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Abstract. With the requirement of heavy load for pick-and-place operation, a new 3-DoF asymmetric trans-
lational parallel manipulator is invented in this paper. This manipulator is assembled by a kinematic limb with
the parallel linear motion elements(PLMEs), and a single loop 2-UPR. Owning to the linear actuators directly
connecting the moving and the fixed platforms, this parallel manipulator has high force transmission efficiency,
and adapts to pick-and-place operation under heavy load. In this paper, the mobility and singularity are firstly
analyzed by screw theory. And the simplified kinematic and dynamic model is established and solved. Secondly,
the reaction forces of the prismatic joints in the PLMEs limb are investigated for the mechanism design. Also,
the overall performance of the whole manipulator, such as the workspace, condition numbers of Jacobian ma-
trices and motion transmission, etc, are discussed. Thirdly, a compound evaluation function, which involves the
factors of workspace volume, transmission efficiency and reaction force, is proposed. In order to obtain a set of
better design parameters, the optimization of the 3-DoF translational manipulator is conducted, for the object
of maximum of the evaluation function. At last, the prototype is manufactured and experimented to validate the
mobility and motion feasibility of this mechanism design.

1 Introduction

As the need of the industry for 3-DoF translational parallel
mechanisms(TPM) in the late 1990s, many these kinds of
parallel mechanisms have been researched and developed. In
academic, several approaches for the type synthesis of TPMs
were investigated, such as methods based on screw theory
(Mohamed et al., 1985; Lee et al., 1999; Zhao et al., 2002;
Bonev et al., 2003; Huang and Li, 2003; Kong and Gos-
selin, 2004a; Dai, 2006, 2014; Dai et al., 2006; Wu et al.,
2010; Zhao et al., 2017), displacement group theory (Hervé,
1999; Lee et al., 2009), position and orientation characteris-
tic (POC) sets (Yang et al., 2009), generalized function (GF)
sets (Gao et al., 2011) and etc. By these means, a number of
novel TPMs were invented by Tsai and Joshi (2000); Chab-
lat and Wenger (2003); Liu et al. (2003); Kong and Gos-
selin (2004b); Jin and Yang (2004); Gogu (2008); Yang et al.
(2019) and et al. And the kinematics, dynamics, singularities,
stiffness, workspaces for the 3-DOF TPMs were contributed
by Carricato and Parenti-Castelli (2002); Li and Xu (2008);

Liu et al. (2017); Kong and Gosselin (2002); Li et al. (2015);
Zhang et al. (2017), amongst others.

The actuators among the above TPMs can be divided into 2
primitive types, i.e, rotational actuators and linear actuators.
The well-known 3-DoF TPM, Delta robot, is driven by 3 ro-
tational actuators located on the base (Pierrot et al., 1990).
Due to its capacity of high speed and high accelerations, this
robot has popular usage in picking and packaging in facto-
ries. In 1996, Tsai proposed a typical 3-UPU parallel robot,
called Tsai manipulator (Tsai and Joshi, 2000). The prismatic
joint in each leg is driven by one linear actuator. Compared
with the rotational actuators, the linear actuators generally
deliver large force at high efficiency due to the simple trans-
mission structure, and are used in a wide range of application
in industry, especially in heavy duty equipments. Therefore,
in the design of the heavy-load translational parallel manip-
ulator, we choose the linear actuators to drive the moving
platform of TPM in this paper.

As aforementioned TPMs, Tsai manipulator can be driven
by 3 linear actuators in each leg. Nevertheless, Han et al.
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256 Y. Yang et al.: New asymmetric translational parallel manipulator

Figure 1. A 3-DoF translational manipulator with PLMEs limb and single loop 2-UPR: (a) oblique view, (b) top view, (c) side view.

(2002) showed that the small torsions in the legs of 3-UPU
generated large deviations in the position of the moving
platform. Thus, the applications of the Tsai’s manipulator
are limited in industry. The “Linear Deltas” has been de-
veloped from the standard Delta robot (Bouri and Clavel,
2010). The linear actuators move the parallelograms in each
leg up or down, and then lead to the translating of the
end platform. Furthermore, Yang et al. (2018) proposed a
novel kind of kinematic chains with parallel linear motion
elements(PLMEs), and synthesized a class of symmetrical
3T, 3T-1R, and 3R parallel mechanisms by these kinematic
limbs. Different from “Linear Delta”, the linear actuators in
these limbs directly connect the moving platform and the
fixed base, which makes the parallel manipulators capable of
higher transmission efficiency. Inspired by the above schol-
ars’ achievements, we propose a new 3-DoF translational
manipulator by combining of PLMEs limb and single loop 2-
UPR (Peng et al., 2018). This kind of manipulator has advan-
tage of better transmission and simpler structure than other
3-DoF TPMs.

The rest of the paper is organized as follows. In Sect. 2,
the structure is elaborated, and the mobility and singularity
are analyzed. In Sect. 3, the kinematic and dynamic model is
established and solved. In Sect. 4, the reaction forces of the
prismatic joints in the PLMEs limb are studied. In Sect. 5, the
overall performance of the whole manipulator, such as the
workspace, condition numbers of Jacobian matrices and mo-
tion transmission, etc, are evaluated. In Sect. 6, a compound
evaluation function is proposed. And the parameters of this
manipulator are optimized. Finally, in Sect. 7, the prototypes
are manufactured and validate the mobility and motion fea-
sibility of this new manipulator.

2 Structure and mobility of the new manipulator

The new 3-DoF manipulator is assembled by the parallel lin-
ear motion elements(PLMEs) limb and a single loop 2-UPR,
as shown in Fig. 1. The moving platform is driven by 3 lin-
ear actuators, i.e., one actuator located in PLMEs limb and
the other two actuators located in the single loop 2-UPR. To
investigate the mobility and singularity of this new manipu-
lator, we firstly analyze the PLMEs limb and the 2-UPR limb
individually, by the utilization of screw theory. Secondly, we
express the screws of the mechanism by Grassmann line ge-
ometry, and obtain the DoF space of the whole manipulator.
Furthermore, we also discuss the controllability of the mov-
ing platform driven by the 3 selected linear actuators.

