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Abstract. Metamorphic mechanisms belong to the class of mechanisms that are able to change their configura-
tions sequentially to meet different requirements. In this paper, a holographic matrix representation for describing
the topological structure of metamorphic mechanisms was proposed. The matrix includes the adjacency matrix,
incidence matrix, links attribute and kinematic pairs attribute. Then, the expanded holographic matrix is intro-
duced, which includes driving link, frame link and the identifier of the configurations. Furthermore, a matrix
representation of an original metamorphic mechanism is proposed, which has the ability to evolve into various
sub-configurations. And evolutionary relationships between mechanisms in sub-configurations and the original
metamorphic mechanism are determined distinctly. Examples are provided to demonstrate the validation of the
method.

1 Introduction

Compared with the traditional mechanisms which usually
have fixed mobility, metamorphic mechanisms are a multi-
topological structure, in terms of economy, adaptability
and efficiency, and prevails the traditional ones. Metamor-
phic mechanisms were proposed by Jiansheng Dai and
John Rees Jones in 1996 based on the idea of reconfigura-
tion (Dai and Rees John, 1999), which contributed to the new
field of modern mechanical development and attracted the at-
tention and interest of the theory of mechanism researchers
around the world. In the past two decades, the research of
principles and applications in metamorphic mechanisms has
made a great breakthrough. The variation mode of meta-
morphic mechanism has been added to variable attribute of
components, variable orientation of kinematic joints, friction
self-locking joint units (Gan et al., 2009, 2010; Zhang et al.,
2013; Ding and Li, 2015; Ye et al., 2016). Therefore, in order
to create topological variations in the characteristics of mech-
anisms in different configurations, the appropriate structural

representation for a metamorphic mechanism has been re-
searched (Li et al., 2011a, 2016).

Mechanism diagram, topological graph and traditional ad-
jacency matrix are simple and intuitive tools for describing
a mechanical structure in a single sub-configuration. In or-
der to analyze the configurations of the metamorphic mech-
anism, a basic transformation matrix which uses adjacency
matrices to represent institutional changes was proposed by
Dai et al. (2005). And a description method of displace-
ment subgroup for structural transformation of the meta-
morphic mechanism was proposed (Zhang and Dai, 2009).
Li et al. (2011b) found that the constraint graph of com-
putational geometry rather than the traditional topological
graph to characterize a metamorphic linkage. The joint-gene
based variable topological representation is proposed, and
the method and procedures for the configuration transfor-
mations were presented based on the topological represen-
tation (Li et al., 2009). The constraint function was defined
according to the constraint features of kinematic joints. With
constraint functions as elements, the adjacent matrix of the
original kinematic chains of metamorphic mechanism was
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proposed (Liu, 2012). Li and Dai (2011) introduced an aug-
mented adjacency matrix with the connectivity of links, the
types of joint and its axis-orientation. Due to the lack of dis-
cussion on the variation of the metamorphic mechanism, the
matrix operations of these methods are still EU operations.
The EU-elementary matrix operation consists of the steps of
applying an Ui,j -elementary matrix operation and an elimi-
nationEj -elementary matrix operation used in pairs (Dai and
Rees John, 2005).

In order to describe the changes between different config-
urations in the process further and better, Zhang et al. (2016)
introduced a comprehensive symbolic matrix representation
for describing the topological structure. An element “−1”
was introduced to indicate the frozen kinematic pairs, which
given an easy way to represent the transformation and the di-
mension of the adjacency matrix was kept unchanged after
the transformation (Lan and Du, 2008). The transformation
of metamorphic mechanism can be described clearly without
complex matrix operations.

Although the above-mentioned methods have their own
characteristics, there are still some shortcomings in terms of
simplicity, validity and accuracy. For the sake of describing
the types and orientation of kinematic pair conveniently and
distinguishing the types of mechanisms, it’s necessary to give
a more detailed description of the various types of informa-
tion on the kinematic chain and the transformation process.
It is difficult to describe the comprehensive information in-
cluding the attributes of the kinematic pair and geometrical
structure of the mechanism. Therefore the existing methods
have limitations in the structural transformation description
of the metamorphic mechanism.

