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Abstract. In this paper, we present a solution-region-based synthesis approach for selecting optimal four-bar
linkages with a Ball–Burmester point. We discuss both general and special cases of the Burmester point that
coincide with the Ball point at the pole of the inflection circle. Given the coordinates of one fixed joint, any
point on the target’s straight line, and the direction of this straight line, we can synthesize an infinite number of
mechanisms using a coupler curve with five-point contacts with its tangent by adopting the proposed approach.
Each initial parameter corresponds to three side links that can generate three four-bar mechanisms. We generate
different mechanism property charts by developing mechanism software that enables users to intuitively identify
relevant linkage information and select the optimal linkage. This novel approach is a visualized analytical method
for synthesizing and selecting optimal four-bar linkages with one Ball–Burmester point on its coupler curve.

1 Introduction

As an important planar four-bar mechanism, four-bar link-
ages that approximate a straight line have been widely
studied based on the theory of the kinematic geometry of
mechanisms (Dijksman, 1976; Hunt, 1987; McCarthy, 2000;
Wang and Wang, 2015). Dijksman (1972) and Dijksman and
Smails (2000) used a geometrical method to discuss the Ball
point in different configurations. Tesar et al. (1967) and Vi-
dosic and Tesar (1967a, b) derived a series of synthesis for-
mulas, and transformed the results into design diagrams for
users according to three different cases, i.e., the general case
of the Ball–Burmester point, the special case of the Ball–
Burmester point at the inflection pole, and the special case
of the Ball-Double Burmester point. Yu et al. (2013) pre-
sented a numerical comparison synthesis method for single
and double straight-line guidance mechanisms to solve four-
bar straight-line guidance mechanism synthesis problems for
an arbitrarily given straight line’s “angle requirement” and
“point-position requirement”. Han (1993) studied the synthe-
sis of the four-bar straight-line linkage of Ball and Burmester

points in general cases. The author Yin et al. (2011, 2012)
studied the synthesis of the straight-line linkage of Ball and
Burmester points, separately. Han et al. (2009) proposed a
solution-region-based method for linkage synthesis to obtain
the optimal solution in the feasible solution region, and ex-
tended their approach to four-position finitely separated and
mixed “point-order” positions (Yang et al., 2011), six-bar
motion generation (Cui and Han, 2016), and RCCC Linkages
(Han and Cao, 2018; Bai and Angeles, 2015). Traditional
synthesis methods use congruence to represent infinite para-
metric solutions. The solution-region method is an optimal-
mechanism synthesis approach for expressing infinite solu-
tions on finite diagrams for cases irrespective of whether the
congruence method can be used. Bai and Angeles (2015) pro-
posed a new method for calculating cognate mechanisms,
and cognate straight-line mechanisms can be obtained by
employing this approach. However, none of the above au-
thors have made a systemic study of how to choose desired
straight-line mechanisms with a Ball–Burmester point from
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an infinite number of synthesized mechanisms, and that sat-
isfy the target constraints.

Here, we present a visualized synthesis approach based
on the solution region for selecting optimal four-bar link-
ages with a Ball–Burmester point. We discuss both the gen-
eral and special cases of the Burmester point that coincide
with the Ball point at the pole of the inflection circle. Differ-
ent mechanism property charts are generated by developing
mechanism software to enable users to intuitively identify in-
formation about the involved linkages and to select the opti-
mal linkage from an infinite number of mechanism solutions.

2 Theoretical basis and synthesis formulas

Robert Ball proposed the famous Ball point theory, which is
based on the infinitesimal displacement and instantaneous in-
variance of curvature. The Ball point is defined as the point
whose radius of curvature is infinite and whose curvature is
stationary, which is the intersection point of the inflection cir-
cle and the cubic of stationary curvature at a certain instant
(other than the polar point P ). The linkage curve and its tan-
gent line have an osculation of no less than three orders on
the Ball point, which means it passes through four points that
are infinitely close to each other. The velocity, acceleration,
and jerk of the Ball point in a moving rigid body have the
same direction. Four-bar linkages that approximate a straight
line with four contacting points can be synthesized using the
Ball point.