As an effective tool, screw theory is widely applied to an-
alyze the mobility, singularity, transmission of mechanisms.
A screw is usually represented by the form of Plucker ho-
mogeneous coordinates (L, M , N , P , Q, R). In mechanism
research, the general term “screw” can be divided into twist
$ and wrench $r. In twist $, the first three components denote
an instantaneous angular velocity around an axis. And the
last three components denote an instantaneous linear veloc-
ity along this axis. In wrench $r, The first three components
denote the resultant force and the last three components de-
note the resultant moment. If the reciprocal product of the
two screws, $ and $r, equals zero, these two screws are said
to be reciprocal. The details can be found in Kong and Gos-
selin (2004a); Dai et al. (2006); Dai (2014), etc.

2.1 PLMEs limb

In Fig. 2, the PLMEs is constructed by two linear motion ele-
ments A1C1 and A2C2. The parallelogram A1B1A2B2 guar-
antees A1C1 and A2C2 be always parallel. The two inner
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Figure 2. PLMEs limb.

tubes are able to slide along axes A1B1 and A2B2, respec-
tively.

With reference (Yang et al., 2018), the moving link C1C2
generally has 2 translational DoFs without consideration
of the revolute joints D1 and E1. The PLMEs linkage
A1A2C1C2 can be regarded as a generalized kinematic pair,
whose twist is denoted as {$g1,$g2}. Adding the revolute
joints D1 and E1, the twist of the platform P1 is then writ-
ten as in Eq. (1) if the PLMEs linkage is not in a singular
configuration.

$p1 :=


$D1 =

[
1 0 0 0 0 −yd1

]
$g1 =

[
0 0 0 cosθ1 sinθ1 0

]
$g2 =

[
0 0 0 −l1 sinθ1 l1 cosθ1 0

]
$E1 =

[
1 0 0 0 0 −ye1

] (1)

Its corresponding reciprocal screw $r
sp can be obtained as

$r
p1 :=

{
$r1

sp1 =
[

0 0 0 0 0 1
]

$r2
sp1 =

[
0 0 0 0 1 0

] (2)

Equation (2) can be represented by the constraint space graph
as shown in Fig. 5a. When θ1 =±π/2 , this configuration is
a singularity. The Z axis rotational constraint is absent and
the constraints reduce to only one. The kinematic limb has
an extra instantaneous rotation about Z axis. Considering the
rotating of this limb along X axis, this kind of singular con-
figurations are all distributed on the plane η1 , as shown in
Fig. 2. When θ1 = 0, π , the axes of the revolute joints D1
and E1 are collinear and the twists $D1 and $E1 are corre-
lation. In this case, the moving platform has an additional
instantaneous constraint to prevent it from translating along
Z axis.This singular configuration is on the line ς1, as shown
in Fig. 2.

In the above PLMEs limb, the mid-link B1B2 connects
the 2 outer tubes of the linear motion elements, as shown in
Fig. 3a. In actual design, we can change the mid-link B1B2
from the outer tubes to the inner tubes, as shown in Fig. 3b.
The parallelogramB1C1B2C2 guaranteesA1C1 andA2C2 be

always parallel. Thus, the mobility, constraint and singular-
ity are as the same as the one in Fig. 3a. In another case, as
shown in Fig. 3c, the mid-link B1B2 is fixed on the ground.
The two sliders on the points B1 and B2 are jointed with the
mid-link. The two linear guides A1C1 and A2C2 can slide
on B1 and B2 . The linkage A1C1A2C2 is a parallelogram.
Therefore, the PLMEs presented in Fig. 3c has also the same
kinematic characteristics with the above two ones. From the
kinematic point of view, these three PLMEs limbs presented
in Fig. 3 are all equivalent.

2.2 Single Loop 2-UPR

This single loop is constructed by 2 UPR limbs, as illustrated
in Fig. 4. In Limb D2Q2 , one axis of the universal joint
D2 is perpendicular with X–Y plane. The axis orientation is
s1 = (0,0,1) . The other axis is perpendicular with the plane
formed by the vectors s1 and

(
pQ2
−pD2

)
, where pQ2

and
pD2

are the coordinates of the points Q2 and D2. This axis
orientation can be written as s2 = s1×(pQ2

−pD2
). The axis

of another joint Q2 is parallel with the vector s2. The other
Limb D3Q3 has the similar condition with D2Q2.

For Limb D2Q2, the twist of each kinematic pair can be
written as

$11 =
(

s1; pD2× s1
)

$12 =
(

s2; pD2× s2
)

$13 =
(

0; pQ2
−pD2

)
$14 =

(
s2; pQ2

× s2
) (3)

Through calculating the nullity of the above screws, the cor-
responding reciprocal screw of limb D2Q2 can be obtained
as

$r
Q2
:= (4) $r1
Q2
=
[

0, 0, 0, (xa1 − xc1 ), (ya1 − yc1 ), 0
]

$r2
Q2
=

[
−(ya1 − yc1 ), (xa1 − xc1 ), 0, 0, 0,
xa1 (xa1 − xc1 )+ ya1 (ya1 − yc1 )

]
In the same way, the wrench of limb D3Q3 is

$r
Q3
:= (5) $r1
Q3
=
[

0, 0, 0, (xa2 − xc2 ), (ya2 − yc2 ), 0
]

$r2
Q3
=

[
−(ya2 − yc2 ), (xa2 − xc2 ), 0, 0, 0,
xa2 (xa2 − xc2 )+ ya2 (ya2 − yc2 )

]
If Q2Q3 and D2D3 are parallel with each other and both
perpendicular with X–Y plane, the coordinates of the joints
satisfy

xa2 = xa1 , ya2 = ya1 , xc2 = xc1 ,yc2 = yc1 (6)

Substituting the above condition into Eqs. (4) and (5), and
using the algebra operation of reciprocal product, the twist
of link Q2Q3 which is supported by the limbs D2Q2 and
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Figure 3. Three equivalent PLMEs limbs: (a) mid-link connecting outer tubes, (b) mid-link connecting inner tubes, (c) mid-link fixing on
the ground.

