2MdcNf
, Adc =

ccf
2MdcNf

, Bcx =
kcx

MdcN
2
f

, Bdc =

knf(τ )
MdcN

2
f

; Acz =
ccz

2MdcNf
, Bcz =

kcz
MdcN

2
f

; Afx =
cfx

2MdfNf
, Adf =

ccf
2MdfNf

, Bfx =
kfx

MdfN
2
f

, Bdf =
knf (τ )
MdfN

2
f

; Afz =
cfz

2MdfNf
, Bfz =

kfz
MdfN

2
f

; Bde =
knf(τ )

MdeN
2
f

, Ade =
ccf(τ )

2MdeNf
, C =

F′cy+F′fz+F′′cy−F′′fz
MdeN

2
f

,

D =
erω

2
i sin(ωiτ+ϕipa )

bk
.

Then, the dimensionless coupling vibration differential
equation of the face gear can be expressed as:



d2xdc
dτ 2 +2Acx

dxdc
dτ +Bcxxdc

−(cosαn+µf̄µ sinαn)Bdcfb(dd)
−2(cosαn+µf̄µ sinαn)Adc

ddd
dτ = 0

d2zdc
dτ 2 +2Acz

dzdc
dτ +Bczzdc

+(sinαn−µf̄µ cosαn)Bdcfb(dd)
+2(sinαn−µf̄µ cosαn)Adc

ddd
dτ = 0

d2xdf
dτ 2 +2Afx

dxdf
dτ +Bfxxdf

−(cosαn+µf̄µ sinαn)Bdffb(dd)
−2(cosαn+µf̄µ sinαn)Adf

ddd
dτ = 0

d2zdf
dτ 2 +2Afz

dzdf
dτ +Bfzzdf

+(sinαn−µf̄µ cosαn)Bdffb(dd)
+2(sinαn−µf̄µ cosαn)Adf

ddd
dτ = 0

d2dd
dτ 2 −

d2xdc
dτ 2 cosαn+

d2xdf
dτ 2 cosαn−

d2zdc
dτ 2 sinαn

+
d2zdf
dτ 2 sinαn+Bde cosαnfb(dd)

+2Ade cosαn
ddd
dτ = C+D

(19)

The solution of the coupled vibration differential equation of
face gear usually discretizes the time. A certain step length
should be selected to obtain the relationship of accelera-
tion, velocity, and displacement at every moment. Thereafter,
integration is performed directly in steps to finally obtain
both the transient and steady state solutions. When the ef-
fects of damping force, alternating excitation, and gear back-
lash are not considered, the integral initial values of steady
state vibration can be obtained using the variable step length
method. However, the face gear with double crown surface
has a complex tooth surface structure, which is affected by
the contact characteristics of the crown structure and the gear
backlash. The meshing stiffness of the point contact is time-
varying, wherein, it is difficult to carry out the complete nu-
merical analysis. Therefore, the vibration of the face gear has
strong nonlinear characteristics. Even if the linear model can
well approximate the vibration response of the real system,
it can only be used as a simplified model that reflects the real
system. It is demanding to maintain the stability and relia-
bility under the influence of various nonlinear errors, and its
vibration characteristics are also difficult to predict.

A reduced order processing for differential equations was
performed by introducing the state variable λ(τ ), as a result,
the Eq. (19) can be transformed into 10 first-order differential
equations.

λ(τ ) = {λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8,λ9,λ10}
T

= {xdc, ẋdc,zdc, żdc,xdf, ẋdf,zdf, żdf,dd, ḋd}
T (20)
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which are:

λ̇1 = λ2
λ̇2 =−2Acxλ2−Bcxλ1+ (cosαn

+µf̄µ sinαn)Bdcfb(λ9)
+2(cosαn+µf̄µ sinαn)Adcλ10

λ̇3 = λ4
λ̇4 =−2Aczλ4−Bczλ3

−(sinαn−µf̄µ cosαn)Bdcfb(λ9)
−2(sinαn−µf̄µ cosαn)Adcλ10

λ̇5 = λ6
λ̇6 =−2Afxλ6−Bfxλ5

+(cosαn+µf̄µ sinαn)Bdffb(λ9)
+2(cosαn+µf̄µ sinαn)Adfλ10

λ̇7 = λ8
λ̇8 =−2Afzλ8−Bfzλ7− (sinαn

−µf̄µ cosαn)Bdffb(λ9)
−2(sinαn−µf̄µ cosαn)Adfλ10

λ̇9 = λ10
λ̇10 = cosαnλ̇2+ sinαnλ̇4

−cosαnλ̇6− sinαnλ̇8−Bde cosαnfb(λ9)
−2Ade cosαnλ10− (C+D)

(21)

4 Analysis of linear dynamic characteristics of face
gear

Neglecting the time-variation of the meshing stiffness, set-
ting as average meshing stiffness and setting the mesh-
ing backlash to 0 mm, hence, the dimensionless coupled
vibration equation can be defined as a linear differential
equation. The linear characteristics of face gear were an-
alyzed by the 4–5-order Runge–Kutta algorithm, which is
the ODE45 variable step integral method in MATLAB. The
main structural parameters of the gears are: tooth numbers
Zc = 17, Zf = 56/68/80. Modulus m= 2 mm. Pressure An-
gle αn = 20◦. Input torque Tc = 100 Nm. The dimensionless
parameters of the vibration differential equation are assumed
as: Acx = Acz = 0.0261, Adc = 0.093, Bcx = Bcz = 0.0809,
Bfx = Bfz = 0.0071, Bdc = 0.5509, Afx = Afz = 3.2383×
10−4, Adf = 3.8986× 10−4, Bdf = 0.0231, Bde = 0.8806,
Ade = 0.0149, C = 3.3982×10−5, andD = 5.1342×106

×

sin(wiτ ). At the same time, the friction coefficient is defined
as 0 and the load is 0. Under these conditions, the phase di-
agram and Poincare section were introduced to analyze the
linear dynamic characteristics, as shown in Fig. 3.

Under the condition of without load, the time-history re-
sponse of the system was a simple harmonic motion. The
vibration displacement of the cylindrical gear was large at
startup, and tended to be stable after a certain period of time.
The face gear also presented a relatively stable period simple
harmonic. The phase diagram is a plurality of closed elliptic
curves that is expressed as a period response. The Poincare
diagram is a number of discrete points.

4.1 Influence of variable speed stage number on the
linear dynamics characteristics of the system

Other parameters were unchanged, the teeth number of the
face gear were switched to the 1st, 2nd or 3rd stage, respec-
tively, the corresponding equivalent mass, rotational inertia
and gear ratio change accordingly. The displacement curves,
phase diagrams, and Poincare diagrams of the linear dynam-
ics are shown in Figs. 4, 5, and 6.

As per Figs. 4, 5, and 6, under the conditions without ex-
ternal excitation, the phase diagrams of face gears in all the
stages were closed curves, which indicate that all the stages
had stable vibration period characteristics. After inputting
torque and speed, the system reached a stable state in an
extremely short time-history, and its vibration displacement
was also weak, which indicates that the multistage face gears
system can achieve stable meshing transmission.

4.2 Influence of friction coefficient on linear dynamic
characteristics of the system

Taking the 2nd face gear pair as the object, the other parame-
ters remained unchanged, while the friction coefficients were
set to 0.1, 0.5, and 1, respectively. Inspite of free idling of the
other two stages face gears, there was still friction damping.
It was necessary to define additional friction coefficients in
the 1st stage and 3rd stage to be 0.01, and the 2nd stage to be
0.02. The displacement curves, phase diagrams, and Poincare
diagrams of the linear dynamics are shown in Figs. 7, 8,
and 9.