The Burmester point is a higher-order stationary point of
the cubic of a stationary curvature, whose trajectory inter-
sects with the curve at no less than five infinitely close points,
namely a four-order osculating. In this paper, we used the
theory of the Burmester point to develop a method for syn-
thesizing a five-point contact mechanism that approximates
a straight line under both general and special conditions. The
proposed method allows the designer to give a fixed hinge
point, the points on the straight line, and the direction of the
line.

2.1 General case

Assume a fixed joint point A0 = (A0x,A0y) and a point
P1 = (P1x,P1y) on a straight line, where the direction of
the straight line is β1 and the displacement is T . Vector T
(T 6= 0) points from the Ball point P1 to the polar point T .
We note that the parameter λ at point P between the t axis
and x axis is known during the synthesis of the five-point
contact mechanism that approximates a straight line, as com-
pared with the case of four-point contact (Yin et al., 2012).
Parameters αa0,αb0, αb0, αc0, and α10 are defined as the an-
gles from the positive direction of the T axis to the vec-
tors B, B0P , C0P , and PP1, respectively. Vectors αa0,αb0,
αb, αc, and α10 are defined as αa = αa0− λ, αa = αa0− λ,
αa = αa0− λ, and αa = αa0− λ, respectively. For simplic-
ity of calculation, let diameter D of the inflection point cir-

Figure 1. Definitions of various parameters (Yin et al., 2012).

cle be 1. The expected mechanism can be obtained by scal-
ing the synthesized mechanism by the diameter of the in-
flection point circle. Furthermore, the coordinates of another
fixed joint B0 and two motion joints A and B must be deter-
mined to synthesize four-bar mechanisms that approximate
a straight line. Details regarding the definition of parameters
are taken from Figs. 1 and 2 in reference of Yin et al. (2012),
as shown in Fig. 1.

According to the kinematic geometric theory of infinitely
close positions, several points can be selected from a mo-
tion plane at any instantaneous position, whose trajectory has
fourth-order contact with its curvature circle. This means that
these points are the circle points of five infinitely close posi-
tions, namely Burmester points, which are higher-order sta-
tionary points of the trajectory curvature. Using the Euler-
Savary equation (Yin et al., 2012) to solve the two-order
derivative equation d2ρm

dσ 2 = 0, or using the curvature stagna-
tion point curve equation to obtain the first derivative equa-
tion dρm

dσ = 0, we obtain:

tan4α+
N (ρm−M)
ρmM

tan3α+

[
dN
dσ
− 1

]
tan2α

+
N2 dM

dσ − 3NM
M2 tanα+

N2 (M − 2ρm)
ρmM2 = 0 (1)

where N and M are two auxiliary variables defined as fol-
lows:

1
M
=

1
3

[
1
D
+

1
ρm

]
,

1
N
=−

1
3D

dD
dσ
.

Equation (1) is a quartic equation that has four real roots at
most. These four roots have the value αi of the polar coor-
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Figure 2. MB0BCC0 solution region diagram of mechanism type.

dinates of the Burmester point. Motion joints A and B cor-
respond to roots αa and αb, respectively, and the connecting
rod point P1 corresponds to root α1. We assume the other
motion joint is C, which corresponds to root αc.

After we determine the instantaneous center P and param-
eter λ, by definition, we can obtain angles α1 and αa directly.
αb and αc are solved as follows.