Figure 4. Single Loop 2-UPR.

D3Q3 can be figured out. The results are as following

$Q2Q3 :=



$1
Q2Q3

=

[
0, 0, 0, (xa1 − xc1 ),
(ya1 − yc1 ), 0

]
$2
Q2Q3

=
[

0, 0, 0, 0, 0, 1
]

$3
Q2Q3

=

[
−(ya1 − yc1 ), (xa1 − xc1 ),
0, 0, 0, 0

]

$4
Q2Q3

=


0, 0, 1,
xa1 (xa1 − xc1 )+ ya1 (ya1 − yc1 )

(ya1 − yc1 )
,

0, 0


(7)

Within the consideration of the revolute pair E2 attached on
the link Q2Q3, the twist of the platform P2 can then be ex-
pressed as

$p2 :=

{
$Q2Q3

$E2 =
[

0, 0, 1, ye2 , −xe2 , 0
] (8)

By solving the nullity of Eq. (8), the wrench of the moving
platform P2 can be obtained.

$r
p2
=
[

0 0 0 xa1 − xc1 ya1 − yc1 0
]

(9)

According to Eq. (9), the corresponding constraint space
graph of the moving platform P2 is plotted as shown in
Fig. 5b. Moreover, we substitute S-joint for U -joint. The sin-
gle loop 2-SPR is instead of the loop 2-UPR. By repeating the
above analysis process, it can be derived that the wrench of
the moving platform P2 in this case still equals Eq. (9). This
means that the loops 2-UPR and 2-SPR are equivalent and
they can be swapped with each other for the requirements.

2.3 Whole manipulator

The PLMEs limb and the Loop 2-UPR are connected by a
“T” shaped conjunction part, as shown in Fig. 1. The mobil-
ity of the whole manipulator can be deduced by Grassmann
line geometry and the line-graph method. Grassmann line ge-
ometry is a systematic theory in mathematics, which can be
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Figure 5. Constraint and DoF space graph of the whole manipulator: (a) PLMEs limb, (b) Single Loop 2-UPR, (c) Constraint space of
moving platform, (d) DoF space of moving platform.

used in the research on mechanism, especially on the DoFs
and constraints of a mechanism. The line graph can be used
to express an n-dimensional DoF space or constraint space
in a mechanism. Blanding proposed a basic rule to uncover
this dual relationship and mutual converse of the DoF spaces
and constraint spaces through line graph. The basic rule was
summarized by Blanding (1999); Yu et al. (2011), and etc. In
this paper, we firstly plot the constraint space of the PLMEs
limb and the single loop 2-UPR in one graph with Grassmann
line geometry, as shown in Fig. 5c. Secondly, we apply the
mutual conversion rule of DoF spaces and constraint spaces
(Xie et al., 2013) for Fig. 5c. Then, the DoF space can be
quickly obtained as shown in Fig. 5d. The result illustrates
that the platform has 3 translational DoFs.

The manipulator has 2 kinds of singularities. One kind of
singularity comes from the PLMEs limb. When θ1 =±π/2
or θ1 = 0,π , the PLMEs limb is located on singular Plane η1
or Line ς1, as shown in Fig. 1. In this case, the constraints of
the PLMEs limb are instantaneously changed. It results into
the varying of the mobility of the manipulator. Another kind
of singularity is that the 2-UPR limb are vertical, located on
Plane η2. In this case, the constraints of the PLMEs limb and
2-URP limbs are all on Y–Z plane. The X axis rotational
constraint is absent. The moving platform exists an extra in-
stantaneous rotation about X axis.

In this manipulator, each limb is assumed to be driven by
one linear actuator. Herein, we discuss whether the moving
platform can be controlled by these 3 selected linear actua-
tors. For the convenience of calculation, the moving platform
is regarded as a link, without consideration of the actual geo-
metric feature. Thus, the coordinates of the joints in the mov-
ing platform yield

xe2 = xc2 = xc1 , ye2 = yc2 = yc1 (10)

In analysis, the two prismatic joints in the single loop 2-
UPR are firstly fixed. The prismatic joint in PLMEs limb is
free. In this case, the twist $A1 of the moving platform can be
obtained as

$A1 =
[

0, 0, 0, −(ya1 − yc1 ), (xa1 − xc1 ), 0
]

(11)

Equation (11) illustrates that the moving platform has only
one translational mobility under the above condition. The in-

stantaneous velocity is perpendicular with the plane formed
by D2Q2 and D3Q3.

Secondly, the prismatic joints in PLMEs and Limb D3Q3
are fixed and the prismatic joint in Limb D2Q2 is set to be
free. The twist $A2 of the moving platform can be calculated
as

$A2 =

 0, 0, 0, (za2 − zc2 ) sinθ1,

−(za2 − zc2 )cosθ1,

(ya2 − yc2 )cosθ1− (xa2 − xc2 ) sinθ1

 (12)

Equation (12) illustrates that the moving platform has one
translational mobility, which is perpendicular with the plane
formed by D1E1 and D3Q3.

In the same way, the prismatic joints in PLMEs and Limb
D2Q2 are fixed and the prismatic joint in Limb D3Q3 is set
to be free. The twist $A3 of the moving platform is

$A3 =

 0, 0, 0, (za1 − zc1 ) sinθ1,

−(za1 − zc1 )cosθ1,

(ya1 − yc1 )cosθ1− (xa1 − xc1 ) sinθ1

 (13)

Equation (13) illustrates that the only one translational mo-
bility is perpendicular with the plane formed by D1E1 and
D2Q2.

According to the above analysis, it can be summarized that
the manipulator assembled by PLMEs and 2-UPR limbs gen-
erally has 3 pure translational DoFs. And the moving plat-
form is controllable by 3 linear actuators.