The paper introduces a holographic matrix method to de-
scribe the topological structure of metamorphic mechanism
in all configurations, which relate to the information such as
the attributes of links, joints, frame links and driving links.
Meanwhile, multiple links and multiple joints can be iden-
tified by serial numbers of links. Then an expanded matrix
representation of an original metamorphic mechanism is in-
troduced. It is able to evolve into any sub-configuration of
the mechanism. Furthermore, a planar 3-RRR parallel mecha-
nism is provided to demonstrate the validation of the method.

2 The holographic matrix representation

A number of methods have been developed to describe the
topological structure of metamorphic mechanisms. For in-
stance, topological graph and matrix representation can be
widely used in the field of mechanism analysis, kinematic
chain synthesis, isomorphic identification and topological
structure generation of metamorphic mechanisms. The ex-
pression of multiple joints is always a difficult problem as
shown in Fig. 1. Ding et al. (2009, 2010, 2013) proposed a
new kind of bicolor topological graph to represent the topo-
logical structures of multiple joint kinematic chains. Repre-

Figure 1. A kinematic chain with multiple joints and topology dia-
gram.

sent links of kinematic chains with solid vertices “•” and hol-
low vertices “◦” denote joints as shown in Fig. 1b, and then
remove hollow vertices “◦” denote simple joints as shown in
Fig. 1c.

At present, the matrix that represents the configuration
changes of metamorphic mechanism includes adjacency ma-
trix and incidence matrix (Akbari et al., 2009). The EU el-
ementary matrix is used to describe the transformation of
metamorphic mechanisms. The adjacency matrix method
and the incidence matrix method describe the matrix op-
eration of the configuration transformation in metamorphic
mechanisms clearly and they are beneficial to the realiza-
tion of computer automation. However, it cannot fully ex-
press the size structure, kinematic pairs and other informa-
tion. The description of the metamorphic mechanisms in sub-
configurations is not comprehensive. This paper introduces
a holographic matrix representation for describing the topo-
logical structure of metamorphic mechanisms. And the struc-
tural information can be described accurately and distinctly.
The structural description of the metamorphic mechanism is
an important part of kinematics and dynamics analysis.

2.1 The holographic matrix

When using a computer to simulate a mechanism, it is only
necessary to know the coordinates of the joints in the mech-
anisms. Therefore all the structural information of the mech-
anisms is known and schematic diagram of the mechanism
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Figure 2. The structure diagram of a 10 bar kinematic chain C.

can be drawn. Based on this idea, a holographic matrix was
proposed. The size of the matrix is n× n. n is the number of
joints of a kinematic chain. The holographic matrix in con-
figuration m and expresses it as following:

A(m)
=



J
(m)
1 l1,2 · · · l1,j · · · l1,n−1 l1,n
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(m)
n


(1)

Where, the diagonal element Ji of the matrix A represents the
kinematic pair connecting two adjacent links in joint i, such
as prismatic pair P , revolute pair R, spherical pair S. The el-
ement li,j (i < j ) of the upper triangular matrix denotes the
distance between two joints, which is the length of the two
joints on the link corresponding to the link number in the
element ai,j (i > j ). The element ai,j (i > j ) of the down tri-
angular matrix is the serial number of the link between joint i
and joint j in the mechanism. If there is no actual link exists
between joint i andj , the element is ai,j = 0.