According the relation between the fourth-order equation
root and coefficient of Eq. (1), we obtain:

tanα1+ tanαa + tanαb+ tanαc =
N (M − ρm)
ρmM

, (2)

tanα1 tanαa tanαb tanαc =
N2 (M − 2ρm)

ρmM2 , (3)

or

tanα1+ tanαc =
N (M − ρm)
ρmM

− tanαa − tanαb, (4)

tanα1 tanαc =
N2 (M − 2ρm)

ρmM2 tanαa tanαb
. (5)

Assuming tanα1 in Eq. (4) and tanαc in Eq. (5) are the two
roots of a quadratic equation, and according to the Vieta the-
orem, we have the following:

tan2α+

[
tanαa + tanαb+

N (ρm−M)
ρmM

]
tanα

+
N2 (M − 2ρm)

ρmM2 tanαa tanαb
= 0. (6)

Similarly, Eq. (6) can be regarded as the quadratic equation
of tanα, and according to the Vieta theorem, the roots of
Eq. (6) are imaginary when:[

tanαa + tanαb+
N (ρm−M)
ρmM

]2

−
4N2 (M − 2ρm)
ρmM2 tanαa tanαb

< 0. (7)

Therefore, the other two Burmester points are imaginary.
Combining Eq. (6) with the cubics of stationary curvature
equations, we have the following:

1
PA
=

1
M sinαa

+
1

N cosαa
, (8)

1
PB
=

1
M sinαb

+
1

N cosαb
, (9)

1
PP1
=

1
M sinα1

+
1

N cosα1
. (10)

By substituting PP1 =D sinα1 into Eq. (10), and assuming
D equals 1, we obtain:

N =
M tanα1

M − 1
. (11)

By substituting Eq. (11) into Eq. (6) and doing some rear-
ranging, we have the following:

M =
3U tanα1+UV + tanα1

2U tanα1+UV
, (12)

where U = tanαa tanαb and V = tanαa + tanαb. By substi-
tuting Eq. (12) into Eq. (11) and doing some rearranging, we
obtain:

N =
3U tanα1+UV + tanα1

1+U
. (13)

Furthermore, by substituting Eqs. (11) and (13) into the

Euler–Savary equation:

{
PA=

PA0·D sinαa
PA0+D sinαa

PB =
PB0·D sinαb
PB0+D sinαb

,

we obtain the following:

PA=
[(3U + 1) tanα1+UV ] sinαa

(U + 1) tanαa +U (2 tanα1+V )
, (14)

PB =
[(3U + 1) tanα1+UV ] sinαb

(U + 1) tanαb+U (2 tanα1+V )
. (15)

Since the diameter D of the inflection-point circle equals 1,
by combining it with Eq. (14), we obtain:

ρm =
M

3−M
. (16)

By substituting Eq. (16) into Eq. (4) and doing some rear-
ranging, we have:

αc = arctan
(
−

2tanα1+V

U + 1

)
. (17)

Considering that motion jointsC andB are Burmester points,
we replace joint B in Eq. (15) with joint C and substitute
Eq. (17) into Eq. (15). Then, PC can be obtained similarly,
as follows:

PC =
[(3U + 1) tanα1+UV ] sinαc

(U − 1)(2 tanα1+V )
. (18)
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According to the Euler-Savary equation:

PC0 =−
PC sinαc
PC− sinαc

, (19)

PB0 =−
PB sinαb
PB − sinαb

, (20)

PA=
PA0 sinαa
PA0+ sinαa

. (21)

By substituting Eq. (21) into Eq. (14), we obtain:

PA0 sinαa
PA0+ sinαa

=
[(3U + 1) tanα1+UV ] sinαa

(U + 1) tanαa +U (2 tanα1+V )
. (22)

Equation (22) can be regarded as an equation for the un-
known αb. After rearranging, we have:

Etan2αb+F tanαb+G= 0, (23)

where: E = tanαa (PA− sinαa); F = 2PA tanαa tanα1+

2PAtan2αa − tan2αa sinαa − 3tanαa tanα1 sinαa ;
G= PA tanαa tanα1 sinαa .

