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Abstract. The basic Whipple-Carvallo bicycle model for the study of stability takes into account only geometric
and mass properties. Analytical bicycle models of increasing complexity are now available, they consider frame
compliance, tire properties, and rider posture. From the point of view of the designer, it is important to know
if geometric and mass properties affect the stability of an actual bicycle as they affect the stability of a simple
bicycle model. This paper addresses this problem in a numeric way by evaluating stability indices from the
real parts of the eigenvalues of the bicycle’s modes (i.e., weave, capsize, wobble) in a range of forward speeds
typical of city bicycles. The sensitivity indices and correlation coefficients between the main geometric and
mass properties of the bicycle and the stability indices are calculated by means of bicycle models of increasing
complexity. Results show that the simpler models correctly predict the effect of most of geometric and mass
properties on the stability of the single modes of the bicycle. Nevertheless, when the global stability indices of
the bicycle are considered, often the simpler models fail their prediction. This phenomenon takes place because
with the basic model some design parameters have opposite effects on the stability of weave and capsize, but,
when tire sliding is included, the capsize mode is always stable and low speed stability is chiefly determined by
weave stability.

1 Introduction

The stability of bicycles has drawn the attention of scien-
tists since the development of the first modern bicycles. The
first dynamic models for understanding the bicycle dynam-
ics were written independently by two scientists at the end of
the nineteenth century: Whipple (1899) and Carvallo (1899).
The Whipple–Carvallo bicycle model (WCBM) (Meijaard et
al., 2007) consists in the linearized equations of motion of the
bicycle and the rider. This model makes it possible to con-
duct open loop analysis with the rider hands-off the handle-
bar. Many authors have analyzed bicycle stability using the
WCBM (Limebeer and Sharp, 2006; Meijaard et al., 2007;
Schwab et al., 2007; Sharp, 2008) by solving the eigenvalue
problem in order to analyze the modes of vibration of the
system.

Starting from the WCBM many linearized bicycle models
of increasing complexity have been developed to study bi-
cycle stability. Some researchers have extended the WCBM

in order to include compliance of the front assembly (CFA).
This compliance commonly includes the effects of the frame
head tube, the fork, and the wheel (Doria and Roa, 2017;
Doria et al., 2017; Klinger et al., 2014; Limebeer and Sharp,
2006; Plöchl et al., 2012; Sharp, 2008). These models add an
additional velocity degree of freedom to the WCBM in order
to take into account the lateral velocity of the front-assembly
due to compliance. Other authors have extended the model
including tire mechanics (Doria et al., 2013; Doria and Roa,
2017; Klinger et al., 2014; Sharp, 2008; Souh, 2015). When
tire lateral slip is considered at least four degrees of freedom
(DOFs) are needed to model the bicycle.

Even if bicycle tires may exhibit a non-linear behavior
(Doria et al., 2013) and the shock absorbers that nowadays
equip many bicycles have non-linear characteristics (Cos-
salter et al., 2010), very few authors have carried out stability
analysis taking into account non-linear properties (Bulsink
et al., 2015), because stability analysis with non-linear mod-
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els requires cumbersome time-domain simulations and spe-
cific identification methods for extracting the properties of
the modes of vibration from time-domain data.

The rider with his/her mass, stiffness and damping char-
acteristics has a large effect on bicycle dynamics, even if the
control actions (Kooijman and Schwab, 2013) are neglected
and a completely passive behavior is assumed. For this rea-
son, some researchers have integrated the bicycle model with
rider models composed of rigid bodies (the limbs) connected
by means of joints (the articulations) and by lumped stiffness
and damping elements (Schwab et al., 2012; Doria and Tog-
nazzo, 2014). These models make it possible to simulate the
passive response of the rider both in the hands-off and in the
hands-on configuration.

The extensions of the WCBM improve the quality and
range of reliability of the stability analysis. For instance,
when the front-assembly compliance and tire mechanics are
included, the wobble mode appears as an additional mode of
vibration and bicycle stability at relatively high speed is bet-
ter predicted. Additionally, when the hands-on condition is
analyzed, the weave, capsize and wobble modes are changed
with respect to the hands-off condition, in particular the wob-
ble mode becomes more damped due to the rider’s arms in-
fluence (Klinger et al., 2014; Roa et al., 2018). Nonetheless,
it is useful to determine the limits and potentialities of each
model.