The serial number of links and kinematic pairs in 10 bar
kinematic chain with multiple joints is expressed as shown
in Fig. 2. The holographic matrix of 10 bar kinematic chain
C is expressed as:

A(1)
C =



R l1,2 0 l1,4 l1,5 l1,6 0 0 0 0 l1,11
2 R l2,3 0 0 0 0 0 0 0 l2,11
0 3 R l3,4 0 0 0 l3,8 l3,9 0 0
1 0 4 R l4,5 l4,6 0 l4,8 0 0 0
1 0 0 1 R l5,6 l5,7 0 0 0 0
1 0 0 1 1 R 0 0 l6,9 0 0
0 0 0 0 6 0 R l7,8 0 0 0
0 0 4 4 0 0 5 R 0 0 0
0 0 8 0 0 7 0 0 R l9,10 0
0 0 0 0 0 0 0 0 9 R l10,11
2 2 0 0 0 0 0 0 0 10 R


(2)

2.1.1 Including the adjacency matrix and incidence
matrix

The adjacency matrix is the matrix of the adjacent relations
between vertices, representing the relationship between kine-
matic pairs and links. The element value of the non-zero is
converted to ”1”. Diagonal elements are omitted. The adja-

cency matrix BC can be obtained.

BC =



0 1 0 1 1 1 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 1 1 0 0
1 0 1 0 1 1 0 1 0 0 0
1 0 0 1 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 0
0 0 1 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 0 1 0



(3)

The incidence matrix is a matrix representing the relationship
between each vertex and each edge. The holographic ma-
trix contains the serial number of links and kinematic pairs,
which implied the relationship between links and joints. So
the incidence matrix CC is expressed as.

CC =



1 0 0 1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1



(4)

Where, the row number of the incidence matrix CC is the
serial number of links and the column number is the serial
number of kinematic pairs. The incidence matrix CC of the
kinematic chain C can be obtained by searching the holo-
graphic matrix AC . For instance, ninth row (or ninth column)
of the holographic matrix represents the connection relation-
ship between the kinematic pair 9 and other links. So the link
7, link 8 and link 9 be connected to the kinematic pair 9.

2.1.2 Including kinematic pairs information

The number of non-zero and unequal values in the i row ele-
ment and i column element ai,j (i > j ; i,j = 1,2, . . .,n) is k.
If k = 2, the joint i is a simple joint. If k ≥ 3, the joint i is a k
element multiple joints. For instance, there are two unequal
values “2, 3” in the second row and the second column of
the holographic matrix AC , we can determine the joint J2 is
a simple joint. Similarly, the joint J3 contains three unequal
values “3, 4, 8”, so this joint a ternary multiple joints.

The relationship between the two links can be divided into
multi-link and multi-link, multi-link and binary link, binary
link and binary link by the inductive method. If it’s a multiple
joints, it’s a combination of conditions. The holographic con-
tains the connection relation of the kinematic pairs, which is
not available in other matrices.
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The array codes of the matrix are obtained by gener-
alized operations on the i row and i column elements
ai,j (i > j ; i,j = 1,2, . . .,n) corresponding to the joint Ji
eliminated zero elements and kept the non-zero elements. If
same non-zero elements appear more than twice only two
of them are kept. Array codes for each kinematic pair corre-
sponding to the joints are shown in Eq. (5). The value of array
codes are arranged from small to large. Analyzing each array
code, the table on the type of kinematic pairs corresponding
to array code can be obtained as showed in Table 1.

In array code, the serial number of the same link appears
twice, which expresses the link is multi-link. And the serial
number appears only once, which expresses the link is a bi-
nary link. The different serial number in array code indicates
the different links are connected to this joint. For example,
the array code (a,a,b,c) means multi-link a, binary link b
and binary link c connecting in this joint.

In order to represent the connection between kinematic
pairs better, the kinematic pair code Jxx–xx indicated the at-
tribute of a kinematic pair is proposed. The meaning of its
symbol is as following:

1. The size of the subscript array expresses the number of
links in the kinematic pair. For example, the array code
(1,1,2,2) of the joint J1 means link 1 and link 2 are
connected in this point, so the size of the subscript array
in the point J1 is 2.