As per Figs. 7, 8, and 9, the elastic deformation was gen-
erated in gears during the meshing process, which led to the
collision of the newly meshed gear teeth, thus, generating
the pulse power. The meshing frequency includes not only
the fundamental frequency vibration but also high harmonic
vibration. The friction between two meshing teeth would
also induce self-excited vibration under certain conditions.
The meshing process is a comprehensive transient excitation,
which causes the gear to attenuate free vibration. As the fric-
tion coefficient becomes larger, the vibration displacement
increasingly deviates from the meshing trajectory. When the
friction coefficient was less than 0.1, the vibration character-
istics changed from single cycle to double cycle, and then,
to quasi-periodic cycle. When the same was greater than 0.1,
the vibration displacements in the x and z directions were
gradually towards the same direction under the influence of
friction damping. The Poincare diagram is presented as a
complex set of points. Therefore, reasonable gear materials
and appropriate tooth surface processing technology should
be used to enhance the surface quality and reduce the tooth
surface friction.
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Figure 3. Displacement, phase, and Poincare diagrams of linear system.

Figure 4. Displacement, phase, and Poincare diagrams of 1st stage face gear pair.
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Figure 5. Displacement, phase, and Poincare diagrams of 2nd stage face gear pair.

Figure 6. Displacement, phase, and Poincare diagrams of 3rd stage face gear pair.

4.3 Influence of integrated meshing stiffness on linear
dynamic characteristics of the system

Taking the 2nd face gear pair as the object, other param-
eters remained unchanged. The friction coefficient was set
to 0.01, when the input torque is set to 100, 500, and

1000 Nm−1 respectively. The integrated meshing stiffness of
the corresponding face gears pairs were 9.852× 107 Nm−1,
5.7617×107 Nm−1, and 4.5731×107 Nm−1. The displace-
ment curves, phase diagrams, and Poincare diagrams of the
linear dynamics are shown in Figs. 10, 11 and 12.
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Figure 7. Displacement, phase, and Poincare diagrams of friction coefficient 0.1.

Figure 8. Displacement, phase, and Poincare diagrams of friction coefficient 0.5.

The integrated meshing stiffness is directly related to the
input torque and the load deformation. As per Figs. 10, 11
and 12, the vibration displacement amplitude increased with
the reduction of the integrated meshing stiffness. Owing to
the frictional damping, the degree of vibration displacement

increasingly deviated from the meshing trajectory. The phase
diagram is multiple spiral curves that is expressed as a quasi-
periodic response, while the Poincare diagram is a number of
irregular discrete points.
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Figure 9. Displacement, phase, and Poincare diagrams of friction coefficient 1.

Figure 10. Displacement, phase, and Poincare diagrams of comprehensive meshing stiffness 9.852×7 Nm−1.

4.4 Influence of loading speed on linear dynamic
characteristics of the system

Taking the 2nd face gear pair as the object, the friction coef-
ficient was 0.01, when the input torque was 100 Nm−1, other
parameters remained unchanged, the loading speed was set to

300, 500, 1000, and 3000 r min−1, respectively, and the cor-
responding meshing angle frequency changed accordingly.

After inputting speed excitation, the linear system gen-
erated periodic oscillations, which then decayed to a stable
vibration state. Larger the input speed, longer was the os-
cillation period, and larger was the vibration displacement
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Figure 11. Displacement, phase, and Poincare diagrams of comprehensive meshing stiffness 5.7617× 107 Nm−1.

Figure 12. Displacement, phase, and Poincare diagrams of comprehensive meshing stiffness 4.5731× 107 Nm−1.

amplitude. The phase diagram presents stable multiple spi-
ral curves after oscillation, whose stability history can be
considered as a quasi-periodic response. The Poincare di-
agram is a number of discrete points, which are concen-

trated to turnaround in a trajectory area when the speed was
300 r min−1.
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4.5 Influence of excitation frequency on linear dynamic
characteristics of the system

Taking the 2nd face gear pair as the object, the friction coef-
ficient was 0.01, the input torque was 100 Nm−1, the load-
ing speed was 300 r min−1, while the other parameters re-
mained unchanged. The dimensionless excitation frequen-
cies were extracted with 0.1648, 0.0699, 0.0537, 0.0492,
0.0453, and 0.0438 Hz, respectively. The corresponding first
six order natural frequencies were 3239.9, 7644.8, 9943.5,
10 852, 11 800, and 12 193 Hz. The displacement curves,
phase diagram, and Poincare diagram of the linear dynamic
with dimensionless excitation frequencies 0.1648 is shown
in Fig. 13 (limited to space, others are not listed).