The purpose of this paper is to compare different models
of increasing complexity in terms of their capability of pre-
dicting bicycle stability. Since bicycle stability depends on
many parameters, only the effect of geometrical properties is
analysed, tire properties, stiffness properties, and rider body
properties are kept constant. The possible geometric config-
urations are explored numerically with a design of experi-
ment (DOE) approach based on the space filling method pro-
posed by Sobol (1967). This method compared with a ran-
dom method assures a lower uncertainty for the same number
of sample points (Saltelli et al., 2008) which are associated
with the computational effort. The stability of each bicycle
configuration is evaluated by means of numerical indices that
are calculated from the eigenvalues obtained by means of the
models of increasing complexity.

2 Bicycle models

The simplest model considered in this research is the
WCBM, that was checked and reviewed in Meijaard et
al. (2007). This model has two velocity degrees of freedom
(DOFs): the steer rotation of the handlebar around the steer-
ing axis δ̇, and the roll rotation of the rear frame and rider
around the longitudinal axis ϕ̇. Since the bicycle components
(front frame, rear frame, and wheels) and the rider are as-
sumed to be rigid bodies and the wheels are assumed to be
rigid disks, which roll without sliding, the stability features
foreseen by this model depend only on the geometric and

Table 1. Tire and fork parameters.

Parameter Value

Front-assembly stiffness kβ (Nm rad−1) 2800
Front-assembly damping cβ (Nm s rad−1) 25
Height of front-assembly twist axis hW (m) 0.44
Cornering stiffness CFα (–) 12.7
Camber stiffness CFγ (–) 1.15
Self-aligning stiffness CMα (m) 0.31
Twisting stiffness CMγ (m) 0.052
Overturning stiffness CMx (m) 0.015
Relaxation length due to sideslip σα (m) 0.075
Relaxation length due to camber σγ (m) 0.0075

mass properties. A set of 25 geometric and mass properties is
needed to describe this bicycle model (Meijaard et al., 2007).
Actually, some of these parameters cannot be affected by the
designer, e.g. rear assembly (rear frame plus rider) mass and
inertia chiefly depend on the properties of the rider’s body.
Other parameters are interconnected, e.g. wheel mass and in-
ertia depend on the radius of the wheel. For this reason, a
reduced set of parameters is considered in this research, they
are: the front and rear wheel radii (rF and rR), mass mH of
fork plus handlebar, wheelbase (w), trail (c), caster angle (λ),
and the coordinates of the center of mass of the rear assem-
bly (xB and zB), which largely depend on the position of the
saddle. Since the aim of this research is the study of the sin-
gle effect of each of these eight parameters, the mathematical
model was carefully implemented in order to avoid that the
variation in a parameter affects other parameters. Figure 1a
shows the WCBM with the design parameters.

The second model considered in this research is the im-
provement of the WCBM recently proposed in Doria et
al. (2017), see Fig. 1b. This model accounts for front as-
sembly compliance by introducing a revolute joint, a rota-
tional spring, and a rotational damper (not shown in the fig-
ure); the revolute joint defines the deformation axis of the
front frame that makes possible the lateral displacement of
the front wheel. Therefore, the number of DOFs increases to
three, and the new variable β̇ is the velocity about the de-
formation axis of the front frame. The values of rotational
stiffness and damping and the position of the deformation
axis were identified by means of experimental tests and are
kept constant in all the numeric calculations here reported,
they are summarized in Table 1.

The most complex bicycle model considered in this re-
search is the one developed in Klinger et al. (2014). In this
model lateral slips of front and rear tires are allowed. A lin-
ear model of tire forces and torques is adopted, since they
depend in a linear way on side-slip and camber angles. The
DOFs are five: δ̇, ϕ̇, β̇, yaw rate of the rear frame ψ̇ and
lateral velocity of the rear frame ẏ, see Fig. 1c. Mean val-
ues of tire properties from experimental tests (Doria et al.,
2013; Dressel and Rahman, 2012) have been adopted and are
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Figure 1. Bicycle models.

kept constant in the numerical calculations here reported. In
particular, the values of cornering stiffness, camber stiffness
and overturning stiffness that are reported in Table 1 are the
mean values of the characteristics of six different tires tested
in two laboratories. The values of self-aligning stiffness and
twisting stiffness are the mean values of the characteristics
of three tested tires.