2. The value of the subscript array indicates the number of
series binary link in a kinematic pair. The values in the
subscript array are arranged from small to large. When
multi-link is connected to multi-link, the value is “0”.
For example, the link 1 is quaternary link and link 6 is
binary link connected in the joint 5(1,1,6). Then the
link 6 is connected to binary link 5 and the link 5 is
connected to the ternary link 4. The number of series

binary link is 2. So the value of the subscript array is
“02”.

3. The subsequent array corresponds to the subscript array.
The size of subsequent array is equal to the subscript
array. But the value of subsequent array represents the
type of the link at the end of the binary link. If the num-
bers of series binary link are the same, the value of the
subsequent array arranges from large to small. For in-
tance, the link 1 in the joint 5(1,1,6) is quaternary link,
so the value corresponding to the subsequent array is
“4”. The type of the link at the end of the binary link
6 is ternary link 4, so the value corresponding to a sub-
sequent array is “3”. Therefore, the value of subsequent
array is “43”.

4. If the type of the link at the end of the binary link is
multiple joints, the value corresponding to subsequent
array is “0”.

The kinematic pair code can be obtained by retrieving the
array codes. For instance, the array code of the joint 3 is
(3,4,4,8), and the type of the link at the end of the binary
link 3 is ternary link 2, and the type of the link at the end of
the binary link 8 is a ternary multiple joint. The kinematic
pair code in the joint 3 is J011–330. Thus, the table of the
kinematic pair code be obtained as showed in Table 2.

2.1.3 Including the links information

The serial number of links in the i row element and i column
element of the holographic matrix corresponding to the joint
Ji appears k−1 times. For example, if the link is binary link,
the serial number of the link in the i row element and i col-
umn element corresponding to the joint Ji appears 1 time. If
the link is a ternary link, the serial number of the link appears
2 times.
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Table 1. The type of kinematic pairs.

The type of
kinematic pair

multi-link and
multi-link

multi-link and
binary link

binary link and
binary link

binary links
multiple joint

Multi-link and
binary link multiple
joint

The type of
array code

(a,a,b,b) (a,a,b) (a,b) (a,b,c) (a,a,b,c)

The kinematic
pair diagram

Note: the type of multiple joint cancontain more links, the number of array code can continue to increase.

Table 2. The kinematic pair code.

The serial numbler The array code The kinematic
of joints pair code

1 (1,1,2,2) J00–43
2 (2,2,3) J01–30
3 (3,4,4,8) J011–330
4 (1,1,4,4) J00–43
5 (1,1,6) J02–43
6 (1,1,7) J01–40
7 (5,6) J11–43
8 (4,4,5) J02–34
9 (7,8,9) J112–403
10 (9,10) J11–30
11 (2,2,10) J02–30

The attribute of the links with kinematic pair information
is represented by Ni–xxx. Ni expresses the link is i element
multiple links. The subsequent array indicates the connection
of this link and binary link. Its rules are:

1. The size of the subsequent array is equal to the elements
of the link. For example, the attribute of the ternary link
N3 with three digital numbers is represented as N3–
xxx.

2. The value of the array indicates the number of series
binary link. When multi-link is connected to multi-link,
the value is “0”. The value of the array arranges from
small to large.

3. For the joint connecting to multi-link is a multiple joint,
and the multiple joint is treated as a multi-link, indicated
by the value “-1”.

The attribute of the links with kinematic pairs of a kinematic
chain C is shown in Table 3.

2.1.4 Including the links length information

The element li,j of the upper triangular matrix is the length
of link. If the link is a binary link, the value is the length at
both ends of the joints. If the link is k (k ≥ 3) element multi-
ple link, the number of the elements of the upper triangular
matrix corresponding to the link is C2

n , which represents the
number of between any two joints of a multiple link. The
number of the length in a ternary link is 3. The number of
the length in a quaternary link is 6 including four outer edges
and two diagonals. The geometry of the quaternary link is
determined. The structural dimensions of the multiple links
can always be determined based on the length of the links in
the holographic matrix. Thus, the element of the upper tri-
angular matrix contains the geometric information of all the
links in the mechanism.