There are two roots for αb in Eq. (23), which are assumed
to be αb1 and αb2. So, we have:

αb1 =
−F +

√
F 2− 4EG
2E

, (24)

αb2 =
−F −

√
F 2− 4EG
2E

. (25)

PB can be obtained by substituting αb into Eq. (15), and
furthermore, PB0 can be calculated using Eq. (20). We note
that there is no real root for αb when 1=F 2

− 4EG< 0.
The values of PC and PC0 can be determined similarly,

and the diameter of the actual inflexion circle can be calcu-
lated using the equation PP1 =D sinα1. After calculating
PA, PA0, PB, PB0, PC, and PC0, we can obtain the ac-
tual size of the mechanism by multiplying these values by
the actual diameter of the inflection point circle.

The coordinates of motion joints A, B, and C and fixed
joints C0 and B0 can be calculated as follows:{
Ax = Px +PA ·D cos(αa + λ)
Ay = Py +PA ·D sin(αa + λ) , (26){
Bx = Px +PB ·D cos(αb+ λ)
By = Py +PB ·D sin(αb+ λ) , (27){
B0x = Px +PB0 ·D cos(αb+ λ)
B0y = Py +PB0 ·D sin(αb+ λ) , (28){
Cx = Px +PC ·D cos(αc+ λ)
Cy = Py +PC ·D sin(αc+ λ) , (29){
C0x = Px +PC0 ·D cos(αc+ λ)
C0y = Py +PC0 ·D sin(αc+ λ) . (30)

For a given set of conditions including a fixed joint A0, a
point P1 on a straight line, the direction of the straight line

Figure 3. Example diagrams of mechanisms.

β1, displacement T , and parameters λ, we can calculate three
sets of connecting rods AA0, BB0, and CC0 using the pro-
posed method. By arbitrarily selecting two connecting rods
from AA0, BB0, and CC0, we obtain a four-bar linkage that
approximates a straight line. Since αb has two roots αb1 and
αb2, a set of given conditions corresponds to six five-point-
contact four-bar linkages that approximate a straight line.
However, the fact that connecting rod BB0 corresponds to
αb1 is the same as connecting rod CC0 corresponding to αb2.
Also, the fact that connecting rod CC0 corresponds to αb1
is the same as connecting rod BB0 corresponding to αb2.
Therefore, there are only three four-bar linkages.

2.2 Special condition: Burmester point located at the
pole of the inflection circle

When the Burmester point is located at the pole of the in-
flection circle, parameter λ cannot be determined arbitrarily.
Below, we calculate the coordinates of another fixed joint B0
and two motion joints A and B.

When the Burmester point coincides with the Ball point
at the pole of the inflection circle, α1 equals 90◦. The coor-
dinates of the instantaneous center P can be determined by
its definition. According to the definition of parameter λ, we
have:

λ= α10−α1. (31)
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Table 1. Mechanism parameters.

Mechanism Length of links lsum
lmax
lmin

Mechanism type

A0A AB BB0 A0B0 AP1

MA0ABB0 15.50 3.49 5.62 7.48 2.45 32.09 4.44 6-Triple rocker
MA0ACC0 15.50 9.56 2.38 8.44 2.45 35.88 6.51 3-rocker-crank
MB0BCC0 5.63 6.07 2.38 3.38 3.88 17.46 2.55 3-rocker-crank

Figure 4. Mechanism solution region diagrams for all mechanism solutions.

By substituting α1 = 90◦ into Eq. (14), and assuming that
tanα1 approaches positive infinity, we have:

tanαb =
sinαa

2PA tanαa − 3tanαa sinαa
, (32)

PB =
[(3U + 1) tanα1+UV ] sinαb

(U + 1) tanαb+U (2 tanα1+V )

=
(3U + 1)sinαb

2U
, (33)

where U = tanαa tanαb and V = tanαa + tanαb.

Another Burmester point can be obtained using Eqs. (17)
and (18). Using Eq. (4), we have:

αc = arctan
(
−

2tanα1+V

U + 1

)
= arctan(−∞)=−90◦, (34)

PC =−
(3U + 1)
2(U − 1)

. (35)

By substituting Eq. (34) into the equation for the curvature
of a point on the curve, we obtain:

PC0 =−
PC sinαc
PC− sinαc

=
PC

PC+ 1
. (36)
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Figure 5. Synthesized mechanisms.