In all the previous models the rider with the hands-off the
handlebar is simulated assuming the center of mass and in-
ertia properties as in Meijaard et al. (2007). The model de-
veloped in Klinger et al. (2014) makes it possible to simulate
bicycle dynamics considering the rider with the hands-on the
handlebar as well. In order to avoid introducing new DOFs,
the rider’s body is connected to the handlebars by means of
arms equipped with joints located at the shoulders, elbows
and wrists, according to the approach suggested in Schwab
et al. (2012). In the hands-on model, a bent-forward posture
is assumed, and the center of mass and inertia properties are
modified accordingly (Moore et al., 2009).

3 Stability indices

Stability of bicycles and powered-two-wheeled vehicles usu-
ally is analyzed by plotting the real and imaginary parts of
the eigenvalues against forward speed (Meijaard et al., 2007).
This research focuses on the stability of city bicycles and the
nominal geometric and mass properties of the reference bicy-
cle are set equal to the ones of the benchmark bicycle defined
in (Meijaard et al., 2007). Figures 2–5 represent the eigen-
value plots of the bicycle with the reference parameters of
Tables 1 and 2 that are obtained carrying out stability analy-
sis by means of the four models here considered.

In the field of bicycle dynamics very few stability indices
have been defined. With reference to stability analysis carried
out by means of the WCBM, which predicts only the weave
and capsize modes, weave speed vwea, capsize speed vcap,
and self-stability range Ssr2 are defined, see Fig. 2. Weave
speed is the lowest speed at which the weave mode becomes
stable (negative real part of the eigenvalue), whereas capsize
speed is the lowest speed at which the capsize mode becomes
unstable. vwea and vcap are modal stability indices, because
they give information about the stability of a specific mode
of vibration, but they do not tell if the bicycle is globally
stable or unstable. The third stability index (Ssr2) is the speed
range on which the uncontrolled bicycle is stable vwea < v <

vcap and it is a global stability index. These indices are very
simple and clear, but they have a limit, since they do not give
information about the level of stability/instability.

The analysis of the eigenvalues plots becomes more com-
plex when more detailed models able to predict the wobble
mode are used to study stability. In this case, it is possible
to introduce another modal stability index, which is the wob-
ble speed (vwob) and represents the lowest speed at which the
wobble mode becomes unstable, see Fig. 3. Global stability
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Figure 2. Eigenvalues against speed using the WCBM and the nominal parameters in Tables 1 and 2.

Figure 3. Eigenvalues against speed using the WCBM with CFA and the nominal parameters in Tables 1 and 2.

can be analyzed using the three modes stability index (Ssr3),
which is the range of speeds on which all the three modes
(weave, capsize and wobble) are stable. It is worth noticing
that in some cases Ssr3 is determined by the weave and cap-
size modes only, because the wobble mode becomes unstable
at speeds larger than vcap (see Fig. 3). In other cases, Ssr3 is
determined by the weave mode only, because the capsize and
wobble modes are always stable in the range of speed that
is analyzed (see Fig. 4). In some cases, as in Fig. 5, Ssr3 is
determined by the weave and wobble mode, because capsize
is always stable.

In order to improve the stability analysis, the concept of
stability area (Doria and Roa, 2017) is used in the framework
of this research.

Dealing with single mode stability, the stability area index
is the area formed by the curve of the real part of an eigen-

value and the speed axis when this real part is negative:

Amode =

vmax∫
0

δmode(v) ·Re (γmode(v)) · dv (1)

δmode(v)=
{

1 Re (γmode(v))≤ 0
0 Re (γmode(v))> 0 (2)

In Eq. (1) v is speed, vmax the maximum speed considered
in the analysis, γmode the eigenvalue of a specific mode of
vibration (mode=weave, capsize, wobble) and δ is the in-
dex defined in Eq. (2). Amode index quantify the damping
of a mode when it is stable, the larger the area, the larger
the damping. For this study, the value of vmax is chosen as
10 m s−1, which defines the relevant range to city bicycles,
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Figure 4. Eigenvalues against speed using the complete model and the nominal parameters in Tables 1 and 2, hands-off.