3 Simplified kinematic and dynamic model

According to the motion characteristics of this manipulator,
the 3-DoF translational manipulator can be simplified as a
3-SPS mechanism without rotation mobilities. As shown in
Fig. 6, (xC1 ,yC1 ,zC1 ), (xC2 ,yC2 ,zC2 ) and (xC3 ,yC3 ,zC3 ) are
the initial positions of the points C1, C2 and C3 of the mov-
ing platform. (xA1,yA1,zA1 ), (xA2 ,yA2 ,zA2 ), (xA3 ,yA3 ,zA3 )
are the initial positions of the points A1, A2 and A3 of the
fixed platform, respectively. l1, l2 and l3 are the lengths of
A1C1, A2C2 and A3C3, which can be regarded as the linear
actuators of the manipulator.

www.mech-sci.net/10/255/2019/ Mech. Sci., 10, 255–272, 2019
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Figure 6. Simplified 3-SPS mechanism.

3.1 Displacement equation

Let x, y, z be the displacements of the moving platform
C1C2C3 from the initial position. The displacement equa-
tions can be derived as
√

(xC1 + x− xA1 )2+ (yC1 + y− yA1 )2+ (zC1 + z− zA1 )2 = l1√
(xC2 + x− xA2 )2+ (yC2 + y− yA2 )2+ (zC2 + z− zA2 )2 = l2√
(xC3 + x− xA3 )2+ (yC3 + y− yA3 )2+ (zC3 + z− zA3 )2 = l3

(14)

If the displacement (x,y,z) is known, the driving displace-
ments of the linear actuators l1, l2 and l3 can be easily ob-
tained by Eq. (14). Conversely, if the driving displacements
l1, l2 and l3 are known, the forward displacement of the mov-
ing platform (x,y,z) can be found by solving the above 3
equations. Let

XA1 = xA1 − xC1, XA2 = xA2 − xC2 , XA3 = xA3 − xC3 ,

YA1 = yA1 − yC1, YA2 = yA2 − yC2 , YA3 = yA3 − yC3 ,

ZA1 = zA1 − zC1, ZA2 = zA2 − zC2 , ZA3 = zA3 − zC3

and

E11 = 2
(
XA2 −XA1

)
, E12 = 2

(
YA2 −YA1

)
,

E13 = 2
(
ZA2 −ZA1

)
, E31 = 2

(
XA3 −XA2

)
,

E32 = 2
(
YA3 −YA2

)
, E33 = 2

(
ZA3 −ZA2

)
H1 = l

2
1 − l

2
2 +

(
X2
A2
−X2

A1

)
+

(
Y 2
A2
−Y 2

A1

)
+

(
Z2
A2
−Z2

A1

)
H3 = l

2
2 − l

2
3 +

(
X2
A3
−X2

A2

)
+

(
Y 2
A3
−Y 2

A2

)
+

(
Z2
A3
−Z2

A2

)
Squaring both sides of Eq. (14), and subtracting the first

formula to the second one, and the second one to the third
one, Eq. (14) is transformed to{
E11x+E12y+E13z=H1
E31x+E32y+E33z=H3

(15)

In this paper, the limbs A1A2 and C1C2 are always per-
pendicular with X–Y plane. The length projections of A1C1
and A2C2 on X-Y plane are equal. It yields

E11 = E12 = 0 (16)

Through Eqs. (15) and (16), the displacement z can be
quickly solved

z=H1/E13 (17)

Then, substituting Eq. (17) into Eqs. (14) and (15), and let

m=−E32/E31, n= (H3−E33H1/E13)/E31,

Pa =m
2
+ 1, Pb = 2(m(n−XA3 )−YA3 ),

Pc = (n−XA3 )2
+YA3

2
+ (z−ZA3 )2

− l23

The displacements y and x can be solved by y =
−Pb−

√
Pb

2
− 4PaPc

2Pa
x =my+ n

(18)

Equation (17) and (18) give the analytic solution of the for-
ward kinematics of the manipulator. Further, we can calcu-
late the angle β (as shown in Fig. 6) in the PLMEs limb by
the following formula.

cosβ = (19)

−
xC1 + x− xA1√

(xC1 + x− xA1 )2+ (yC1 + y− yA1 )2+ (zC1 + z− zA1 )2

And the angle γ between the PLMEs and the horizontal plane
(as shown in Fig. 6) is calculated as

tanγ =
zC1 + z− zA1

yC1 + y− yA1

(20)

3.2 Velocity equation

Differentiating Eq. (14) leads to the velocity equation.

Jv

 ẋ

ẏ

ż

=
 l̇1
l̇2
l̇3

 (21)

where the Jacobian matrix Jv is

Jv = (22)
(x− xA1 + xC1 )

l1

(y− yA1 + yC1 )
l1

(z− zA1 + zC1 )
l1

(x− xA2 + xC2 )
l2

(y− yA2 + yC2 )
l2

(z− zA2 + zC2 )
l2

(x− xA3 + xC3 )
l3

(y− yA3 + yC3 )
l3

(z− zA3 + zC3 )
l3


In Eq. (22), each row of the matrix Jv represents the cosines
of the angles between the corresponding SPS limb and the x,
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y, and z axes. The absolute value of the determinant of the
third-order matrix Jv equals the volume of the parallelepiped
spanned by each row vector of Jv . If the 3 SPS limbs are
collinear or coplanar, the determinant of the Jacobian ma-
trix equals zero. This mechanism is in singular configuration,
which should be avoided in the motion planning. If an exter-
nal force (Fx,Fy,Fz) was exerted on the moving platform,
the static driving forces of the linear actuators (f1,f2,f3)
corresponding to limbs 1, 2 and 3 could be obtained through
the Jacobian matrix. Fx
Fy
Fz

= JT
v

 f1
f2
f3

 (23)

3.3 Dynamic equation

In the manipulator, the moving platform is assumed to carry
a heavy load. Taking the mass of 3 limbs as MP1 , MP2 and
MP3 , each limb of the manipulator is simplified into a mass
point for convenient calculation, which is located in the cen-
ter of the limb as shown in Fig. 6. MPC is the mass of the
moving platform with the heavy load. Based on these as-
sumptions, the simplified dynamics equation can be written
as f1
f2
f3

= (24)