As per Fig. 13, the dimensionless excitation frequency
is related to the angular velocity frequency. Similarly, for
different frequencies’ diagrams, under the condition of in-
putting a certain speed, as the excitation frequency de-
creased, the vibration attenuation period of the linear system
became longer. The vibration period also became longer after
meshing stability, but the vibration displacement amplitude
did not change significantly. The phase diagram present sta-
ble multiple spiral curves after oscillation, while the Poincare
diagram is a number of irregular discrete points.

5 Analysis of nonlinear dynamic characteristics of
face gear

The linear model can well approximate the real system dy-
namics behavior in normal conditions, but overall, it is a sim-
plified model, wherein, it is difficult to obtain a stable and re-
liable linear approximation (Atanasovska, 2017; Zajicek and
Dupal, 2017). Especially, in the analysis of long time-history,
the extremely weak nonlinear factors that simplify or even ig-
nore often lead to some unpredictable errors. In general, the
simple harmonic motion of the nonlinear system still con-
tains multiple frequency vibration phenomenon with period-
icity (or multiple periodicity), but it does not necessarily have
the same frequency with the simple harmonic excitation. Un-
der certain excitations, there are several kinds of steady-state
vibration characteristics, which make the prediction of the
nonlinear dynamic response extremely difficult. Therefore,
it is necessary to study the nonlinear dynamics of face gear
transmission system, to explore the effect of the main non-
linear factors, in order to reveal the complete dynamic be-
havior as much as possible. For the multistage face gears
transmission system, the teeth surface morphology was re-
constructed (or modified) with double crown structure, there
were inevitable machining and assembly errors that resulted
in a randomly changing gear backlash during the meshing
process. Moreover, the double crown tooth surface was diffi-
cult for machining, and the frictional response of each tooth
surface may cause a certain degree of aperiodic mutation be-
cause of the jumping and wear of teeth in the meshing con-
tact area. And it is coupled with time-varying meshing stiff-

ness, damping and external excitation to form a gear dynam-
ics with strong nonlinear characteristics. In this section, the
influence of nonlinear dynamic characteristics would be an-
alyzed through the characterization factors such as variable
speed stages, friction coefficient, transmission error, excita-
tion frequency, and time-varying stiffness.

With the factors such as the time-variation of the
meshing stiffness, the elastic deformation characteristics
of the dynamic points contact, the gear backlash, the
damping force, the alternating excitation, and the fric-
tional characteristics of the tooth surface, the dimension-
less coupled vibration equations can be defined as non-
linear differential equations. Assuming that the dimen-
sionless parameters of the vibration differential equation
are:Acx = Acz = 0.0261,Adc = 0.093,Bcx = Bcz = 0.0809,
Bfx = Bfz = 0.0071, Bdc = 0.5509, Afx = Afz = 3.2383×
10−4, Adf = 3.8986× 10−4, Bdf = 0.0231, Bde = 0.8806,
Ade = 0.0149, C = 3.3982×10−5, andD = 5.1342×106

×

sin(wiτ ). Using the 4–5-order Runge–Kutta method, with the
friction coefficient as 0.02 and the load as 50 Nm−1, the non-
linear characteristics of face gears were analyzed, as shown
in Fig. 14.

From Fig. 14, under certain load conditions, the response
of system is a simple harmonic motion with oscillations in
the initial period of the time-history. The vibration displace-
ment of the cylindrical gear was large at startup, and tended
to be stable after a period of time. The face gear also pre-
sented a relatively stable period simple harmonic. The phase
diagram is a plurality of intertwined curves but not crossed,
not repeated, and not closed, which is expressed as a quasi-
period response. The Poincare diagram is a number of dis-
crete points.

5.1 Influence of variable stage numbers on the
nonlinear dynamic characteristics of the system

Other parameters remained unchanged, the teeth number of
the face gear was switched to the 1st, 2nd, or 3rd stage, re-
spectively, while the corresponding equivalent mass, rota-
tional inertia, and gear ratio were changed accordingly. The
displacement curves, phase diagrams, and Poincare diagrams
of the nonlinear dynamics are shown in Figs. 15, 16 and 17.