Figure 5. Eigenvalues against speed using the complete model and the nominal parameters in Tables 1 and 2, hands-on.

which seldom reach larger speeds. Racing bicycles and cer-
tain electrical bicycles can operate at higher speed regimes.
Some preliminary tests showed that, if the speed range is in-
creased, sometimes the eigenvalue plots are not simply the
extrapolations of those presented in this paper, therefore spe-
cific analyses are required.

Global stability can be studied considering the self-
stability area, which is the intersection of the stability areas
of the modes. If two modes are considered:

SsA2 = Awea ∩Acap (3)

If three modes are considered:

SsA3 = Awea ∩Acap ∩Awob (4)

The self-stability area index gives information about the
damping of the system when all modes are stable.

4 Sensitivity analysis

The aim of this research is to analyze the effect of the ge-
ometrical parameters of the bicycle on the stability indices
defined in the previous section. This analysis is performed
numerically by exploring the effect of the various param-
eters by means of large series of simulations to assess the
sensitivity of the stability indices to the design parameters.
The sensitivity is analyzed combining two approaches. First,
a variance-based sensitivity method is used to explore the
possible high-order interactions between the design parame-
ters that can affect the stability indices. Second, a correlation
analysis is used to investigate the main trend of the variation
in the stability indices associated with the change in each de-
sign parameter across the whole domain. In both cases, eight
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Table 2. Nominal values and ranges of geometric and mass properties.

Parameter Nominal value Low value High value

Front wheel radius rF (m) 0.30 0.25 0.36
Rear wheel radius rR (m) 0.35 0.30 0.37
Front-assembly mass mH (kg) 4.0 3.0 5.0
Horizonal position of main body 0.3 0.2 0.4
center of mass xB (m)
Vertical position of main body −0.9 −0.75 −1.05
center of mass zB (m)
Wheelbase w (m) 1.02 0.8 1.24
Trail c (m) 0.08 0.05 0.11
Head tube angle λ (◦) 18.0 15.0 21.0

design parameters are considered: rR, rF, mH, xB, zB, w, c,
λ.

4.1 Variance-based sensitivity of the stability indices

The analysis of the interactions of the different design pa-
rameters and their effect on the stability indices is per-
formed through the variance-based method presented in
Sobol (2001); Saltelli et al. (2008) and numerically imple-
mented by Cannavo (2012). In the framework of this ap-
proach, two factors are said to interact when their contri-
bution to the variance of the output cannot be expressed as
the sum of their single contributions. In this paper, the im-
portance of the interactions between variables on the stabil-
ity indices is studied. To this aim, the contribution to the
total variance of the single parameters (i.e., first-order in-
teractions), and the contribution to the total variance of the
pairs of parameters (i.e., second-order interactions) are calcu-
lated. When these contributions are calculated, the remaining
variance is associated to higher-order interactions (i.e., third-
order or higher).

For a design parameter Xi , the corresponding sensitivity
index of its effect on the output Y is calculated as the variance
of the expectation of Y conditional on Xi normalized by the
unconditional variance of Y , as presented in Eq. (5) (Saltelli,
2008).

Si =
V [E (Y |Xi)]

V (Y )
(5)

For a pair of design parameters Xi , Xj , (with i 6= j ) the cor-
responding sensitivity index of their effect on the output Y
is Sij . This value is calculated as the normalized variance of
the expectation of Y conditional on Xi and Xj minus Si and
Sj , as presented in Eq. (6).

Sij =
V
[
E
(
Y |Xi,Xj

)]
−V [E (Y |Xi)]−V

[
E
(
Y |Xj

)]
V (Y )

(6)

For the numerical implementation of the method, a total of
40 000 points are used for the exploration of the domain and

the evaluation of the sensitivity indices. Each parameter is
sampled with a uniform probability density function, within
the range defined by the lower and upper bounds presented
in Table 2.

