which is a function of motion variable ϕ and shape parameters α, β and θ. We take the derivative of f with respect to motion variable ϕ and let it equal to zero

$$f' = -as\alpha c(\phi - \beta) + hs\alpha s (\phi - \beta) - as\beta c (\phi - \alpha) - hs\beta s (\phi - \alpha) + 2hs\alpha s\beta c - 2hs\beta s\phi c\alpha = 0$$ \hspace{1cm} (12)

Equation (11) can be expressed as a linear function of $c\phi$ and $s\phi$,

$$M_1 c\phi + N_1 s\phi = 0$$ \hspace{1cm} (13)

with

$$M_1 = 2as\alpha s\beta - 3hs\alpha c\beta + 3hs\beta c\alpha$$ \hspace{1cm} (14)

$$N_1 = -as\alpha c - as\beta c\alpha$$ \hspace{1cm} (15)

Similarly, Eq. (12) can be expressed as

$$M_2 c\phi + N_2 s\phi = 0$$ \hspace{1cm} (16)

with

$$M_2 = -as\alpha c - as\beta c\alpha$$ \hspace{1cm} (17)

$$N_2 = -2as\alpha s\beta + 3hs\alpha c\beta - 3hs\beta c\alpha$$ \hspace{1cm} (18)

The system of the two equations can now be written as

$$Mq = 0$$ \hspace{1cm} (19)

with

$$M = \begin{bmatrix} M_1 & N_1 \\ M_2 & N_2 \end{bmatrix}, \quad q = \begin{bmatrix} c\phi \\ s\phi \end{bmatrix}$$ \hspace{1cm} (20)

The determinant of M has to be zero, so we have

$$g = \det(M) = 0$$ \hspace{1cm} (21)