(
JT
v

)−1
(
−MPCI3×3

 ẍ

ÿ

z̈

− 1
2

3∑
i=1

MPi I3×3

 ẍ

ÿ

z̈


+MPCI3×3

 gx
gy
gz

+ 1
2

3∑
i=1

MPi I3×3

 gx
gy
gz


+

 Fx
Fy
Fz


where I3×3 is the 3×3 identity matrix. Fx , Fy and Fz are the
external force exerted on the moving platform. gx , gy and gz
are the gravitational acceleration. And fi (i = 1,2,3) are the
driving forces of the 3 linear actuators. Let

MP =MPCI3×3+
1
2

3∑
i=1

MPi I3×3 (25)

Assume l̇i and l̈i (i = 1,2,3) be the velocity and acceleration
of the actuators. Differentiating Eq. (21) and substituting the
result into Eq. (24), it leads to f1
f2
f3

= (26)

−
(
JT
v

)−1MP J−1
v

 l̈1
l̈2
l̈3

− (JT
v

)−1MP J̇−1
v

 l̇1
l̇2
l̇3


+
(
JT
v

)−1MP

[
gx
gy
gz

]

+
(
JT
v

)−1
(
Fx
Fy
Fz

)
Considering

J̇−1
v =−J−1

v J̇vJ−1
v (27)

and substituting the above equation into Eq. (26), the equa-
tion can be rewritten as f1
f2
f3

= (28)

−
(
JT
v

)−1MP J−1
v

 l̈1
l̈2
l̈3

+ (JT
v

)−1MP J−1
v J̇vJ−1

v

 l̇1
l̇2
l̇3


+
(
JT
v

)−1MP

(
gx
gy
gz

)
+
(
JT
v

)−1
(
Fx
Fy
Fz

)
where the derivative of Jacobian matrix J̇v is

J̇v =



ẋl1−
(
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∂x
ẋ+ ∂l1

∂y
ẏ+ ∂l1
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ż
)(
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)
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ẋ+

∂l3
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ẏ+

∂l3
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ż
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x−XA3

)
l23

(29)
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ẏ+ ∂l1

∂z
ż
)(
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)
l21
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∂x
ẋ+ ∂l2

∂y
ẏ+ ∂l2
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ż
)(
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)
l22
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∂x
ẋ+

∂l3
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ẏ+
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)(
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Figure 7. Reaction forces of the prismatic joints in the planar
PLMEs limb

Eq. (28) provides a simplified dynamic model for this
translational parallel manipulator. It could be used into the
control strategy, especially in the high speed pick-and-place
operation.

4 Reaction forces of the prismatic joints in the
PLMEs limb

In this manipulator, the PLMEs limb provides 2 rotational
constraints to the moving platform. The varying of the re-
action forces of the two prismatic joints in the PLMEs limb
could reveal the performance of the manipulator, i.e., singu-
larity, stiffness, etc. Thus, we mainly concern the reaction
forces of the prismatic joints in the PLMEs limb in this sec-
tion. We firstly study the reaction forces of the prismatic
joints in the X–Y plane. Secondly, an external force is ex-
erted on the moving platform. And then the reaction forces
of the prismatic joints are investigated in the context of the
whole manipulator. The results provide the basis for the de-
sign of the PLMEs limb in this new translational parallel ma-
nipulator.

4.1 Reaction forces in the planar PLMEs limb

In the beginning, we only take the PLMEs limb into the anal-
ysis in the X–Y plane, without consideration of the Loop 2-
UPR. As shown in Fig. 7, B1C1 and B2C2 are parallel. R1
and R2 are the two prismatic joints. Assumed the actuator is
located onR2, B2C2 can be regarded to fix on the ground. An
external force F and an external torque M are exerted on the
middle of Link C1C2, as shown in Fig. 7. The length of Link
C1C2 is le. The orientation of F is along with the PLMEs
limb.

Taking fv as the reaction force corresponding to the force
F , and fM as the reaction force corresponding to the torque
M , the following equations are established by means of the

virtual work principle. F · δ

(
le

2
cosβ

)
=−fv · δ (le sinβ)

fM · δ (le sinβ)=M · δβ
(30)

Solving Eq. (30), we can obtain
fv =

F

2
tanβ

fM =
M

le cosβ

(31)

By the sum of fv and fM , the total reaction force fR1 of the
prismatic joint R1 can be calculated as the following equa-
tion. The orientation of fR1 is perpendicular with the pris-
matic joint.

fR1 = fv + fM =
F

2
tanβ +

M

le cosβ
(32)

The reaction force fR2 of the other prismatic joint R2 is
decomposed into 2 directions. One direction force fs1 is per-
pendicular with Line B2C2 and opposite to fR1 . The other
direction force fs2 is along with Line B2C2 and opposite to
the actuator force F . Hence, the component forces fs1 and
fs2 are written as{
fs1 =−fR1

fs2 =−F
(33)

Observing Eqs. (32) and (33), it is noticed that fR1 and
fs1 becomes infinite if β = π/2. It indicates that the PLMEs
limb with β = π/2 is in the singular configuration, which is
consistent with the result derived in Sect. 2.

4.2 Reaction forces in the context of the whole
manipulator

Based on the above results, we furthermore investigate the re-
action forces of the PLMEs limb in the context of the whole
manipulator. The moving platform bears a vertical force FG
as shown in Fig. 8a. Through Eq. (23), the 3 linear actuator
forces, denoted as FA1 , FA2 and FA3 , could be firstly cal-
culated out. Secondly, by the utilization of FA3 and the first
row of Eq. (31), one component reaction force fG1 of the
prismatic joints, which is directly corresponding to the force
FA3 , can be obtained as following.

fG1 =
FA3

2
tanβ (34)

As shown in Fig. 8a, there is a “T” shaped conjunction part
connecting the PLMEs limb and the 2-UPR limb. If there is a
small distance e between the two connections in the “T” con-
junction part, the resultant force leads to a torqueMh exerted
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Figure 8. Reaction forces of the prismatic joints in the context of the whole manipulator: (a) side view, (b) front view.

on the “T” conjunction part. The torque Mh can be obtained
by

Mh = fh · e (35)

where fh is the resultant force of FA1 and FA2 projected on
X axis. As shown in Fig. 8b,Mh can be decomposed intoM1
and M2 by Eq. (36).