4.1.1 Variance-based sensitivity of the stability indices
of the single modes

Figure 6 presents the contribution of first, second, and higher
order interactions, to the variance of the weave mode indices
calculated by means of the various bicycle models. The sum
of the sensitivities of the weave speed index (vwea) to each
single parameter (first-order interactions) explains 93.5 % or
more of the total variance. The model with the lowest per-
centage of the total variance explained by the first-order in-
teractions is the complete model with the “hands-off” con-
dition. For the same model, it is found that the first-order
sensitivities explain 90.3 % of the total variance of the weave
area index (Awea).

Figure 7 summarizes the results of the sensitivity analysis
for the capsize mode indices, showing the contribution of the
orders of interaction. First-order interactions explain 97.8 %
or more of the total variance of the capsize speed index (vcap).
It is worth noticing that for the complete model the capsize
mode remains stable over the range of speed considered (0
to 10 m s−1). Even if capsize mode is stable, it is possible
to calculate the capsize area index (Acap), which is related to
the damping of this mode. It is found that for the capsize area
index the complete bicycle model in “hands-on” condition
has the lowest percentage of the total variance explained by
the first-order interactions (97.3 %).

Figure 8 shows the sensitivity of the wobble mode indices
to the different orders of interaction. The sum of the sen-
sitivities explained by the first-order interactions decreases
for wobble, compared with those obtained for the other two
modes. For the wobble speed index (vwob) the sum of the
first-order sensitivities explains 64.8 % of the total variance
in the case of the complete model in “hands-off” condition.
When the WCBM with CFA is used, the first-order inter-
actions explain 88.8 % of the total variance, whereas when
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Figure 6. Sensitivity of the weave mode to first, second, and higher orders of interaction. Models of increasing complexity from bottom to
top.

Figure 7. Sensitivity of the capsize mode to first, second, and higher orders of interaction. Models of increasing complexity from bottom to
top.

the complete model in the “hands-on” condition is adopted,
90.4 % of the total variance is associated to the first-order
interactions. For the wobble area index (Awob), the first-
order interactions explain 85.8 % of the total variance when
the WCBM with CFA is used, 86.9 % when the full model
in “hands-off” condition is used, and 91.3 % when the full
model in “hands-on” condition is used. Regarding the effect
of the second-order interactions on vwob and Awob, the in-
teraction between the two coordinates of the location of the
center of mass of the main body (xB, zB) is the most relevant
contribution for some models (i.e., over 5 %).

4.1.2 Variance-based sensitivity of the global stability
indices of the bicycle

The analysis of the interactions of the design parameters with
the global stability indices is also performed by means of the
variance-based method. Figure 9 presents the contribution of
first, second, and higher order interactions to the variance of
Ssr2 and SsA2. For these indices, the variances are mainly
explained by the contribution of first order terms. The model
with the largest effect of second order and high order inter-
actions is the complete model with the “hands-off” condi-
tion, in this case the first order interactions explain 93.3 % of
the total variance of Ssr2 and 89.6 % of the total variance of
SsA2.

Figure 10 shows the sensitivity of Ssr3 and SsA3 to the
different orders of interaction. The sum of the variances ex-
plained by the first-order interactions is smaller for the 3-
modes global stability indices than for the 2-modes global
stability indices. For the Ssr3, the sum of the first-order vari-
ances explains 62.2 % of the total variance in the case of the
complete model in “hands-on” condition. For the complete
model in “hands-off” condition, the first-order interactions
explain 71.6 % of the total variance, and for WCBM the with
the CFA 75.9 % of the total variance is associated to the first-
order interactions. For SsA3, the first-order interactions ex-
plain 52.6 % of the total variance when the complete model
in “hands-on” condition is used, 70.4 % when the complete
model in “hands-off” condition is used, and 72.5 % when
the WCBM with CFA is used. Regarding the effect of the
second-order interactions on Ssr3 and SsA3, the interaction
between the radius of the front wheel and the wheelbase (rF,
w) presents an important contribution for the complete model
(i.e., over 5 %), and the interaction between the two coordi-
nates of the location of the center of mass of the main body
(xB, zB) presents a relevant contribution for the WCBM with
CFA.

4.2 Correlation analysis of the stability indices

The correlations associated to the single modes of vibration
are studied one at a time considering both the speed index
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Figure 8. Sensitivity of the wobble mode to first, second, and higher orders of interaction. Models of increasing complexity from bottom to
top.