2.2 The expanded holographic matrix

Some parameters must be given when the topological struc-
ture changes in the design of metamorphic mechanism. At
the same time, the change of topological structure may lead
to the change of the degree of freedom of the mechanism. It
must be given new parameters of the driving link, or remove
the parameters of the failed driving link. So the expanded
holographic matrix is proposed based on the holographic ma-
trix. Expressed as in Eq. (6).

The n+ 1 column element of expanded holographic ma-
trix includes the serial number of the frame link and driv-
ing link. The n+ 2 column element includes initial position
(initial angle) sλ, stop position (stop angle) sµ, velocity (an-
gular velocity)ν, accelerated velocity (angular accelerated
velocity)α. In order to record the sequence of the transfor-
mation better, a row is added to the expanded holographic
matrix. The element b(m)

j (j ≤ n) is the identifier of the joint

j in configuration m. The element b(m)
n+1 expresses the iden-

tifier of the frame link in configuration m. The element b(m)
n+2

expresses the identifier of the driving link in configuration
m. The value b(m)

j also changes along with the configuration
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Table 3. The attribute of the links.

The serial numbers of link 1 2 3 4 5 6 7 8 9 10

The link code N4–0012 N3–012 N2–00 N3–112 N2–01 N2–01 N2–00 N2–00 N2–01 N2–01

Note: Ni expresses the link is i element multiple links.

variation of metamorphic mechanism with kinematic pair,
frame and driving link.

The holographic matrix is used to describe the topological
structure of the metamorphic planar mechanism. When the
link sequence and the joint sequence are determined, a defi-
nite unique holographic matrix is obtained. The structure of
the metamorphic mechanism can be obtained from the holo-
graphic matrix as well. For instances, a packaging mecha-
nism is designed using the metamorphic principle which is a
recirculating metamorphic mechanism as showed in Fig. 2.
The main features of the mechanism are topological struc-
ture continues to change during the cycle of the driving link
works and continues to occur and repeat the same function
of the cycle changes.

From Fig. 3, it can be concluded that the topological struc-
ture of the mechanism can be transformed from one to an-
other by locking at different kinematic joints accordingly. By
applying modes such as the geometric limit, force limit, and
variation of the driving kinematic joint, the working condi-
tions of these kinematic joints can be switched between ac-
tive and locked states. Therefore, it is very important to ac-
curately describe the process of reconfiguration in metamor-
phic mechanisms. The holographic matrix shown in Eq. (6) is
used to represent the various configurations of the packaging
mechanism in Fig. 3.

A(1)
=



R lAB 0 0 0 lAF
2 −1 lBC 0 0 0
0 3 R lCD 0 0
0 0 4 −1 lDE 0
0 0 0 5 R lEF
1 0 0 0 6 R
1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

1 θ
φ
1

2 θ
ϕ
1

0 ω1
0 ∂1
0 0
0 0
1 1



A(2)
=



R lAB 0 0 0 lAF
2 R lBC 0 0 0
0 3 R lCD 0 0
0 0 4 −1 lDE 0
0 0 0 5 R lEF
1 0 0 0 6 R
1 2 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

1 θ
φ
2

2 θ
ϕ
2

0 ω2
0 ∂2
0 0
0 0
1 2



A(3)
=



R lAB 0 0 0 lAF
2 R lBC 0 0 0
0 3 R lCD 0 0
0 0 4 R lDE 0
0 0 0 5 R lEF
1 0 0 0 6 R
1 2 1 3 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

1 θ
φ
3

2 θ
ϕ
3

0 ω3
0 ∂3
0 0
0 0
1 2



A(4)
=



R lAB 0 0 0 lAF
2 R lBC 0 0 0
0 3 R lCD 0 0
0 0 4 −1 lDE 0
0 0 0 5 R lEF
1 0 0 0 6 R
1 2 1 4 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

1 θ
φ
4

2 θ
ϕ
4

0 ω4
0 ∂4
0 0
0 0
1 2



(7)
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Figure 3. A packaging mechanism.