As per Figs. 15, 16, and 17, under the conditions without
external excitation, the vibration displacement period of the
face gears in all the stages decreased with the increase in the
transmission ratio. Because of the gear backlash, the vibra-
tion displacement amplitudes of the cylindrical gears gener-
ated a certain degree of jumping. The phase diagrams of the
nonlinear system is a plurality of intertwined curves but not
crossed, not repeated, and not closed, which indicates that
there are relatively stable quasi-period characteristics.
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Figure 13. Displacement, phase and Poincare diagrams of linear system with excitation frequency 0.1648 Hz.

Figure 14. Displacement, phase, and Poincare diagrams of nonlinear system.
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Figure 15. Displacement, phase, and Poincare diagrams of 1st stage face gear pair nonlinear system.

Figure 16. Displacement, phase, and Poincare diagrams of 2nd stage face gear pair nonlinear system.

5.2 Influence of friction coefficient on the nonlinear
dynamic characteristics of the system

Taking 2nd face gear pair as the object, other parameters re-
mained unchanged, the friction coefficient was set to 0.5,

1 and 2 respectively. Because of free idling of the other
two stages face gears, but there were still friction damping.
Hence, it was necessary to define additional friction coeffi-
cients in 1st stage and 3rd stage face gears to be 0.01, and
the 2nd stage to be 0.02. The displacement curve, phase dia-
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Figure 17. Displacement, phase, and Poincare diagrams of 3rd stage face gear pair nonlinear system.

gram, and Poincare diagram of the nonlinear dynamics with
friction coefficient 0.5 are shown in Fig. 18 (limited to space,
others are not listed).

From Fig. 18, in the nonlinear system, the friction be-
tween the two meshing teeth can induce self-excited vibra-
tions under certain conditions, and because of the gear back-
lash and frictional damping, the gears generated attenuation
free vibration accompanied with contact impact. Similarly, as
the friction coefficient became larger, the vibration displace-
ment increasingly deviates from the meshing trajectory. The
trend is basically consistent with the linear systems, when
the friction coefficient was less than 0.1, the vibration char-
acteristics changed from single cycle to double cycle, and
then to quasi-periodic cycle. When greater than 0.1, the vi-
bration displacements in the x and z directions were gradu-
ally towards the same direction under the influence of fric-
tion damping. The phase diagram is a non-closed curve with
multiple spirals. The Poincare diagram is presented as an ir-
regular set of points.

5.3 Influence of transmission error on nonlinear
dynamic characteristics of the system

Taking 2nd face gear pair as the object, the friction coeffi-
cient was 0.01, the input torque was 100 Nm−1, the load-
ing speed was 300 r min−1, while the other parameters re-
mained unchanged. The transmission error fluctuation val-
ues were extracted as 0, 0.1, 0.25, and 0.5, respectively. The
displacement curve, phase diagram, and Poincare diagram of

the nonlinear dynamics with transmission error 0.1 is shown
in Fig. 19 (limited to space, others are not listed).

As per Fig. 19, when the transmission error was 0.1, the
nonlinear system has significant periodic attenuation har-
monic motion. The phase diagram is a non-closed spiral
curve, and the Poincare diagram is a number of discrete
points set concentrating in four regions. Similarly, as the
transmission error increased, the vibration displacement gen-
erated different degrees of jumping during the simple har-
monic motion, whose amplitude also increases accordingly.
The phase diagram is a plurality of intertwined and crossed
curves combination but neither repeated nor closed. The
Poincare diagram mush appears as a number of irregular dis-
crete points.

5.4 Influence of excitation frequency on nonlinear
dynamic characteristics of the system

Taking 2nd face gear pair as the object, the friction coeffi-
cient was 0.01, the input torque was 100 Nm−1, the trans-
mission error fluctuation value was 0.18, while the other
parameters remained unchanged. The dimensionless excita-
tion frequency was extracted as 0.1648, 0.2747, 0.5495, and
1.6484 Hz, respectively. The displacement curves, phase dia-
grams, and Poincare diagrams of the nonlinear dynamics are
shown in Figs. 20, 21, 22 and 23.