Figure 9. Sensitivity of the stability indices taking into account weave and capsize to first, second, and higher orders of interaction. Models
of increasing complexity from bottom to top.

and the area index. A space-filling computational experiment
is used, implementing a quasi-Monte Carlo exploration of the
domain based on a Sobol low discrepancy sequence (Sobol,
1967). 40 000 points are evaluated, and the results are used
for the computation of the correlation coefficients.

ρxy =
σxy

σxσy
(7)

σ 2
x =

1
n

∑n

i=1
(xi − x)2 (8)

σ 2
y =

1
n

∑n

i=1
(yi − y)2 (9)

σxy =
1
n

∑n

i=1
(xi − x)(yi − y) (10)

In the present case, σy is the standard deviation of an output
(e.g., capsize speed), yi are the values computed for all the
simulations, and y is the arithmetic average of yi . σx is the
standard deviation of a design parameter (e.g., wheelbase),
xi are the values of the parameter taken for the study, and x
is the arithmetic average of xi . σxy is the covariance between
an output and a design parameter. The correlation coefficient
represents the normalized measure of the strength of linear

relationship between variables, and ranges from−1 to 1. Val-
ues close to 1 indicate a strong linear positive relationship
between the variables; values close to −1 indicate a strong
linear negative relationship between them (anti-correlation);
values close or equal to 0 indicate no evidence of linear rela-
tionship between variables.

4.2.1 Effect of geometric parameters on the stability of
the single modes

Figures 11, 12, and 13 summarize the results of the correla-
tion analysis. The correlation coefficients are shown in solid
red when they represent positive correlations, and in dotted
blue when they represent negative correlations. The circles
that represent each correlation coefficient have an area that is
proportional to the magnitude of the index.

Figure 11 presents the correlation coefficients related with
the weave mode. The basic WCBM shows that c and rF have
a strong correlation with the weave speed index (vwea), while
w has a moderate correlation with vwea. When rF increases
vwea decreases, which is a stabilizing effect. For all the other
parameters, the effect of an increment is an increase in vwea,
which is a de-stabilizing effect. The analysis of weave sta-
bility by means of the weave area index (Awea) confirms the
previous results but shows two differences. The correlation
between xB andAwea is strong and shows a stabilizing effect.
The correlation between rF and Awea is weak. The inclusion
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Figure 10. Sensitivity of the stability indices taking into account the three modes to first, second, and higher orders of interaction. Models
of increasing complexity from bottom to top.

Figure 11. Correlation coefficients for the indices of the weave mode. Models of increasing complexity from bottom to top. Speed range: 0
to 10 m s−1.

of front assembly compliance does not strongly modify vwea
and Awea, there are only minor variations in the values of the
correlation coefficients. When the full bicycle model is con-
sidered (with front assembly compliance and sliding tires)
most of the bicycle parameters roughly show the same effect
on vwea and Awea that they showed with the simpler mod-
els. The exception is the effect of xB and λ on vwea, because
with the full model when these parameters increase, there is
a decrease in vwea (stabilizing effect).

Therefore, as far as the weave mode is concerned, it can
be stated that the predictions on weave stability made by the
simplest models are confirmed when more complex models
are adopted, there are only some variations in the relative
importance of the various parameters.

All the previous results dealt with the hands-off condition,
the full model makes it possible to study the hands-on con-
dition as well. Positioning the rider’s hands on the handlebar
has a very small influence on the stability of the weave mode
considering both the weave speed index and the weave area
index.

Figure 12 makes it possible to analyze the effect of geo-
metric parameters on the stability of the capsize mode. The
basic WCBM shows that c, rF, and xB have a strong corre-
lation with the capsize speed index: an increment in rF has a
de-stabilizing effect, because it decreases the capsize speed,
whereas increments on xB or c have a stabilizing effect. The
analysis of capsize stability by means of the capsize area in-

dex confirms the previous results but shows that zB has a
moderate influence on capsize stability. The inclusion in the
model of front assembly compliance does not influence the
capsize stability indices. Conversely, the introduction of slid-
ing tires in the bicycle model has a very large effect on the
capsize mode, which remains stable on the full range. The
correlation coefficients of the capsize area index calculated
by means of the full model with hands-on the handlebar are
in good agreement with the correlation coefficients calcu-
lated by means of the simpler models, only the effects of c,
w and λ are different. The simpler models present a strong
positive correlation of the capsize area and c, and the com-
plete model has only a weak correlation for the same pair.
With the simpler models the coefficients of w and λ show
a weak positive correlation, whereas with the full model the
correlation coefficient of w is negative and large, while the
correlation coefficient of λ is negative but negligible. The
correlation analysis (carried out by means of the full model)
shows that the “hands-on” condition has negligible effect on
capsize stability.