Figure 4. The relationship between the original metamorphic
mechanism and sub-configurations.

Figure 5. A planar 3-RRR parallel mechanism.
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3 The original metamorphic mechanism

A holographic matrix representation for describing the topo-
logical structure of metamorphic mechanisms in a single
configuration is introduced. However, exploring variation
laws of these mechanisms in different configurations is very
important for developing novel metamorphic mechanisms
(Zhang et al., 2016). The advantage of matrix operations is
taken for constructing the original metamorphic mechanism.

The original metamorphic mechanism is able to evolve
into any configuration of the mechanism and contains all
the topological elements found in all sub-configurations. An
original matrix A(0) for representing the original metamor-
phic mechanism is given as in Eq. (8). Where, the opera-
tor ∪ represents the union of its arguments (Zhang et al.,
2016). The original matrix A(0) has the same elements form
as Eq. (6). All the elements located in the same position in
the set of related matrices from A(1) to A(n) gradually become
united as shown in Eq. (8). Therefore, the matrix of the orig-
inal metamorphic mechanism for the packaging mechanism
shown in Fig. 2 is as in Eq. (9).

The matrix can identify all possible combinations between
links for creating different mechanisms. The original meta-
morphic mechanism can evolve into any topological struc-

ture of the metamorphic mechanism. The transformation of
a single structure of the metamorphic mechanism can also be
operated. The relationship between the various matrices can
be expressed. Therefore, the information on the mechanism
in configuration m can be extracted from the matrix A(0) to
construct the corresponding matrix A(m). For example, the
elements marked by triangles 1 in Eq. (9) are extracted to
construct the matrix A(2). The topological structure of the
mechanism in configuration 2 according to the above proce-
dure was represented in Eq. (7).

An original metamorphic mechanism provides a founda-
tion for a mechanism to transform itself into any configura-
tion and expresses the joint variation characteristics from the
symbolic adjacency matrices and the corresponding opera-
tions. The relationships between these matrices are as shown
in Fig. 4.

4 Case studies

A planar 3-RRR parallel mechanism is shown in Fig. 5. All
R joints of the mechanism are in parallel.

The metamorphic mechanism has two configurations.
When the mechanism is in configuration 1 as shown in
Fig. 4a, the revolute pair F and the revolute pair I are
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locked. The link 1 is frame link. And the link 2 is the driv-
ing link. When the mechanism is in configuration 2 as shown
in Fig. 5b, the revolute pair A and the revolute pair F are
locked. The link 1 is always frame link. But the link 8 is the
driving link. The topological structures of the metamorphic
mechanism can be expressed in matrix form as in Eq. (10).

The serial number 4 appears twice in joint 3 or joint 7.
Then it can be judged that the link 4 is a ternary link. The
original matrix of the original metamorphic mechanism can
be expressed as Eq. (11).

The value of the element A(0)(9,9) in matrix−1∪R repre-
sents the revolute pair I has been changed. The value of the
element A(0)(2,10) in the original matrix {2,8} explains the
driving link has been changed.

5 Conclusions

An expanded holographic matrix was proposed to describe
the topological structure of the metamorphic mechanism in
this paper. The expanded two columns of the matrix are the
property of the frame link and driving link. That is an in-
dispensable part of information in the metamorphic mech-
anism. In addition, the upper triangular matrix denotes the
distance between any two joints. It is very important for the
kinematics analysis and dynamics analysis of the metamor-
phic mechanism in the next step. The down triangular matrix
is the serial number of the links in the kinematic chain. This
implies a lot of information including the adjacency matrix,
incidence matrix, links attribute and kinematic pairs attribute.
And the accurate judgment for multiple links and multiple
joints is given by the serial number of the links. Finally, an
example shows that this method can reflect the effectiveness
of the metamorphic mechanism.
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