We can then derive PA, PA0, and PB0 from the formula
in reference (Yin et al., 2011). The coordinates of joints A,
B, and B0 can be calculated using Eqs. (26), (27), and (28),
respectively, and the coordinates of joints C and C0 are as
follows:{
Cx = Px +PC ·D cos(λ− 90◦)
Cy = Py +PC ·D sin(λ− 90◦) , (37){
C0x = Px +PC0 ·D cos(λ− 90◦)
C0y = Py +PC0 ·D sin(λ− 90◦) . (38)

Unlike the general condition, when the Burmester point co-
incides with the Ball point at the pole of the inflection circle,
αb has only one root. Therefore only three five-point-contact
four-bar linkages that approximate a straight line can be ob-
tained with a given set of conditions.

3 Solution-region generation and its applications

3.1 General case

3.1.1 Solution-region generation

According to the given conditions, the solution region of the
mechanism is analyzed on the coordinate plane β1-λ. Since
αb may have no real root, if direction β1, displacement T , and
angle λ are given arbitrarily, some solution regions will have

no mechanism solution, and these are infeasible mechanism
regions. Because there are three variables (β1, T , and λ), a
square solution region can be obtained for any pairs of these
three variables. Therefore, there will be three solution region
diagrams according to the three variables (β1, T , and λ).

3.1.2 Example

The task is to design four-bar linkages that approximate
a straight line with the following conditions: fixed joint
A0 = (0,0), a point P1 = (10,10) on the straight line, and
the displacement T = 5. Also, the synthesized four-bar link-
ages should be five-point-contact linkages that approximate
a straight line.

There are three solution-region diagrams. In the
mechanism-type solution region diagram of mechanism
MB0BCC0 shown in Fig. 2, we assume that direction β1
equals 120◦ and angle λ equals −85◦, and then we have
three synthesized linkages that approximate a straight line,
as shown in Fig. 3d, the parameters of which are shown in
Table 1. The other two synthesized mechanisms MA0ABB0

and MA0ACC0 are shown in Fig. 3b and c. The classification
of planar four-bar linkages is performed with reference to
the method developed by Barker (1985):

0. No solution,

1. Crank rocker,

2. Double rocker,

3. Rocker crank,

4. Double crank,

5. Triple rocker (in–out),

6. Triple rocker (out–out),

7. Triple rocker (out-in), and

8. Triple rocker (in-in).

3.2 Special condition: Burmester point located at the
pole of the inflection circle

3.2.1 Solution-region generation

If T varies from −∞ to +∞ continuously and β1 is deter-
mined arbitrarily, then the infinite mechanisms can be ob-
tained. Similarly, if β1 varies from 0 to 180◦ continuously
and T is determined arbitrarily, then the infinite mechanisms
can be obtained. All the above mechanism solutions consti-
tute the solution region. In the solution region, the area that
satisfies the design requirements is the feasible solution re-
gion.

To illustrate all the mechanism solutions in the finite coor-
dinate plane, displacement T (T ∈ (−∞,+∞)) is expressed
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Table 2. Mechanism parameters.

Mechanisms Link length T lline Mechanism type

A0A AB BB0 A0B0 AP1

MA0ABB0 23.48 15.59 10.28 43.20 15.83
25

17.58 8-Triple rocker
MA0ACC0 23.48 9.00 1.80 30.67 15.83 13.79 3-rocker crank
MB0BCC0 10.28 6.59 1.80 15.10 23.52 10.89 8-Triple rocker
M3 21.79 21.15 7.34 45.71 26.08 −40.49 22.44 8-Triple rocker
Mcog1 26.08 26.85 9.05 56.34 21.79

None
22.44 8-Triple rocker

Mcog2 39.12 13.58 40.29 84.53 7.34 22.44 8-Triple rocker

Figure 6. Mechanism solutions with different displacements T .

as the parametric equation of angle ϕ(ϕ ∈ (−90◦,90◦)), as
follows:

T = k1 tanϕ, (39)

where k1 is the step-size factor, which is used to adjust the
mechanism solution region to show the required mechanism
solution region.