M1 =Mh cosγ, M2 =Mh sinγ (36)

where M1 and M2 represent the torques be in and perpen-
dicular to the plane of PLMEs, respectively. The angle γ be-
tween the PLMEs and the horizontal plane can be found by
Eq. (20). According to the second row of Eq. (31), the reac-
tion force fG2 corresponding to the torqueM1 can be written
as

fG2 =
M1

le cosβ
(37)

Thus, the total reaction force fN perpendicular to the pris-
matic joint in the plane of PLMEs can be obtained by sum-
ming fG1 and fG2 .

fN = fG1 + fG2 =
FA3

2
tanβ +

M1

le cosβ
(38)

In another way, the torque M2 would cause the other reac-
tion force fW perpendicular to the plane of PLMEs. It can be
figured out by Eq. (39).

fW =
M2

le
(39)

Finally, through fN and fW , the resultant reaction force fc
of the prismatic joint can be obtained as follows

fc =

√
f 2
N + f

2
W (40)

All the above calculation procedure for the force of
PLMEs limb is summarized in Fig. 9. It shows that the re-
sultant reaction force of the prismatic joints is related to the
Jacobian matrix of the manipulator and the configuration of
the PLMEs limb. If the reaction force becomes large, it indi-
cates the manipulator is in bad performance(e.g., in case of
singularity), and vice versa. Through analyzing the force of
the prismatic joints in the PLMEs limb, the performance of
the manipulator can be revealed.

Based on the above-mentioned results, it is also found that
the way of making the external load FG be closed to the ac-
tuator of PLMEs limb, or decreasing the distance e between
PLMEs limb and 2-UPR limb could reduce the resultant re-
action force of the prismatic joints. It is very helpful for the
design of this new translational parallel manipulator.

5 Performance investigation

Based on the aforementioned analysis, we discuss the
workspace, condition numbers of Jacobian matrices, simpli-
fied dynamics and motion transmission of the new manipula-
tor. And the reaction forces of the manipulator under the cir-
cumstance that the moving platform bearing a vertical force
is also investigated.

5.1 Workspace and Jacobian matrices

We assume that the ranges of 3 linear actuators are
[−300,300], [−300,300] and [−210,210] for Limbs L1, L2
andL3 relative to the initial configuration. The joint positions
of the initial configuration are listed in Table 1.
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Table 1. Coordinates of the initial points Ci (i = 1,2,3) and Ai (i = 1,2,3).

Initial points 1 2 3

(xAi ,yAi ,zAi ) (−541.3,−36.0,634.0) (−541.3,−36.0,−634.0) (−429.5,441.0,0.0)
(xCi ,yCi ,zCi ) (0.0,0.0,91.8) (0.0,0.0,−91.8) (0.0,79.2,0.0)

Figure 9. Calculation procedure for the reaction forces of the pris-
matic joints.

Considering the initial configuration, the absolute mo-
tion range [lmin, lmax] of each limb is [467.0,1067.0],
[467.0,1067.0] and [351.6,771.6], respectively. According
to Eq. (14), the workspace of the moving platform is the in-
tersection of the 3 hollow spheres, whose inner and outer
radii are lmin and lmax. And the centers of the 3 spheres
are respectively at (XA1 ,YA1 ,ZA1 ), (XA2 ,YA2 ,ZA2 ) and
(XA3 ,YA3 ,ZA3 ). To avoid singularity and consider the ac-
tual usage, we just calculate the workspace in the range
of y ≤ 441.0 and x ≥−429.5, as shown in Fig. 10a. The
workspace of the moving platform is plotted as shown in
Fig. 10b–d. The volume of the workspace is calculated to
be 1.9755× 108 mm3.

Furthermore, the condition numbers of Jacobian matri-
ces in the workspace is figured out to evaluate the kine-
matic performance of the manipulator. In Fig. 11, the
condition numbers are plotted as the contour lines on
the different layers which are respectively located on the
planes y =−400,−300,−200,−100,0,100,200,300 and
the plane z= 0. The contour lines show that the condition
numbers are large when the manipulator approaches the sin-
gular configurations, i.e., β = 0 and β = π/2. It illustrates
that the kinematic property becomes bad when the moving

platform is in these areas. In the proceeding of the motion
planning, it is better to avoid these areas.

5.2 Simplified dynamics

In the dynamic analysis, the joint positions of the initial con-
figuration are as the same as listed in Table 1. The mass
of Limbs 1, 2 and 3 are 2.676, 2.676 and 5.35 kg, respec-
tively. And the mass of the moving platform with the load is
11.237 kg. An external force Fy =−100 N is exerted on the
moving platform. The gravity is along the negative Y axis.
We give the displacement equation dli of each linear actuator
relative to the initial configuration as follows.

dli = 140sin
(
π

4
t +

2i
3
π

)
i = 1,2,3 (41)

Adding the initial length of each limb loi , the absolute dis-
placement equation of each limb is obtained as

li = loi + dli i = 1,2,3 (42)

Substituting the above conditions into Eq. (28), the actuating
force of each limb can be calculated out. To validate the ef-
fectiveness of the simplified model deduced in Sect. 3.3, the
complete dynamic model is built and simulated in ADAMS
software. Two results are presented in Fig. 12, where the
solid lines represent the ones come from the simplified dy-
namic model, the dashed lines represent the ones come from
ADAMS software. It shows that the two curves are generally
consistent with each other, although some local errors are a
bit of large. The errors come from the simplification of each
limb into the mass point. It results in the decreasing of the
model accuracy. Nevertheless, the simplified dynamic model
still make sense to estimate the actuating force or make con-
trol strategy in the design of this manipulator.

Furthermore, the reaction forces of the prismatic joints are
also calculated based on the method proposed in Sect. 4.2.
The results are compared with the ones obtained by ADAMS
software, as shown in Fig. 13. It is found that the two results
are similar, which proves the correctness of the method pro-
posed in Sect. 4.2.

5.3 Motion transmission

To evaluate the efficiency of the power transmission of the
manipulator, the motion transmission indices of each leg
are studied by screw theory (Wu et al., 2010; Zhao et al.,
2017). For a given configuration, the transmission wrench
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Figure 10. Workspace of the moving platform: (a) oblique view, (b) front view, (c) top view, (d) side view.