Finally, the effect of geometric parameters on wobble sta-
bility is analyzed by means of the correlation coefficients that
are shown in Fig. 13. The 2 DOF WCBM does not simulate
the wobble mode and the simplest model predicting wobble
is the WCBM with CFA. With this model, the parameter with
the strongest positive correlation coefficient with vwob is w,
followed by xB, which has a moderate correlation; the param-
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Figure 12. Correlation coefficients for the indices of the capsize mode. Models of increasing complexity from bottom to top. Speed range:
0 to 10 m s−1.

Figure 13. Correlation coefficients for the indices of the wobble mode. Models of increasing complexity from bottom to top. Speed range:
0 to 10 m s−1.

eter mH has a negative correlation coefficient (de-stabilizing
effect). The correlation coefficients of Awob calculated by
means of the same model have a similar trend, with only
two noticeable differences: a moderate negative correlation
coefficient of rF with Awob, and an increased positive corre-
lation coefficient of c with Awob. When the sliding behavior
of tires is considered, there are two phenomena that are in-
dependently able to generate a wobble mode: front assembly
compliance (Doria et al., 2017) and tire model with relax-
ation length (Sharp, 2008). Correlation coefficients of vwob
and geometric parameters calculated by means of the hands-
off model show that the most influential parameters have the
same effect on wobble stability they showed with the WCBM
with CFA. Only parameter xB has a different effect on wob-
ble stability with a negligible correlation with wobble speed.
Correlation analysis betweenAwob and the geometric param-
eters shows results very similar to the ones obtained with the
WCBM with CFA, only the correlation coefficient of xB is
weaker but it maintains the same sign. Correlation analysis
carried out with the full model with hands-on the handlebar
shows some differences with respect to the hands-on case,
but all the parameters maintain the same effect on stability.

4.2.2 Effect of geometric parameters on the global
stability of the bicycle

The correlation between the geometric parameters and the
indices that define the global stability of the bicycle can be
considered the most important result from the practical point
of view. The key question is if the predictions made by the
simpler models hold true even when more realistic bicycle
models are considered. The WCBM can predict only weave
and capsize stability, therefore indices Ssr2 and SsA2 are
considered. Figure 14 shows that the predictions made by
the WCBM hold true when front assembly compliance is in-
cluded in the model. The scenario drastically changes when
the effect of tires is taken into account. In this case only the
correlation coefficients of Ssr2 and SsA2 with xB, zB , and
w maintain the same sign they showed with the WCBM,
even if some of them have an important change in magni-
tude. This phenomenon takes place because in the presence
of sliding tires the capsize mode is stable over the full range
of forward speeds here considered (see Fig. 4) and the self-
stability range actually depends only on the weave speed.
Therefore, some geometric parameters (like rF and c), which
in the WCBM have important and opposite effects on vwea
and vcap, influence only vwea when the full model is used.
In the WCBM trail c has a de-stabilizing effect on weave,
because it increases vwea (see Fig. 11), and a stabilizing ef-
fect on capsize, because it increases vcap (see Fig. 12), the
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Figure 14. Correlation coefficients for the stability indices taking into account weave and capsize. Models of increasing complexity from
bottom to top. Speed range: 0 to 10 m s−1.

Figure 15. Correlation coefficients for the stability indices that consider the three modes (i.e., capsize, weave, and wobble). Models of
increasing complexity from bottom to top. Speed range: 0 to 10 m s−1.

latter effect being stronger thus the self-stability range in-
creases with c. Conversely, in the full model c increases vwea
(de-stabilizing effect) but it has no effect on vcap, hence the
self-stability range decreases if c increases. A similar argu-
ment holds true for the effect of rF. The self-stability range
of weave and capsize slightly changes if the full model with
hands-on is considered. Figure 14 also shows that the geo-
metric parameters influence the SsA2 index roughly in the
same way they influence Ssr2.