As per Figs. 20, 21, 22 and 23, when the excitation fre-
quency was small, for instance 0.1648, the vibration dis-
placement was a periodic non-harmonic response, which is
accompanied with the oscillation attenuation process in the
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Figure 18. Displacement, phase, and Poincare diagrams of nonlinear system with friction coefficient 0.5.

Figure 19. Displacement, phase, and Poincare diagrams of nonlinear system with transmission error fluctuation value 0.1.

initial period of time-history. When the excitation frequency
was 0.2747, the vibration displacement of cylindrical gear
reached a stable periodic harmonic response, but face gear
still presented a periodic non-harmonic response. The phase
diagram is a plurality of non-closed elliptic curves that can

be expressed as a quasi-periodic vibration. The Poincare
diagram forms a circular area with distinct identification.
When the excitation frequency was 0.5495, the vibration dis-
placement of the cylindrical gear presented periodic fluc-
tuation characteristic after oscillation attenuation, and the
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Figure 20. Displacement, phase, and Poincare diagrams of nonlinear system with excitation frequency 0.1648.

Figure 21. Displacement, phase, and Poincare diagrams of nonlinear system with excitation frequency 0.2747.

face gear also tended to harmonic vibration. The phase di-
agram is a heart-shaped curve region formed by a plural-
ity of non-circular and non-closed curves, which can be ex-
pressed as a quasi-periodic vibration response characteris-
tic. The Poincare diagram is a number of discrete points

that gradually diverged. When the excitation frequency was
1.6484, the vibration displacements of cylindrical gear and
face gear were both the periodic harmonic response, and the
phase diagram is a non-circular closed curves set similarly
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Figure 22. Displacement, phase, and Poincare diagrams of nonlinear system with excitation frequency 0.5495.

Figure 23. Displacement, phase, and Poincare diagrams of nonlinear system with excitation frequency 1.6484.
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in shape as a curl. The Poincare diagram is a set of irregular
discrete points.

6 Conclusion

In this study, single/multistage coupled vibration models
were established to derive the coupled vibrations equations.
The phonetic relationships of the key parameters such as
equivalent mass, rotational inertia, equivalent mesh stiffness,
support stiffness, and meshing damping coefficient to dy-
namic characteristics were studied. The influence rules of the
factors such as integrated transmission error, dynamic load,
tooth surface friction, loading speed, and load on the trans-
mission system were analyzed. Thus, the linear and nonlinear
dynamic characteristics of the coupled vibration differential
equations were revealed.

1. The single/multistage coupled vibration models were
established using the parameters concentrated method.
7 degrees of freedom vibration equations such as bend-
ing vibration, torsional vibration, torsional vibration,
and axial vibration were established according to the
meshing relationship. The primary characterization pa-
rameters such as equivalent mass, integrated meshing
stiffness, support stiffness and equivalent damping were
defined and described. At the same time, the conditions
and the main inducing factors of internal excitation or
external excitation of the transmission system were also
clarified. Thus, a dynamic model suitable for the multi-
stage face gears transmission has been established and
optimized.

2. The vibration equation was processed by reducing the
degrees of freedom, and the corresponding parame-
ters were subjected to dimensionless normalization. The
ODE45 integral method was introduced to solve the vi-
bration equations. The linear and nonlinear vibration
conditions were defined, and the effects of various pa-
rameters or excitations of the linear or nonlinear system
were analyzed in detail to accurately solve the vibra-
tion performance and power transmission performance
of the transmission system.

3. The linear dynamic characteristics can approximate the
vibration response of the real system, but it can only be
expressed as a simplified model. It is difficult to main-
tain the stability and reliability under the influence of
various nonlinear errors, and its vibration characteris-
tics are also difficult to predict. Therefore, the accuracy
of the analysis results for the dynamic characteristics of
the transmission system can be improved by compre-
hensively synthesizing the interaction of nonlinear fac-
tors such as external excitation and internal excitation.
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