Figure 11. Condition numbers of the Jacobian matrices

screw(TWS), denoted $Ti (i = 1,2,3), is defined as a unit
screw that are reciprocal to all the twist screws except the ac-
tuated one in Limb i. The output twist screw(OTS), denoted
$Oi (i = 1,2,3), is the instantaneous movement of the mov-
ing platform when fixing all of its inputs except the one of the
ith limb. The input twist screw(ITS), denoted $li (i = 1,2,3),
is the unit twist of the actuated joint in Limb i. And then, for

the given configuration, the input transmission index (ITI) of
each limb can be represented as

λi =

∣∣$Ti ◦ $Ii
∣∣∣∣$Ti ◦ $Ii
∣∣
max

(i = 1,2,3) (43)

In this parallel manipulator, the translational direction of the
prismatic actuator is along the limb. Thus, the input trans-
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Figure 12. Actuating force of each limb: (a) Actuator 1, (b) Actuator 2, (c) Actuator 3.

Figure 13. Reaction forces of the prismatic joints: (a) fN , (b) fW , (c) fC .

mission index of the limb is constant and its value is always
equal to 1. It means that this manipulator has high quality of
input transmission.

Meanwhile, the output transmission index(OTI) of each
limb can be represented as

νi =

∣∣$Ti ◦ $Oi
∣∣∣∣$Ti ◦ $Oi
∣∣
max

(i = 1,2,3) (44)

The output transmission index νi represents the cosine of the
angle between the prismatic actuator of Limb i and the in-
stantaneous movement of the moving platform. Considering
ITI be always equal to 1 in this manipulator, we take the min-
imum value of νi as the local transmission index (LTI) of the
whole manipulator at the given configuration, denoted as νm.
Within the whole workspace, OTIs of each limb of this ma-
nipulator can be calculated by Eq. (44). The results are pre-
sented as shown in Fig. 14a–c. And the LTIs of the whole
manipulator in the workspace are as shown in Fig. 14d. It
is found that LTIs in the center of the workspace are gener-
ally larger than the ones of the other areas. It illustrates that
there is higher efficiency of the motion transmission when
the moving platform works in this area.

The above LTIs prescribe the quality of input and out-
put transmission in a given configuration. To further evalu-
ate the transmissibility of the manipulator within the whole
workspace, a global transmission index(GTI) of this manip-
ulator is defined as

GTI=

∫
νmd�∫

d�
(45)

where � is the workspace. For this manipulator, GTI over
the whole workspace is 0.5664. For the purpose of mak-
ing the moving platform work in the area of better trans-
missibility (GTI≥ 0.7), we search for the maximum area 0
in the workspace where GTI≥ 0.7, termed as the efficient
workspace.

Find : 0 ⊂�
min : |GTI− 0.7| (46)

Through Genetic Algorithm (GA), the efficient workspace 0
can be obtained as shown in Fig. 15. The volume of the area
0 is 8.26× 107 mm3, about 41.8 % of the whole workspace.

5.4 Reaction forces of the prismatic joints

A vertical force FG = [0,−100,0] is exerted on the mov-
ing platform. By Eq. (23), the forces of the actuators in
3 limbs are calculated. By ratio of the results to the input
force (100N ), the normalized reaction force of each limb is
obtained. And the contour lines for them are drawn out as
shown in Fig. 16a–c.

Also, we calculate the normalized reaction forces of the
prismatic joints in PLMEs limb under this circumstance.
Given the small distance e between PLMEs limb and 2-UPR
limb be 79 mm, the length le of the end link be 335 mm, the
compound reaction force fc of the prismatic joints is figured
out by Eq. (40). Similarly, by ratio of the results to 100N ,
the scale factors are obtained and presented in Fig. 16d. Ob-
viously, when the PLMEs limb approaches the singular con-
figuration, i.e., β = π/2, the reaction forces of the prismatic
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Figure 14. Local transmission index of manipulator: (a) ν1, (b) ν2, (c) ν3, (d) νm.

Figure 15. Efficient workspace 0 where GTI≥ 0.7: (a) oblique
view, (b) front view, (c) top view, (d) side view.

joints become larger which means the force performance gets
worse.

6 Parameter optimization

Assumed the parameters of three limbs are given, the mo-
tion range of each limb are similar with the ones mentioned

above. Through changing the angles κ1 and κ2 as shown in
Fig. 1, we can obtain different initial configurations of the
whole mechanism, which are symmetrical about x–y Plane.
Each different initial configuration has its own workspace,
transmissibility and force performance. The workspace is as-
sumed in the range of x >max(η1,η2) and y < ς1 as pre-
sented in Fig. 1. To achieve the overall optimal performance,
the designed parallel manipulator is expected to have large
workspace, high transmission and low reaction forces.

Before optimized, we firstly draw out the workspace,
transmission and normalized reaction force graphs with re-
spect to the angles κ1 and κ2 within the range of [0,1] and[
0,π/2

]
, as shown in Fig. 17a–c. From Fig. 17a, it is found

that the volume of the workspace becomes large when κ1 and
κ2 approach to zero. On the contrary, Fig. 17b and c show
that the transmission and the reaction force within this area
are not so good.

To make it clearly, we gathered all 3 contour maps in one
graph, as show in Fig. 18, where the dashed lines repre-
sent the contour lines of the workspace volume, the solid
lines represent the ones of the transmission, and the dot-
ted lines represent the ones of the reaction force. Accord-
ing to the contour maps, we give the rough expected areas
of workspace volume, transmission and reaction force. The
overlap of the 3 areas(as shown the diagonal lines area in
Fig. 18) can be regarded to be capable of optimal perfor-
mance, i.e., large workspace, high transmission and low re-
action force.

Based on the above analysis, a compound evaluation func-
tion 2,which involves workspace volume, transmission effi-
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Figure 16. Scale factors of the reaction forces: (a) Limb 1, (b) Limb 2, (c) limb 3, (d) Prismatic joints.