The simplest model that can be used for calculating the
self-stability indices taking into account three modes (weave,
capsize, and wobble) is the WCBM with front compliance,
see Fig. 15.

Correlation analysis shows that in this case parameter
xB has the highest stabilizing effect followed by w and c,
whereas parameter zB has the highest destabilizing effect fol-
lowed by mH and rF. When tire sliding is included in the
model, parameters mH, zB, and w maintain their correlations
on Ssr3 and SsA3, only with small changes in magnitude.
Parameter xB reduces its correlations with Ssr3 and SsA3,
whereas parameter c changes the sign of its correlations with
Ssr3 and SsA3. When the tire sliding is included, the impor-
tance of rF grows and takes on a strong stabilizing effect. On
the one hand, tire properties did not show a very large influ-
ence on vwob andAwob (see Fig. 13). On the other hand, when
tire sliding is included in the model the correlation coeffi-

cients of c and rF show similar changes in both the stability
of two and three modes. Therefore, it may be concluded that
these phenomena are mainly related to capsize and weave
stability. Actually, Figs. 3 and 4 show that the large differ-
ences in the stability range and area that take place when tire
sliding is considered are mainly due to the modifications in
the loci of capsize and weave. Finally, the full model makes
it possible to analyze the effect of geometric parameters on
Ssr3 andSsA3 with hands-on the handlebar. There are not
large differences with respect to the hands-off case, but pa-
rameter xB with hands-on has a weak de-stabilizing effect.

The comparison between the stability indices calculated
with 2 and 3 modes shows that some parameters change their
effect on stability: with 3 modes the increase in w has a
strong stabilizing effect, instead of the weak de-stabilizing
effect that it has with 2 modes; additionally, with 3 modes
the increase in mH has a weak de-stabilizing effect, instead
of the negligible effect that it has with 2 modes. This phe-
nomenon is due to the large effect of w and mH on wobble
stability (see Fig. 13).

5 Conclusion

When the basic WCBM is extended by introducing front as-
sembly compliance, the most important effect is the appear-
ance of a high frequency wobble mode, which may become
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unstable at the highest speeds considered in the framework of
this research (i.e., 10 m s−1 for a city bicycle). Nevertheless,
the stability features of weave and capsize are not strongly
modified and the effects of the geometric and mass proper-
ties on the stability of these modes that are predicted by the
WCBM still hold true. The analysis of the global stability
indices (Ssr and SsA) shows that some parameters (mH, w)
have an effect on the global stability of the three modes oppo-
site to the one they showed in the WCBM, considering only
weave and capsize modes. This happens because mH and w
has a strong effect of wobble stability.

The introduction of tire slip in the model has an impor-
tant effect on stability, because not only the wobble mode
appears, but also the capsize mode becomes stable over the
whole range of speeds. Therefore, even if the influence of
the various geometric and mass properties on the stability of
the single modes (weave and capsize) is very similar to the
one predicted by the WCBM, the effect on global stability is
often different. This phenomenon takes place because some
parameters have opposite effects on the stability of weave
and capsize and in the simple WCBM their effect on global
stability derives from a combination of the effects they have
on the single modes. Conversely, in the presence of tire slip,
the capsize mode is always stable and no longer relevant, thus
the combined effects do not take place, and global stability
is dominated by the weave and wobble modes. Only param-
eters xB and zB maintain the effect of stability they showed
in the WCBM.

A different posture of the rider with hands-on the handle-
bar does not strongly change the effect of mass and geometric
parameters on the stability indices. The most important effect
is that with hands-on xB has a small de-stabilizing effect.

According to the presented results, it is possible to state
that the simple WCBM gives useful hints for understanding
the physical phenomena determining bicycle stability, espe-
cially at low speed. The simpler models give more accurate
information about the stability of the single modes than about
the global stability of the bicycle; therefore they can be use-
ful when the stability of a single mode is the main concern,
because the other modes can be stabilized by the rider, or
become unstable at very high speed. Generally speaking, a
full bicycle model is strongly recommended for studying the
global stability properties of actual bicycles.
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