When T is infinite, and we use the above general syn-
thetic equations to solve the mechanism, the resultant mech-
anism has some poor quality properties, i.e., the length ratio
of the mechanism and the relative linear length. To improve
these properties, we can use the synthesis formula for four-
bar linkages that approximate a straight line with an infinite
instant center, which we do not discuss here.

If we let k1 = 24, the square diagram of the mechanism
solution region is as shown in Fig. 4.

3.2.2 Example

In this task, we design four-bar linkages that approximate
a straight line and which satisfy the following conditions
and requirements: Given a fixed joint A0 = (0,0) and a point
P1 = (10,10) on the straight line, the Burmester point of the
resultant mechanism should be the pole of the inflection cir-
cle.

Let β1 be 30◦ and let T be 25. The three resultant mecha-
nisms are shown in Fig. 5, and their parameters are shown in
Table 2.

To synthesize the optimal mechanism solutions when the
direction of the straight line is 30◦, we use the proposed syn-
thesis software to plot the mechanism solution region curves,
which utilizes a method similar to that used for the circu-
lar mechanism solution regions. Take mechanism A0ABB0
for instance. The design constraints are as follows: the frame
length A0B0 is less than 70, the link length ratio lmax/lmin
is less than 10, and the relative length of the straight line is
longer than 0.25.

Let k1 be 50, which means T = 50tanϕ. When T varies
continuously, the performance curves of the resultant mech-
anisms are as shown in Fig. 6. The y-coordinates repre-
sent the length of the frame A0B0, the relative length of the
straight line, and the length ratio of the links. The shaded

www.mech-sci.net/10/25/2019/ Mech. Sci., 10, 25–33, 2019
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Figure 7. Optimal mechanism and two cognate mechanisms.

area is the feasible mechanism solution area that satisfies
the design constraints, as shown above the x-coordinates.
The mechanism-type distributions are shown below the x-
coordinates.

Figure 6c shows that the relative length of the straight line
is longest when ϕ equals −39◦, and that the length ratio and
the length of the frame are within the design constraints. The
corresponding mechanism is shown in Fig. 7a, and its pa-
rameters are shown in Table 2. Note that the physical length
of the straight line can be obtained by multiplying the rel-
ative length of the straight line by the frame length. The
other two cognate mechanisms for the straight-line linkage
in Fig. 7a, based on the Roberts–Chebyshev Theorem, are
shown in Fig. 7b and c.

4 Discussion and conclusion

In this paper, to select optimal four-bar straight-line link-
ages, we discussed both the general and special cases of the
Burmester point that coincide with the Ball point at the pole
of the inflection circle. By adopting our proposed approach,
an infinite number of mechanisms with a coupler curve that
has five-point contacts with its tangent were obtained. We
generated different mechanism property charts by develop-
ing a mechanism software to enable users to intuitively iden-
tify information about the involved linkages and to select the
one that is optimal. The results of the calculation examples
indicated that the proposed method works effectively. This
is a novel visualized analytical method for synthesizing and
selecting optimal four-bar linkages with one Ball–Burmester
point on its coupler curve.

Using the proposed method, we found there to be three
straight-line linkages with the same straight-line segment of
a coupler curve for each of the initial parameters given. How-
ever, the coupler curves of three cognate mechanisms by the
Roberts–Chebyshev Theorem are identical. Therefore, after
the initial parameters are given, we can synthesize three dif-

ferent mechanisms with the same straight-line segments of
coupler curves by the proposed method. In addition, we can
obtain the other two cognate mechanisms for each straight-
line linkage based on the Roberts-Chebyshev Theorem.
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