Figure 17. Performance with respect to κ1 and κ2: (a) workspace volume, (b) transmission, (c) normalized reaction force.

ciency and reaction force of the manipulator, is proposed as
seen in Eq. (47).

2=

(∫
υmd�

)r
·
(∫

d�
)s(∫

fcd�
)t (47)

where � is the workspace of the manipulator. υm is the lo-
cal transmission index (LTI), which is the non-dimensional
parameter. fc is the normalized reaction force, which is also
the non-dimensional parameter. Through varying the expo-
nents r , s and t , we can change the weighting for certain
variables to adjust the evaluation function. Usually , the ex-
ponents could be chosen as r = 1, s = 1 and t = 1. In this

case, the compound evaluation function with respect to κ1
and κ2 is calculated and drawn as shown in Fig. 19.

Figure 19 shows that 2 is a convex function, which obvi-
ously exists a maximum in the given range. Compared with
the results of Fig. 18, it is found that the overlap almost lo-
cates in the region of the maximum of the compound evalua-
tion function. Thus, it is feasible to obtain the optimal perfor-
mance by searching the maximum of the compound evalua-
tion function 2. Given the range of optimization variables
κ1 and κ2 in [0,1] and

[
0,π/2

]
, the optimization is con-

ducted by GA method. The results are obtained as κ1 = 0.605
and κ2 = 0.781. As shown in Figs. 18 and 19, the optimal
point(red point) is located in the expected area. Compared
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Figure 18. Contour map of overall performance.

Figure 19. 2 with respect to κ1 and κ2: (a) surface, (b) contour
map.

with the original manipulator presented in Sect. 5 (as shown
the blue point in Figs. 18 and 19), the workspace volume and
transmission of the optimized manipulator are remarkably
improved. Specifically, the workspace volume of the opti-
mized manipulator is calculated as 2.1718×108 mm3, which
is 9.9 % larger than the original one. The GTI of the opti-
mized manipulator is 0.6252, which increase 10.3 %. And
the volume of the efficient workspace 0, where GTI≥ 0.7,
is 1.2427× 108 mm3, i.e., 60 % of the whole workspace.
Compared with the ones in Sect. 5, the volume of the effi-
cient workspace of the optimized manipulator is expanded
by 50 %, which is as shown in Fig. 20. In general, the manip-
ulator with the optimized parameters has better overall per-
formance than before.

7 Prototype and Experiment

We manufacture the prototype of this new parallel manip-
ulator in this paper. Since the loops 2-UPR and 2-SPR are
equivalent, we choose Loop 2-SPR and PLMEs limb to as-
semble the parallel manipulator. As shown in Fig. 21, the
PLMEs limb is constructed by 2 parallel linear guides and

Figure 20. Efficient workspace 0 of the optimized configuration:
(a) oblique view, (b) front view, (c) top view, (d) side view.

2 sliders. The linkage A1C1A2C2 can slide on B1 and B2.
And the middle link B1B2 is hinged with the fixed platform.
The loop 2-SPR is constructed by 2 linear actuators. Through
the “T” shaped moving platform, the PLMEs limb and 2-
SPR limb are connected. The moving platform is driven
by 3 electric linear actuators, which are controlled by the
PLC(Programmable Logic Controller). Owning to the asym-
metric structure, this prototype can be mounted on one side
of the frame, as shown in Fig. 21.

In the experiment, we firstly control each individual lin-
ear actuator to extend and retract sequentially, as shown in
Fig. 22a–c. Secondly, we make all the 3 linear actuators to
extend and retract synchronously, as shown in Fig. 22d. The
experiment shows that the moving platform can translate into
3 different directions. The motion of the moving platform is
smoothly and continuously under the driving of the linear ac-
tuators. It proves the correctness of the mobility and motion
feasibility of this kind of mechanism.

Furthermore, we plan a “⊂” shaped path for the moving
platform. According to the given path points, the displace-
ment of each linear actuator relative to the initial configura-
tion is obtained by the method proposed in Sect. 3.1. Then,
input the control parameters of the linear actuators into the
PLC sequentially. Under the control of PLC, the moving plat-
form achieves the expected trajectory, as shown the red lines
in Fig. 23.
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Figure 21. Prototype of new manipulator.

Figure 22. Motion experiments: (a) Actuator 1 moving, (b) Actuator 2 moving, (c) Actuator 3 moving, (d) Synchronously extending.

8 Conclusions

A new 3-DoF asymmetric translational parallel manipula-
tor by combining of PLMEs limb and the single loop 2-
UPR is proposed. By the utilization of the linear actua-
tors directly connecting the moving platform and the fixed
platform, this new manipulator has higher transmission effi-
ciency than other 3-DoF TPMs, and adapts to pick-and-place
operation under heavy load. In addition, owning to asymmet-
ric structure, this manipulator can be installed aside of the
workstation, e.g. as shown in Fig. 21. It provides more flex-
ibility in its application. In this paper, the mobility of this
parallel manipulator is analyzed by screw theory and the sin-

gularity is determined. Also, the simplified kinematic and dy-
namic models are established. And the analytic solution of
the displacement and velocity equations are obtained. As the
PLMEs limb is the key part of this kind of manipulator, the
reaction forces of the prismatic joints in the PLMEs limb are
investigated for the mechanism design. It is found that the
varying of the reaction forces in the two prismatic joints are
related to the Jacobian matrix of the manipulator and the con-
figuration of the PLMEs limb, which can reveal the whole
kinematic performance of the manipulator. Given an initial
configuration, the workspace, condition numbers of Jacobian
matrices, dynamics, motion transmission and reaction forces
are discussed. Furthermore, we propose a compound evalu-
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Figure 23. “⊂” shaped trajectory.

ation function 2, which involves the factors of workspace
volume, motion transmission and reaction force. Aiming to
the maximum of 2, the optimization for the 3-DoF transla-
tional manipulator is conducted. After being optimized, the
workspace volume enlarges 9.9 %, the GTI increases 10.3 %,
and the volume of the efficient workspace is expanded by
50 %. At last, the prototype of this manipulator is manufac-
tured, and the motion experiment validates the mobility and
motion feasibility of the mechanism design.
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